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S1. Biospecimen Collection and Clinical Data

Sample Acquisition

Resection and biopsy biospecimens were collected from patients diagnosed with cervical squamous cell
carcinoma, endocervical adenocarcinoma, or adenosquamous carcinoma that had not received prior
chemotherapy or radiotherapy. Institutional review boards at each tissue source site (TSS) reviewed
protocols and consent documentation and approved submission of cases to TCGA. Cases were staged
according to the American Joint Committee on Cancer (AJCC) and International Federation of
Gynecology and Obstetrics (FIGO) staging systems. Each frozen primary tumor specimen had a
companion normal tissue specimen (blood or blood components, including DNA extracted at the TSS).
Normal uterus was also submitted for some cases. Specimens were shipped overnight from 20 TSSs

using a cryoport that maintained an average temperature of less than -180°C.

Pathology quality control was performed on each tumor and adjacent normal tissue (if available)
specimen from either a frozen section slide prepared by the Biospecimen Core Resource (BCR) or from
a frozen section slide prepared by the TSS. Hematoxylin and eosin (H&E) stained sections from each
sample were subjected to independent pathology review to confirm that the tumor specimen was
histologically consistent with the allowable cervical cancers and the adjacent normal specimen contained
no tumor cells. The percent tumor nuclei, percent necrosis, and other pathology annotations were also
assessed. Tumor samples with >60% tumor nuclei and <20% necrosis were submitted for nucleic acid

extraction.
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Approximately 61% of cervical cancer cases (consisting of a primary tumor and a germline control)
submitted to the BCR and processed passed quality control metrics. Tumor tissue from 173 cases was

submitted for reverse phase protein array (RPPA) analysis.

TSSs contributing biospecimens included: Analytical Biological Services, Inc., Asterand, Inc., Barretos
Cancer Hospital, Baylor College of Medicine, Candler, Catholic Health Initiative - Penrose St. Francis
Health Services, Cedars-Sinai Medical Center, Christiana Care Health Services, Inc., Gynecologic
Oncology Group, Indiana University School of Medicine, International Genomics Consortium, ILSbio,
LLC., The University of Texas MD Anderson Cancer Center, Medical College of Wisconsin,
Montefiore Medical Center, Memorial Sloan Kettering Cancer Center, National Cancer Institute,
Ontario Tumour Bank — London Health Sciences Centre, Ontario Institute for Cancer Research —
Ottawa, ProteoGenex, Roswell Park Cancer Institute, University of Hawaii, University of Kansas,
University of Minnesota, University of New Mexico, University of North Carolina, University of
Oklahoma Health Sciences Center, University of Pittsburgh, University of Washington, and Washington

University in St. Louis.

Sample Processing

DNA and RNA were extracted from tumor and adjacent normal tissue specimens using a modification of
the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was processed
using a mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA preparations that
included RNA <200 nt suitable for miRNA analysis. DNA was extracted from blood using the QiaAmp

blood midi kit (Qiagen).
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RNA samples were quantified by measuring Absysp with a UV spectrophotometer and DNA was
quantified by PicoGreen assay. DNA specimens were resolved by 1% agarose gel electrophoresis to
confirm high molecular weight fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler
(Applied Biosystems) was utilized to verify that tumor DNA and germline DNA representing a case
were derived from the same patient. Five hundred nanograms of each tumor and normal DNA were sent
to Qiagen (Hilden, Germany) for REPLI-g whole genome amplification using a 100 pg reaction scale.
RNA was analyzed via the RNA6000 nano assay (Agilent) for determination of an RNA Integrity
Number (RIN), and only analytes with RIN >7.0 were included in this study. Only cases yielding a
minimum of 6.9 pg of tumor DNA, 5.15 pg RNA, and 4.9 pg of germline DNA were included in this

study.

Samples with residual tumor tissue were considered for proteomics analysis. When available, a 10-20
mg piece of snap-frozen tumor adjacent to the piece used for molecular sequencing and characterization
was submitted to MD Anderson Cancer Center for RPPA analysis.

Data Freeze

Details of the data freeze samples are described in Methods. Overall, data from 228 samples was used
in various analyses across six different clinical and molecular platforms, which comprises the largest

cervical cancer dataset to date (Extended Data Fig. 1a).

Histology Verification

Frozen sections of all cervical cancers submitted for TCGA analysis were reviewed by a tissue site
pathologist and an independent pathologist prior to acceptance into the study. When available, scanned
images of the formalin-fixed, paraffin embedded tissue slides were reviewed by an expert pathology

panel. Only cases that met criteria for primary cervical cancer according to WHO criteria® were
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accepted. These included squamous cell carcinomas, both large cell keratinizing in which at least one
well-formed keratin pearl was identified and large cell non-keratinizing. Adenocarcinomas included
adenocarcinoma of usual type, including mucin depleted, mucinous, and endometrioid type. For
analysis purposes, all adenocarcinomas were combined into one endocervical adenocarcinoma category.
Three adenosquamous carcinomas were also included. All cervical cancers were assigned a pathologic
grade, including Grade I: well-differentiated; Grade II: moderately differentiated; and Grade III: poorly

differentiated. Care was taken to verify that the tumors included were not endometrial in origin.

S2. HPV Detection and Integration

HPV Detection by MassArray (Nationwide Children’s Hospital)

HPYV status was determined by an ultra-sensitive method using real-time competitive polymerase chain
reaction and matrix-assisted laser desorption/ionization-time of flight mass spectroscopy with separation
of products on a matrix-loaded silicon chip array, similar to the work described in Tang et al®.
Multiplex PCR amplification of the E6 region of 16 discrete high-risk HPV types (HPV 16, 18, 31, 33,
35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 90), 2 low-risk HPV types (HPV 6 and 11), and human
GAPDH control was run to saturation followed by shrimp alkaline phosphatase quenching.
Amplification reactions included a competitor oligo identical to each natural amplicon except for a
single nucleotide difference. Probes that identify unique sequences in the oncogenic E6 region of each
type were used in multiplex single base extension reactions extending at the single base difference
between wild-type and competitor HPV so that each HPV type and its competitor were distinguished by

mass when analyzed on the MALDI-TOF mass spectrometer.
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Pathogen Detection from RNA-seq Data by BioBloom Tools (BC Cancer Agency)

The microbial detection pipeline used by the BC Cancer Agency’s Genome Sciences Centre (BC) is
based on BioBloom Tools (BBT, v1.2.4bl), which is a Bloom filter-based method for rapidly classifying
RNA-seq or DNA-seq read sequences'®. We generated 43 filters from “complete” NCBI genome
reference sequences of bacteria, viruses, fungi, and protozoa, using 25-bp k-mers and a false positive
rate of 0.02. We ran BBT in paired-end (PE) mode with a sliding window to screen FASTQ files from
RNA-seq libraries (48-bp PE reads, 178 tumors and no adjacent tissue normals), and 40 whole genome
shotgun libraries (WGS, 50-bp PE reads, 19 tumors and 19 blood normals). In a single-pass scan for
each library, BBT categorized each read pair as matching the human filter, matching a unique microbial
filter, matching more than one filter (multi-match), or matching neither human nor microbe (no-match).
For each filter, we then calculated a reads-per-million (RPM) abundance metric as:

5)

( #reads mapped to a microbe filter

Abundance metric = *1
k#chastity passed reads inthe sample

HPV-specific detection thresholds were identified from distinct gaps between HPV-positive and HPV-
negative libraries in sorted RPM profiles. For HPV, we applied thresholds of 1.8 and 0.4 RPM to RNA-
seq and WGS profiles, respectively. Of note, different microbes may require different thresholds. To
identify the specific HPV strain in each positive library, we scanned the reads that had been classified as
HPV against separate filters for each of the reference HPV strains, using single-pass BBT runs. The

classified FASTQ files were then passed into the viral integration analysis stage (below).
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Pathogen Detection from RNA-seq Data by PathSeq (Broad Institute)

The PathSeq algorithm®’ was used to perform computational subtraction of human reads, followed by
alignment of residual reads to a combined database of human reference genomes and microbial
reference genomes (which includes but is not limited to HPV genomes), resulting in the identification of

reads mapping to HPV genomes in RNA sequencing data.

Subjects were classified as HPV-positive by RNA sequencing if at least 1 HPV read in 1 million human
reads were present; otherwise, subjects were classified as HPV-negative. Using PathSeq, human reads
were subtracted by first mapping reads to a database of human genomes using BWA (version 0.6.1)%,
Megablast (version 2.2.23), and Blastn (version 2.2.23)"°. Only sequences with perfect or near perfect
matches to the human genome were removed in the subtraction process. To identify HPV reads, the
resultant non-human reads were aligned with Megablast to a database of microbial genomes that
includes multiple HPV reference genomes. HPV reference genomes were obtained from the NCBI

nucleotide database (downloaded in June 2013).

Pathogen Detection from Low-Pass WGS Data (Harvard Medical School)

An in-house developed pipeline, PathWatch, was used to detect bacteria and viruses and to examine the
integration status of the bacterial/viral genome. First, computational subtraction of sequences mapped
previously to the human genome was performed. Next, BWA was used to map the remaining set of
non-human sequences to the set of bacterial and viral reference genomes obtained from the NCBI
RefSeq database (ftp://ftp.ncbi.nih.gov/refseq/release/microbial/ and
ftp://ftp.ncbi.nih.gov/refseq/release/viral/ respectively). Reads that aligned to the genomes of multiple
species were filtered out. The percentage of covered pathogen genome, count of pathogen sequencing

reads normalized by the length of the pathogen genome, and total number of non-human reads in the
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sample were calculated. To consider a given sample positive for the pathogen presence we chose an
empirical threshold of 1 kb of pathogen genome to be covered to distinguish between positive calls and

background noise from the reads that came from other species.

HPYV Variant Calling

RNA-seq data in FASTA format was used to identify HPV variants (Supplemental Fig. S1). Unaligned
reads were taken from the PathSeq analysis (which contains HPV reads) and aligned to HPV reference
genomes (HPV complete genomes from NCBI) using TopHat™ with default parameters®. A BAM file
containing only the HPV-related reads was generated for each sample. For each HPV isolate, a contig
was generated using samtools’' and then aligned with the HPV variant complete genome database’ to
create a phylogenetic tree using RAXML”. Single Nucleotide Polymorphisms (SNPs) were called from
the BAM file using samtools and SNVMix'*. The HPV variant lineages/sublineages were assigned
based on the phylogenetic topology by an in-house script and confirmed visually using the SNP

pattemsSO.

E6 Splicing Analysis

The HPV splice junctions from RNA-seq were determined using TopHat. The splicing sites, unspliced
transcripts, and their prevalence were summarized with an in-house R script that evaluated the RNA-seq
reads within a window surrounding the splice sites within E6. Two transcript types were distinguished
for HPV16 and HPV18: (a) transcripts that included evidence of an unspliced sequence of E6, and (b) a
transcript spliced at the E6 splice donor site (position 226 for HPV16 and position and position 233 for
HPV18) (spliced) (Supplemental Fig. S2). The read counts for unspliced, spliced, and the sum of both
transcript types, as well as the ratio of unspliced/spliced transcripts were categorized into quartiles

separately for HPV16 and HPV 18 (Supplemental Table 3).
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Identification of HPV Integration from RNA-seq Data (BC)

In order to assess potential genomic integration of HPV in 178 RNA-seq tumor libraries, ABySS
v1.3.4” was used to generate de novo assemblies for each library, using only the reads classified by
BBT (above) as human, HPV, multi-match, or no-match (Supplemental Fig. S3a). In order to address
how variations in transcript abundance influence assembly’®, we generated sets of assemblies using
every second k-mer length between 24 and 48 bp, and then generated a working contig set for each
library by merging the contigs from all of its k-mer assemblies using Trans-ABySS v1.4.8’°. We reran
BBT on the working contig set, applying only human and HPV filters and identifying contigs that
matched both filters. We identified viral-host chimeric contigs that suggested splicing of HPV donor
splice sites into host splice acceptor sequences by using BLAT v34’’ to align each contig to the
GRCh37-lite human reference genome and to 293 HPV reference genomes. After removing any
human/viral contig that had a gap longer than 10 bp between the human- and viral-aligned segments, we
retained the highest-scoring human-viral contig alignment combination. We required a contig’s aligned
sequences to span at least 90% of its overall length, and to overlap by less than 50%. We required a
viral-human contig junction to have at least 5 mate flanking reads or 3 mate spanning reads
(Supplemental Fig. S4a, b). Human splice junction contig coordinates were annotated against RefSeq

and UCSC gene annotations (last modified on June 30, 2013) from the UCSC genome browser".

Since the chimeric contig junctions represent splicing between a viral transcript and a human transcript,
the junction coordinate in each genome may not correspond to the actual location of the DNA
integration, and a given genomic (i.e. DNA) integration event can be reported in RNA-seq data as

multiple transcript splice sites whose genomic locations span large distances’ .
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Identification of HPV Integration from RNA-seq Data (Broad Institute)

An HPV-positive sample was considered integration positive if there were at least 5 flanking reads and
10 total spanning reads (summing mate and single) supporting an integration site. Flanking read pairs
were defined as having one end of the paired-end read mapped to the HPV genome and its mate pair
mapped to the human genome. Spanning reads were defined as having one end of the paired-end read
spanning the integration junction and its mate pair mapped to either the human or HPV genome. Once
HPV reads were obtained (Pathseq, above), we extracted all pair mates and used Tophat-2.0.880 with
fusion option enabled to map these paired end reads to a combined database containing the human
genome and an HPV genome. Next, spanning reads and flanking reads were identified from the aligned
BAM file. Human genes involved in the integration were identified using the breakpoint coordinates
against RefSeq and UCSC gene annotations (last modified on June 30, 2013) from the UCSC genome
browser’®.

Inter-Center Concordance Calls for RNA-seq Integration Events

We used a two-step approach to assess concordance between RNA-seq viral-human junction locations in
the GRCh37-lite human reference genome (‘sites’) reported by alignments of 48-bp RNA-seq reads
(BI), and of contigs with a mean length of approximately 1.5 kb that were generated from these reads by

de novo assembly (BC) (Supplemental Fig. S3b).

We first assessed mate flanking, mate spanning and single spanning read evidence for sites
(Supplemental Fig. S4a). Considering distributions of supporting evidence for three types of site calls
and the number of calls from the two methods as a function of evidence strength, we set thresholds for
‘confident’ site calls that were 5 flanking and 3 spanning read pairs for contigs from de novo assembly

(BC), and 5 flanking and 10 total spanning for read alignments (BI) (Supplemental Fig. S4b).
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Consistent with sets of chimeric viral-human transcripts being derived from a genomic integration
location, we noted that sites reported by both methods tended to occur as localized clusters. Given this
clustering, sites on each chromosome were combined into a smaller set of ‘events’ using a 500-kb
window and locating an event at the midpoint of its supporting sites (Supplemental Fig. S4c). The
events identified by assembly were then compared with those from read alignments on both the patient

and event levels (Supplemental Fig. S5).

To take advantage of differences between the contig-based and read-based integration methods, al/
method-specific integration events (both confident and non-confident events) were used for concordance
analysis. An integration event was labeled as ‘concordant’ between the methods when both methods
reported an event within 500 kb in the same patient. For some concordant events, both methods reported
a confident event (i.e. the total read support passed the center-specific read evidence thresholds noted
above). For cases in which one method called a confident event but the other a non-confident event,
‘inferred confidence’ was assigned to the concordant event. An integration event was labeled as

‘discordant” when only one center reported a confident integration event within 500 kb.

For intragenic RNA-seq integration events we anticipated that most of the human transcripts associated
with an event will be on the same genomic strand; however, no transcript strand information is available
for intergenic integration events. For both intragenic and intergenic concordant events, we reported a
range of coordinates that extends from the most proximal to the most distal supporting site

(Supplemental Table 3).

For the 169 HPV-positive patients, 141 patients had integration events that were confident or inferred-

confident, while the remaining 28 patients had no confident integration events. Of the 141 patients, 129
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had events called by both methods, two had confident events that were called only by BC, and 10 had
confident events called only by BI. Of the 129 patients with events called by both methods, all events
were concordant in 90 patients. These concordant events consisted of 91 that were confident and 6 that
were inferred confident. In 39 of the 129 patients, there were both concordant and discordant events.
These events consisted of 43 concordant/confident events, 4 concordant/inferred confident, 1 concordant

and not confident, and 57 (12 BC and 45 BI) that were discordant and confident.

Integration Calls from Low-Pass WGS Data (Harvard Medical School)

A pipeline was used that took advantage of paired-end (PE) sequencing technology and searched for the
clusters of discordant read pairs where one mate is aligned to the human genome and the second mate
mapped to the viral sequence. As an input, an original set of all PE reads that was mapped and
unmapped to the human genome was used. Two subsets of reads were generated: ends represented by
human sequences and their unmapped mates. Such unmapped reads were then aligned against the
specific viral genome identified in the previous step. Clusters of discordant read pairs were calculated.
In order to determine the presence of a cluster, we used an empirical cutoff of 3 discordant read pairs
within the same integration region. Chimeric viral-human reads were then searched to assess the precise
site of a candidate integration event at nucleotide resolution. Soft-clipped reads, in which only a portion
of a read had been mapped to the human genome, were filtered from the original PE dataset and were

aligned by BLAT (v.34) to the virus genome.

Integration Calls from WGS Data (Washington University in St. Louis)

WGS data for 70 tumor samples were downloaded from CGHub and aligned to a custom reference
consisting of human GRCh37-lite and HPV 6, 16, 18, 31, 33, 35, 39, 45, 52, 56, 58, and 59 sequences,

along with Polyoma BK, Polyoma HPyV7, Hepatitis B, Merkel Cell Polyoma as well as HHV 1, 4, and
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5. Bwa v0.5.9 was used with default parameters for both bwa aln and bwa samse/sampe, using bwa’s

built in quality-based read trimming (-q 5).

Virus and discordant reads were discovered by parsing the realigned BAM using samtools (version
0.1.18) and standard UNIX utilities. Virus reads were detected in 66 samples, and discordant reads were
observed in 65 samples. Sixty-three samples with 5 or more discordant reads were analyzed with Pindel
version 0.2.5a2*' read pair (RP) module, and human-virus breakpoints were observed for 44 of these.
Breakpoint position is returned as a range of positions on both human chromosome and virus, with

accuracy limited by insert size to approximately + 1000bp.

Integration Analysis with Copy Number, mRNA Expression, and Structural Variant Data

We assessed gene-level expression relative to somatic copy number and structural variant data for genes
into which we had mapped viral-human junctions from RNA or DNA sequencing data, and for genes
that were associated with enhancers into which we had mapped RNA or DNA junctions. We used
somatic copy number from a GISTIC2.0 “all data by genes.txt” file, and normalized RSEM gene-level
RNA-seq data. We assessed viral strain, viral splice donor and acceptor coordinates®”, and total read
evidence for viral-human splice junctions, considering read evidence separately for the two methods.
From the combined RNA and DNA evidence, we generated schematic splicing diagrams involving viral

and human transcripts.

Given rank lists for SCNA and for mRNA abundance for 74 genes that contained BC HPV16
RNA-seq breakpoints and 25 genes that contained HPV 18 breakpoints, we generated 100 single-sided
KS p-values for the observed ranks, using a tie-tolerant KS bootstrap test (ks.boot from the R

‘Matching’ package, v4.8-3.4, 1000 bootstraps), and sets of 74 and 25 random numbers that were
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uniform between 1/178 and 1, respectively, for each KS test. P-values were corrected for multiple

testing using the Benjamini-Hochberg (BH) method.

S3. DNA Sequencing and Mutation Calling

Whole Exome/Genome Sequencing (WES/WGS) Read Alignment

Data were aligned to GRCh37-lite + 42 nonredundant accessioned HPV virus sequences
(ftp://genome.wustl.edu/pub/reference/GRCh37-lite-+-HPV_Redux-build/) with bwa v0.5.9. Defaults
were used in both bwa aln and bwa sampe (or bwa samse if appropriate) with the exception that for bwa
aln four threads were utilized (-t 4) and bwa's built in quality-based read trimming (-q 5) was used.
ReadGroup entries were added to resulting SAM files using gmt sam add-read-group-tag. This SAM
file was converted to a BAM file using Samtools v0.1.16, name sorted (samtools sort -n), mate pairings
assigned (samtools fixmate), resorted by position (samtools sort), and indexed using gmt sam index-

bam.

Read Duplication Marking and Merging

Duplicate reads from the same sequencing library were merged using Picard v1.46 MergeSamFiles and
duplicates were then marked per library using Picard MarkDuplicates v1.46. Lastly, each per-library
BAM with duplicates marked was merged together to generate a single BAM file for the sample. For
MergeSamFiles we ran with SORT ORDER=coordinate and
MERGE SEQUENCE_DICTIONARIES=true. For both tools, ASSUME SORTED=true and
VALIDATION_ STRINGENCY=SILENT were specified. All other parameters were set to defaults.
Samtools flagstat was run on each BAM file generated (per-lane, per-library, and final merged).

Low-Pass WGS Sequencing Methods
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Between 500 and 700 ng of each gDNA sample were sheared to approximately 250 bp fragments using
Covaris E220 and then converted to a pair-end Illumina library using KAPA Bio kits with Caliper
(PerkinElmer) robotic NGS Suite according to manufacturers’ protocols. All libraries were sequenced
on HiSeq2000 using one sample per lane, with the pair-end 2 x 51bp setup. Tumor and its matching
normal were usually loaded on the same flow cell. Raw data were converted to the FASTQ format and

BWA alignment was used to generate bam files.

Somatic Mutation Calling

Somatic point mutations were detected using Samtools v0.1.16 (samtools pileup —cv -A -B),
SomaticSniper v1.0.2 (bam-somaticsniper -F vcf -q 1 -Q 15), Strelka v1.0.10 (with default parameters
except for setting isSkipDepthFilters = 0), and VarScan v2.2.6 (--min-coverage 3 --min-var-freq 0.08 --

p-value 0.10 --somatic-p-value 0.05 --strand-filter 1).

Somatic indels were detected using the GATK 1.0.5336 (-T IndelGenotyperV2 --somatic --window_size
300 -et NO_ET), retaining only those which were called as somatic, Pindel v0.2.2 (-w 10; with a config
file generated to pass both tumor and normal BAM files set to an insert size of 400), Strelka v1.0.10
(with default parameters except for setting isSkipDepthFilters = 0), and VarScan v2.2.6 (--min-coverage

3 --min-var-freq 0.08 --p-value 0.10 --somatic-p-value 0.05 --strand-filter 1).

Cross Center Somatic Mutation Calls, Annotation, Readcounts, and Filtering

All high-confidence somatic mutations predicted by other centers were downloaded from the TCGA

DCC from the following archive:

BCGSC: begsc.ca CESC.IlIluminaHiSeq DNASeq automated.Level 2.1.0.0.tar.gz
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UCSC: ucsc.edu CESC.IlluminaGA DNASeq automated.Level 2.1.0.0.tar.gz (Single nucleotide
somatic mutations were identified by RADIA (RNA and DNA Integrated Analysis))83

Broad: broad.mit.edu CESC.IlluminaGA DNASeq automated.Level 2.1.6.0.tar.gz

Readcounts supporting the tumor and variant allele for all predicted somatic mutations were extracted

from exome BAM pairs using bam-readcount v0.5 (https://github.com/genome/bam-readcount).

All putative variants were annotated using Gencode 19 derived from an imported MySQL instance of
Ensembl 74. Mutations in RNA genes, the coding exons of transcripts with a complete open reading
frame, and at the canonical splice donor or splice acceptor were retained. Intronic variants, intergenic

variants, and variants in the 3'UTR, 5'UTR, 3' flanking region, and 5' flanking region were removed.

Potential false positives due to germline cross contamination were removed by filtering all germline
variants from dbSNP 137 VCF files with a GMAF>0. In order to obtain a set of high confidence
somatic variants, the following minimum supporting requirements were set: Minimum tumor supporting
reads > 2, minimum tumor VAF of 10%, minimum normal reference supporting reads > 8, and

maximum normal variant supporting reads < 1.

Previously identified, recurrent false positives identified in other TCGA exome data were filtered as
previously described® and remaining novel recurrent somatic mutations were manually curated to

identify and remove further artifacts.
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Identifying Significantly Mutated Genes (SMGs)

Mutations were included for the Extended set of 192 samples, with 178 being part of the Core Freeze
set. Eleven samples were identified to exhibit greater than average mutations rates and were termed
“hypermutants” (somatic mutations >600). These 11 samples were removed when identifying SMGs.
MutSig6 was utilized to identify SMGs within the exome sequencing data. All 3 sample subsets without
“hypermutants” (Supplemental Table 4) were analyzed using an FDR cutoff of 0.1. Significant p-values

and FDR values are shown in Supplemental Table 4.

Somatic Mutation and Structural Variant Validation Methods

Library Hybrid Capture

Tumor and normal Illumina libraries were enriched by performing hybrid capture using Roche
Nimblegen SeqCap EZ custom capture oligos. Genomic DNA was utilized for library construction
starting material when available, and Qiagen WGA amplified DNA was used when insufficient material
was available. Each sample library received unique, dual molecular barcodes prior to pooling. The
target regions for somatic indels and point mutations were the 100bp region surrounding the mutation
site, while for RNA-seq fusion transcript validation the flanking region of the largest introns flanking
each novel exon-exon junction were targeted. Probes designed with >5 mismatches were discarded.
Additional 120-mer IDT probes targeting cancer-related viruses were combined with SeqCap custom
probes  prior to  capture. Target and probe bed files are available at
http://genome.wustl.edu/pub/custom_capture/. Each sample was pooled into one of ten sets, each
containing 40 or 41 samples. Each set was captured independently and sequenced on one lane of

[llumina HiSeq 1T with an estimated target coverage of 200-300x.
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Read Alignment

Each lane or sub-lane of data was aligned to GRCh37-lite with bwa v0.5.9. Defaults were used in both
bwa aln and bwa sampe (or bwa samse if appropriate) with the exception that for bwa aln four threads
were utilized (-t 4) and bwa's built-in quality-based read trimming (-q 5) was used. ReadGroup entries
were added to resulting SAM files using gmt sam add-read-group-tag. This SAM file was then
converted to a BAM file using Samtools v0.1.16, name sorted (samtools sort -n), mate pairings assigned
(samtools fixmate), resorted by position (samtools sort), and indexed using gmt sam index-bam.

Read Duplication Marking and Merging

Reads from multiple lanes but the same sequencing library were merged, if necessary, using Picard
v1.46 MergeSamFiles and duplicates were then marked per library using Picard MarkDuplicates v1.46.
Lastly, each per-library BAM with duplicates marked was merged together to generate a single BAM
file for the sample. For MergeSamFiles, we ran with SORT ORDER=coordinate and
MERGE SEQUENCE DICTIONARIES=true. For both tools, ASSUME SORTED=true and
VALIDATION STRINGENCY=SILENT were specified. All other parameters were set to defaults.

Samtools flagstat was run on each BAM file generated (per-lane, per-library, and final merged).

Somatic Variant Calling

SNV Callers

Somatic SNVs were detected using Samtoolsl v0.1.16 (samtools pileup —cv -A -B), SomaticSniper2
v1.0.4 (bam-somaticsniper -F vef -G -L -q 1 -Q 15), Strelka3 v0.4.6.2 (with default parameters except
for setting isSkipDepthFilters = 1), and VarScan4 v2.2.6 (--min-coverage 3 --min-var-freq 0.08 --p-

value 0.10 --somatic-p-value 0.05 --strand-filter 1).
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SNV Caller Combination and Filtering

First, Samtools calls were retained if they met all of the following rules inspired by MAQ: Site is greater
than 10 bp from a predicted indel of quality 50 or greater, the maximum mapping quality at the site is >
40, fewer than 3 SNV calls in a 10 bp window were around the site, site is covered by at least 3 reads

and less than 1,000,000,000 reads, consensus quality > 20, and SNP quality > 20.

After these filters were applied, Samtools and SomaticSniper calls were unioned using joinx v1.9
(https://github.com/genome/joinx; joinx sort --stable --unique). The resulting merged set of variants
were additionally filtered to remove likely false positives. Bam-readcount  v0.4
(https://github.com/genome/bam-readcount) was used with a minimum base quality of 15 (-b 15) to
generate metrics and retained sites based on the following requirements: Minimum variant base
frequency at the site of 5%, percent of reads supporting the variant on the plus strand > 1% and < 99%
(variants failing these criteria were filtered only if the reads supporting the reference did not show a
similar bias), minimum variant base count of 4, variant falls within the middle 90% of the aligned
portion of the read, maximum difference between the quality sum of mismatching bases in reads
supporting the variant and reads supporting the reference of 50, maximum mapping quality difference
between reads supporting the variant and reads supporting the reference of 30, maximum difference in
aligned read length between reads supporting the variant base and reads supporting the reference base of
25, minimum average distance to the effective 3° ends of the read for variant supporting reads of 20% of

the sequenced read length, and maximum length of a flanking homopolymer run of the variant base of 5.

After this filtering, the SomaticSniper/Samtools calls were additionally filtered to high confidence
variants by retaining only those sites where the average mapping quality of reads supporting the variant

allele was > 40 and the SomaticScore of the call was > 40.
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VarScan calls were retained if VarScan reported a somatic p-value < 0.07, a normal frequency < 5%, a
tumor frequency > 10%, and > 2 reads supporting the variant. VarScan variants passing these criteria
were then filtered for likely false positives using bam-readcount v0.4 and identical criteria as described
above for SomaticSniper. Fully filtered calls as described above for SomaticSniper and VarScan were
then merged with calls from Strelka using joinx v1.9 (joinx sort --stable --unique) to generate the final

callset.

Indel Callers

Indels were detected using GATKS 1.0.5336 (-T IndelGenotyperV2 --somatic --window_size 300 -et
NO _ET), retaining only those which were called as somatic, Pindel6 v0.2.2 (-w 10; with a config file
generated to pass both tumor and normal BAM files set to an insert size of 400), Strelka3 v0.4.6.2 (with
default parameters except for setting isSkipDepthFilters = 1), and VarScan4 v2.2.6 (--min-coverage 3 --

min-var-freq 0.08 --p-value 0.10 --somatic-p-value 0.05 --strand-filter 1).

Indel Caller Combination and Filtering

Pindel calls were retained if they had no support in the normal data, if they had more reads reported by
Pindel than reported by Samtools at the indel position, if the number of supporting reads from Pindel
was > 8% of the total depth at the position reported by Samtools, or if Samtools reported a depth less
than 10 at the region and Pindel reported more indel supporting reads than reads mapped with gaps at
the site of the call. A Fisher's Exact test p-value < 0.15 was returned when comparing the number of
reads with gapped alignments versus reads without in the normal vs. the tumor samples. VarScan indel

calls were retained if VarScan reported a somatic p-value < 0.07, a normal frequency < 5%, a tumor

WWW.NATURE.COM/NATURE | 19



doi:10.1038/nature21386 AT\ E N SUPPLEMENTARY INFORMATION

frequency > 10%, and > 2 reads supporting the variant. Filtered calls from each caller as described

above were merged using joinx v1.9 (joinx sort --unique --stable) to generate the final callset.

S4. Copy Number Variation (CNV) Analysis

CNYV Methods

DNA processing via SNP 6.0 arrays is described in Methods. Briefly, Birdseed was used to infer a
preliminary copy number at each probe locus from raw .CEL files’>. For each tumor, genome-wide
copy number estimates were refined using tangent normalization, in which tumor signal intensities are
divided by signal intensities from the linear combination of all normal samples that are most similar to
the tumor'®. This linear combination of normal samples tends to match the noise profile of the tumor
better than any set of individual normal samples, thereby reducing the contribution of noise to the final
copy number profile. Individual copy number estimates then underwent segmentation using Circular
Binary Segmentation®. As part of this process of copy number assessment and segmentation, regions
corresponding to germline copy number alterations were removed by applying filters generated from
TCGA germline samples from the ovarian cancer analysis and from samples of this cohort. Segmented
copy number profiles for tumor and matched control DNAs were analyzed using Ziggurat
Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the set of inferred
copy number changes underlying each segmented copy number profile’*. Significance of copy number
alterations were assessed from the segmented data using GISTIC2.0 (Version 2.0.22)**. Briefly,
GISTIC2.0 deconstructs somatic copy number alterations into broad and focal events and applies a

probabilistic framework to identify location and significance levels of somatic copy number alterations.
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Results

Somatic copy number alterations in 178 CESC tumors were determined with SNP 6.0 arrays. There were
an average of 88 copy number alterations per tumor, less that ovarian and serous endometrial

1017 Analysis of focal amplifications

carcinomas but more than endometriod endometrial carcinomas
and deletions performed by the GISTIC2.0 algorithm revealed 26 focal amplifications and 37 focal
deletions along with 23 whole arms that were recurrently altered. Recurrent focal amplifications were
identified at 3q26.31 (TERC, MECOM), 3q28 (TP63), 7p11.2 (EGFR), 8q24.21 (MYC, PVTI), 9p24.1
(CD274, PDCDILG2), 11q22.1 (YAPI), 13q22.1 (KLF5), 16p13.13 (BCAR4), and 17ql2 (ERBB2).
Recurrent deletions were identified at 4q35.2 (FATI), 3p24.1 (TGFBR2), 10923.31 (PTEN), and
18921.2 (SMAD4). Notably, this analysis discovered novel cervical cancer driver genes, including the
therapeutic targets of immune inhibitors CD274 (PD-L1), PDCDILG2 (PD-L2), and novel linc-RNA
BCAR4. The amplifications of PDL1/2 correlated significantly (p < 0.0001) with cytolytic activity'®.
BCAR4, which has been characterized for its role in promoting metastasis, anti-estrogen resistance, and
Lapatinib sensitivity in breast cancer'®, was highly amplified, fused, and greatly overexpressed
compared to other tumors that do not express the gene.

Unsupervised clustering of somatic copy number alterations revealed two groups of tumors, one
group with a high rate of copy number alterations and one with less (p<0.0001). Interestingly, these
groups also showed significant clinical and molecular differences. The CN high cluster was largely
composed of squamous tumors infected with HPV16 and contained significantly more tumors with
YAPI amplifications (p<0.0001). The CN low cluster contained the majority of adenocarcinomas,

HPV18-infected samples, and presented a novel deletion of TGFBR2 as well as gains of BCAR4 and

PDLI/2.
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S5. mRNA Sequencing, Analysis, and Structural Variants

RNA-seq Methods

RNA was processed as described in Methods. For further details on this processing, refer to Description
file at the DCC data portal under the V2 MapSpliceRSEM workflow (https://tcga-
data.nci.nih.gov/tcgafiles/ftp _auth/distro_ftpusers/anonymous/tumor/cesc/cgcc/unc.edu/illuminahiseq r

naseqv2/rnaseqv2/unc.edu_CESC.IlluminaHiSeq RNASeqV2.mage-tab.1.9.0/DESCRIPTION.txt).

Unsupervised Expression Clustering

Genes with >10% missing normalized RSEM values across samples were removed from the Core Freeze
dataset (n=178 samples). RSEM values were then log2-transformed after first adding a constant of 1 to
all values. The gene expression matrix was further filtered to only include the top 10% most variable
genes by mean absolute deviation (n=1176 genes). Consensus clustering using self-organized maps was
employed to identify the most robust expression clusters for between 2 to 6 clusters. Rank survey
profiles for the cophenetic and silhouette widths, along with consensus cluster membership heatmaps
(data not shown) suggested that a 3-cluster solution was optimal. A nearest centroid-based classifier
(CLaNC) was used to identify a set of signature genes which had the lowest cross validation and
prediction errors for sample membership in their respective clusters®. Hierarchical clustering was
performed after median-centering gene expression values using Cluster 3.0% (uncentered correlation

with centroid linkage) and visualized using JavaTreeview®'.

Identifying a Uterine Corpus Endometrial Carcinoma (UCEC) Gene Classifier

A gene expression classifier was developed to predict whether a cancer sample was from the cervix or
the uterus. The data matrix of normalized gene-level RSEM values from 170 TCGA endometrial cancer
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samples run on the HiSeq platform was merged with the data matrix from the cervical cancer Core
Freeze dataset. This merged dataset was then randomly split into a training set (87 CESC samples, 86
UCEC samples) and a test set (91 CESC samples, 84 UCEC samples). CLaNC was used to identify a
set of genes in the training set which had the lowest cross-validation and prediction errors for samples
being predicted as either CESC or UCEC. A t-statistic was calculated comparing each sample’s
expression pattern in both the training and test sets to the mean expression profile of CESC and UCEC
samples in the training set to predict whether samples were CESC or UCEC. A sample was predicted to
be CESC if the t-statistic vs. UCEC was significant (p<0.05), but was not significantly different from the
CESC mean (and vice versa for the UCEC prediction). Additionally, ANOVA was used to identify
differentially expressed genes (FDR<0.05) between cervical and endometrial cancers on the entire
combined dataset and the expression patterns were visualized after hierarchical clustering using

JavaTreeview.

Comparing CESC, UCEC, and HNSC Gene Expression Profiles

A data matrix of normalized gene-level RSEM values from 178 cervical, 170 TCGA endometrial, and
279 TCGA head and neck cancer samples run on the HiSeq platform was used to identify expression
patterns across the 3 cancer types. Genes with >10% missing normalized RSEM values across samples
were removed from the combined expression dataset. RSEM values were then log2-transformed after
first adding a constant of 1 to all values. The gene expression matrix was further filtered to only include
the top 25% most variable genes by mean absolute deviation (n=4,039 genes). Hierarchical clustering
was performed after median-centering the gene expression values and the expression patterns were

visualized after hierarchical clustering using JavaTreeview.
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Detecting Structural Variants from RNA-seq and WGS Data

An integrative analysis was performed to identify putative driver fusions using both WGS (low-pass and
hi-coverage) and RNA sequencing data. RNA-seq data for 178 cases were analyzed using the following

tools:

A. TopHat-Fusion and BreakFusion

We ran Tophat-fusion-0.1.0 (Beta)® and BreakFusion-1.0.1*° on each of the BAM files for the Core Set
samples to identify fusion candidates. We further filtered the identified candidates if a) the gene fusion
pairs were identified in the normal RNA libraries in the 1000 Genomes project’; b) the fusion
breakpoints were 10 bp or more away from known splicing sites in the Refseq database; or ¢) they were

in self-chain regions with a self-chain alignment score greater than 10.

B. PRADA

PRADA aligned RNA-seq reads to a composite reference database composed of whole genome and
transcriptome sequences. For this analysis, we used the hgl9 human genome assembly altogether with
the Ensembl64 transcriptome version. Two main criteria were required to consider a gene fusion: 1) a
minimum of two discordant read pairs mapping to a candidate gene pair; and 2) a minimum of one
junction spanning read mapping to a junction that connected exons between the candidate gene pair,
with its pair mate mapping to the either of the two genes. In order to remove false positives and
artifacts, several filters were applied’'>. The most prominent filter was based on significant sequence
similarity between the two fusion genes (using BLASTN, Expect value = 0.001), but we also filtered
fusions present in a list of fusions detected in normal samples from several tissues studied by TCGA
(BLCA, BRCA, HNSC, KIRC, LUAD, LUSC, and THCA) and 3 normal samples from CESC. We

used SNP6 copy number data to detect whether breakpoints exist within 100 kb from the predicted
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junction point, which was also a relevant filter to call fusions. Also, to take into account transcript
expression level, we considered fusions with transcript allele fraction (ratio of junction spanning reads to

the total number of reads crossing the junction points in the reference transcripts) > 0.01°%.

C. MapSplice

RNA-seq data was processed and analyzed using MapSplice version 2.0.1.9 for potential gene fusions as
previously described'® to decrease the number of false positives. The resulting gene fusion list was
manually curated and filtered to only include potential events where both the donor and acceptor
sequences lie within known genes. To increase the confidence in the called fusions, the list of potential
gene fusions was further refined to include only fusions with coverage of at least 10 reads and that had at

least 2 reads bridging the breakpoint.

Detection of structural variations in low-pass WGS data (n=50) was performed using two algorithms:
BreakDancer’® and Meerkat’’. The first step in BreakDancer requires a configuration file of each BAM
file for each tumor pair with the bam2cfg.pl perl module of the program. The perl module
BreakDancerMax.pl is then run on the configuration file to call structural variants in the tumor and
control files. The set of structural variant calls from each tumor sample was filtered by the calls from its
matched normal to remove germline variants. Structural variations were also detected by Meerkat,
which requires at least two discordant read pairs supporting each event and at least one read covering the
breakpoint junction. Variants detected from tumor genomes were filtered by the variants from all
normal genomes to remove germline events and were also filtered out if both breakpoints fell into
simple repeats or satellite repeats. The final call needed to fulfill the following: (1) the read identified to
span the breakpoint junction hit the predicted breakpoint region uniquely by BLAT; or (2) the mate of

the read spanning the breakpoint junction was mapped near the predicted breakpoint.
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High-pass WGS data (n=19) were analyzed to detect somatic structural variations using two runs of
BreakDancer and one run of SquareDancer (https://github.com/ding-lab/squaredancer). The predictions
were unioned after filtering each set of predictions with TigraSV®’, assembly-based, and breakpoint
confirmed. To detect interchromosomal breakpoints, Breakdancer 1.4.2 was run with the optional
parameters "-g -h:-a -t -q 10 -d". To detect intrachomosomal breakpoints, Breakdancer 1.4.2 was run

with the optional parameters "-g -h:-a -q 10 -0". Squaredancer v0.1 was run with default parameters.

Gene fusion lists generated by all methods and platforms were integrated. We identified 22 putative
structural rearrangements detected by both RNA-seq and WGS (Supplemental Table 8). In total, 26
recurrent fusions were identified, of which 3 were detected by at least two RNA-seq callers
(Supplemental Table 9). Furthermore, for the samples that did not have WGS data available, we
extended the analysis performed on the PRADA RNA-seq fusion calls on SNP6 array copy number data
to any junction points predicted by all three RNA callers described above. Among those, 74 fusions
were detected by at least 2 RNA-seq callers and 60 of them showed supporting breakpoints existing

within 100 kb in SNP6 array data (Supplemental Table 10).

mRNA Results

Consensus clustering was performed on RNA-seq data from 178 CESC tumor samples using 1,176
highly variable genes to identify stable subgroupings of samples. Based on this expression data, the
cervical cancer samples were separated into 3 stable clusters. A gene signature was developed
consisting of 300 genes which performed optimally for grouping the samples into the clusters identified
by consensus clustering. Hierarchical clustering using centroid linkage resulted in the samples being
grouped into 3 clusters (Supplemental Fig. S9). Functional gene annotation analysis and gene set

enrichment analysis were used to identify the biologic processes involved in the separation of the
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cervical cancer samples into the 3 clusters. Samples in Cluster C1 contained all but 1 of the
adenocarcinomas and 2 of 3 adenosquamous samples, suggesting that this is the Non-Squamous cluster.
Interestingly, this cluster also includes 15 squamous cell carcinomas with expression patterns more
closely related to the non-squamous cell cancers. Samples in this cluster exhibit increased expression in
genes such as EPCAM, CLDN3, ERBB4, RAB17, and KRTI8, while also showing markedly reduced
expression of genes encoding several small proline-rich proteins (SPRRs), p63, and FAT2. Samples in
Cluster C2 consisted entirely of squamous cell carcinomas. Genes with elevated expression in this
cluster showed enrichment of ectoderm development genes and cell junction genes. Representative
genes with elevated expression include 8 members of the keratin family, ZNF750, and APOBEC3A4. The
robust expression of keratin family member genes suggests that this cluster could be considered a
Squamous Cell — Keratinizing cluster. Samples in Cluster C3 consisted entirely of squamous cell
carcinomas, with the addition of 1 adenocarcinoma and 1 adenosquamous sample. Genes with elevated
expression in this cluster showed enrichment of glycoprotein genes such as EPHB2 and TGFB2.
Samples in this cluster generally have lower expression of keratin family members, suggesting that this

cluster could be considered the Squamous Cell — Non-Keratinizing cluster.

Hierarchical clustering of RNA-seq data from 75 cervical cancer cases reported in Ojesina et al.
on the 300 TCGA gene set signature resulted in 3 main clusters as in the TCGA dataset: one enriched
with adenocarcinomas, one predominantly composed of squamous samples, and one exclusively
composed of squamous samples (Supplemental Fig. S47). Cluster C1 contained all but 2 of the cervical
adenocarcinoma cases and exhibited similar expression patterns observed in the TCGA set, namely
increased expression of EPCAM, CLDN3, ERBB4, RAB17 and KRTI18. As in the TCGA set, a distinct
minority of cervical squamous cell carcinomas had expression patterns more similar to those observed in
adenocarcinomas. Cluster C2 consisted entirely of cervical squamous cell carcinomas and is

characterized by elevated expression of genes encoding several small proline-rich proteins (SPRRs),
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TP63, FAT2, KRT6A-C, ZNF750 and APOBEC3A. Like the TCGA set, this cluster could be considered
a Squamous Cell-Keratinizing cluster. Cluster C3 samples contained a mixture of squamous cell
carcinomas, adenocarcinomas, and adenosquamous carcinomas. As in the TCGA set, this expression
cluster is characterized by elevated expression of EPHB2 and TGFB2, while also exhibiting a relative
decrease in keratin family gene expression when compared with samples in Cluster C2, suggesting that
this cluster could be considered the Squamous Cell-Non-Keratinizing cluster. Overall, the gene
expression clustering observed in the TCGA set is recapitulated in the Ojesina ef al. data that has been

previously reported.

Cervical cancer/Endometrial cancer classification: Since primary cervical cancers can be confused
with endometrial cancers that involve the cervix secondarily, we developed a gene expression classifier
that differentiated cervical cancers from endometrial cancers. After randomly sorting the cervical and
endometrial cancer samples into a training and test set, a 14 gene classifier was identified that had the
lowest prediction error in the training set, with 0 (0%) classification errors for the endometrial samples
and 4 (4.4%) classification errors for the cervical samples, for an overall error rate of 2.3%. Similar
results were observed when applied to the test set: 0 (0%) classification errors for the endometrial
samples and 4 (4.3%) classification errors for the cervical samples, for an overall error rate of 2.3%.
These 8 cervical cancer samples predicted to be endometrial cancers by expression profiling were
reevaluated by study pathologists who confirmed that these samples did indeed arise from the cervix,
thus we term these samples as endometrial-like (UCEC-like) cervical cancers. Interestingly, these 8
endometrial-like cervical cancers include 7 of the 9 HPV negative cancers and all but 2 of the cancers
have a non-squamous cell histology. Next, gene expression profiles were compared between cervical
cancers and endometrial cancers by identifying differentially expressed genes between the 2 cancer
types. Unsurprisingly, the cervical and endometrial cancers tended to cluster among members of the

same tissue type, except for 6 of the 8 endometrial-like cervical cancers, which clustered among the
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endometrial cancers. The other 2 endometrial-like cervical cancers clustered with the C1 cervical

cancers, along with 1 endometrial cancer sample (Supplemental Fig. S10).

Cervical/Endometrial/Head and Neck cancer comparison: Gene expression profiles were compared
between cervical (CESC), endometrial (UCEC), and head and neck cancers (HNSC). Hierarchical
clustering of the different cancer samples across 4,039 highly variable genes separated the samples
predominantly according to cancer type, with a few exceptions. The cervical adenocarcinomas tend to
congregate in a subcluster, along with the other samples in the non-squamous expression clusters
samples, and have expression patterns quite similar to those of UCEC samples. A group of about 700
genes with relatively greater expression are shared between the CESC samples in this subcluster and
UCEC samples in general. Functional analysis of these genes shows overrepresentation of genes
involved in embryonic morphogenesis (HOXA9, HOXB2-9) and the axoneme (6 members of the dynein
family). In addition, this group of samples exhibit elevated expression of genes seen in the Non-
Squamous CESC expression cluster (ERBB4, RABI7, KRT18) and genes highly expressed in UCECs
(ESRI and PGRI). Further, a group 27 HNSC samples grouped within the CESC cluster. Interestingly,
23 of these samples are HPV-positive compared to only 13 out of 256 samples in the HNSC cluster
(p<0.0001; Fisher’s Exact test). Functional analysis of the gene expression patterns shared by HPV-
positive HNSC and CESC samples may provide insights into the effects of HPV in oncogenesis. The
analysis of shared genes with relatively increased expression resulted in an overrepresentation of genes
involved in meiosis, including MEII, STAG3, SYCEP2, and SYCP2 which have previously been shown
to be increased in HPV-positive cancers. In addition, the HPV-positive HNSC samples that group in the
CESC cluster show decreased expression of a large number of genes that exhibit increased expression in

the HNSC cluster. Functional analysis of these genes show overrepresentation of genes involved in
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ectoderm development, cell adhesion, serine-protease inhibitor activity, wound healing, and

angiogenesis (Extended Data Fig. 4a).

Structural Variant Results

To characterize structural rearrangements we performed an integrative analysis of RNA-seq (n=178) and
WGS data with low-pass (n=50) and deep (n=19) coverage. We identified 22 putative structural
rearrangements detected by both RNA-seq and WGS (Supplemental Table 8). In total, 26 recurrent
fusions were identified, of which 3 were detected by at least two RNA-seq callers (Supplemental Table
9). Examples of putative driver events are a FGFR3-TACC3 fusion (n=1), already known in other
cancer types ' but not previously reported in cervical cancer, and ZC3H74-BCAR4 fusions (n=4).
These fusions linked exon 1 of ZC3H7A4 to exon 4 of BCAR4. The long non-coding RNA BCAR4 has

been shown to promote estrogen-independent growth and tamoxifen resistance in breast cancer’*°.

S6. Methylation Analysis

Sample Preparation and Hybridization

The Ilumina Infinitum HM450 array’® was used to assay the Core Set of 178 TCGA cervical cancer
samples. This platform includes probes for more than 480,000 CpG sites, spanning 99% of RefSeq
genes. In total, 96% of CpG islands and 92% of CpG shores are represented by at least one probe.
Genomic DNA (1000 ng) for each sample was treated with sodium bisulfite, recovered using the Zymo
EZ DNA methylation kit (Zymo Research, Irvine, CA) according to the manufacturer’s specifications,
and eluted in an 18 pL volume. All TCGA DNA samples passed quality control and proceeded to the
Infintum DNA methylation assay. Each bisulfite-converted DNA sample was whole genome amplified
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(WGA) followed by enzymatic fragmentation as specified by the manufacturer. The bisulfite-converted,
fragmented WGA-DNA samples were then hybridized overnight to 12 sample BeadChips. During this
hybridization, the WGA-DNA molecules anneal to methylation-specific DNA oligomers linked to
individual bead types, with each bead type corresponding to a specific DNA CpG site and methylation
state. The oligomer probe designs follow the Infinium I and II chemistries, in which locus-specific base
extension follows hybridization to a methylation-specific oligomer. There are two different bead types
for each locus, one with an oligomer that anneals specifically to the methylated version of the locus and
the other with an oligomer that anneals to the unmethylated version of the locus. The Infinium I probes
terminate complementary to the interrogated CpG site for methylated loci, or complementary to the TpG
for unmethylated alleles. A matched oligomer-template DNA molecule hybrid will allow for the
incorporation of a labeled nucleotide immediately adjacent to the interrogated CpG (or TpG) site.
However, if the probe and template are mismatched, then primer extension will not occur. Adenine and
thymine nucleotides are labeled with cy5 (red), while cytosine nucleotides are labeled with cy3 (green).
No insertion of guanine nucleotides occurs in Infinium I assays. Of note, the identity of the dye is
representative of the nucleotide adjacent to the CpG dinucleotide. The methylation discrimination is
derived from separate measurements from the two different types of beads present for each locus. For
some loci, both measurements will be cy3, and for others both will be cy5. The Infinium type II
chemistry is a true two-color system. A matched oligomer-template DNA molecule hybrid will allow
for the incorporation of a labeled nucleotide immediately 3’ to the interrogated CpG (or TpG) site.
Adenine nucleotides labeled with cy5 (red) are incorporated at unmethylated (TpG) sites, while guanine
nucleotides labeled with cy3 (green) are incorporated at methylated (CpG) sites. The intensities of both
cy3 and cy5 are obtained after scanning each hybridized array. BeadArrays are scanned and the raw
data are imported into custom programs in R computing language for pre-processing and calculation of

beta value DNA methylation scores for each probe and sample.
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Data Processing

Probes having a common single nucleotide polymorphism (SNP) (defined as a SNP with a minor allele
frequency > 1% as defined by the UCSC snp135common track) within 10 bp of the interrogated CpG
site and probes that overlapped with a REPEAT element (as defined by RepeatMasker and Tandem
Repeat Finder Masks based on UCSC hgl9, Feb 2009) within 15 bp of the interrogated CpG site were
identified and excluded from subsequent analyses. In addition, probes with a non-detection probability
(detection p-value) greater than 0.05 in more than 25% of the samples and those associated with the Y
chromosome were excluded. Probes that are mapped to multiple sites on hg19 were annotated as NA for
chromosome and 0 for CpG/CpH coordinate. The final number of probes after the above exclusions was

395,552 probes.

The Illumina HumanMethylation450 array uses two different types of probes. Specifically, this array
profiles the methylation status of 485,577 CpG dinucleotides, of which 72% use the Infinium type II
primer extension assay where the unmethylated (red channel) and methylated (green channel) signals are
measured by a single bead’®. The remainder use the Infinium type I primer extension assay (also used in
the Illumina HumanMethylation27 array) where the unmethylated and methylated signals are measured
by different beads in the same color channel. Importantly, the two probe types differ in terms of CpG
density, with more CpGs mapping to CpG islands for type I probes (57%) as compared with type II
probes (21%). Moreover, compared with Infinium I probes, the range of beta values obtained from the
Infinitum II probes is smaller. In addition, the Infinium II probes have also been shown to be less
sensitive for the detection of extreme methylation values and display a greater variance between

replicates’”.
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Clustering Analysis

Unsupervised consensus clustering was performed as implemented in the Bioconductor package
ConsensusClusterPlus, with Euclidean distance and partitioning around medoids (PAM). Consensus
clustering was applied to the DNA methylation data from the entire cohort, using the most variable 1%

of CpG island promoter probes.

Identification of Epigenetically Silenced Genes

Epigenetically silenced genes were identified as previously described™. Specifically, we first identified
promotor CpG sites that met several criteria: (a) at least 90% of normal samples should be clearly
unmethylated ($<0.1) at that site; (b) at least 5% of tumor samples should be clearly methylated (f>0.3)
at that site; and (c) a t-test comparing expression levels in methylated (f>0.3) and unmethylated tumor
samples (<0.1) should be significant at an FDR<0.01. A gene was defined as epigenetically silenced if
at least 25% of the promoter CpG sites met all of these criteria. A total of 120 normal samples were
used for this analysis, including 10 each drawn at random from the 12 TCGA projects that include
normal samples, such as lung adenocarcinoma’®, breast invasive carcinoma'', colon adenocarcinoma®,

endometrial carcinoma'’, and others. Fisher’s Exact test was used to find pathways enriched with

epigenetically silenced genes. Pathways with FDR<0.05 were considered significantly enriched.

HPV DNA Methylation Signatures

DNA methylation signatures derived in TCGA head and neck squamous cell carcinomas (HNSCs)'
were applied to the Core Set of cervical tumors. The signature is represented as two sets of CpG sites at
which  HNSC HPV-positive samples show significantly increased or decreased methylation,

respectively. Using these sets, we computed DNA hyper and hypomethylation scores as described'”.
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Additionally, empirical Bayes moderated T-tests ~ were used to identify methylation differences

between HPV clades A7 and A9.

Additional Analyses

Fisher’s Exact test was used to test for associations of DNA methylation clusters with histology, HPV
status, HPV clade, HPV integration status, EMT score, purity, APOBEC mutagenesis level, UCEC-like
sample status, and the different platform cluster assignments (Extended Data Fig. 5 and Supplemental
Table 13). Empirical Bayes moderated T-tests were used to identify methylation differences between
groups of interest. Correlations between DNA methylation clusters and overall survival were calculated

by Kaplan-Meier analysis using a log-rank test.

Results

Classifications with 2 to 7 groups were evaluated for cluster stability and fit to choose a final partition of
the samples. The DNA methylation based subtypes presented here are based on a robust 3-group
partition of the samples obtained using the most variable CpG island promoter features on the Illumina
Infinium HM450 array (Extended Data Fig. 5). A CIMP-high (CpG island hypermethylated) cluster is
characterized by widespread methylation at CpG sites within gene promoter and CpG island regions,
while the CIMP-low group is distinguished by very little methylation within islands, a methylation
pattern typical of healthy epithelial tissue. HPV- tumors formed a distinct cluster within the CIMP-low
group with a significantly lower mean promoter methylation level than the rest of the samples in that
group (t-test p-value = 0.005). The CIMP-high cluster contained most of the endocervical
adenocarcinoma samples and was enriched with samples from mRNA cluster 1, miRNA cluster 4, CN-

low cluster, and the Adenocarcinoma iCluster. In addition, this cluster had higher purity samples with
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lower EMT score as shown by boxplots in Extended Data Fig. 5b. There was no significant difference

in survival between the methylation clusters (log-rank test p=0.9)

Next, we sought to capture and characterize epigenetically silenced genes. Using all Core Set 178 tumor
samples and a diverse set of 120 normal samples drawn from 12 TCGA disease projects, we identified
genes for which promoter methylation was normally low and where we observed increases in
methylation within tumor samples that was accompanied by loss of expression, as described above. In
the cervical cancer samples this procedure yielded a set of 1026 epigenetically silenced genes

(Supplemental Tables 11 and 12).

The signatures of HPV16 infection derived in head and neck cancer also distinguish HPV-positive
cervical tumors from HPV- tumors (Supplemental Fig. S11). Panels A and B show the distribution of
DNA hyper and hypomethylation scores for head and neck and cervical cancers, respectively. Panel D
shows results for HPV16 squamous cell carcinomas of the cervix, to more closely match the head and

neck samples, which are all squamous cell carcinomas and predominantly of the HPV16 type.

S7. microRNA Sequencing and Analysis

Libraries and Sequencing

MicroRNA sequence (miRNA-seq) data was generated for the Core Set of 178 tumor samples using
methods described previously''. Reads were aligned to the GRCh37/hg19 reference human genome and
read count abundance was annotated against miRBase v16 stemloops and mature strands using only

exact-match read alignments. Of note, BAM files that include all sequence reads are available from
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CGHub (cghub.ucsc.edu)'®’. miRBase v20 was used to assign 5p and 3p mature strand (miR) names to

MIMAT accession IDs.

Unsupervised Clustering

Groups of samples that had similar abundance profiles were identified using unsupervised non-negative

matrix factorization (NMF) consensus clustering (v0.20.5) in R 3.1.2, with default settings'*

. The input
was a reads-per-million (RPM) data matrix for the 303 (25%) most-variant 5p or 3p mature strands.
After running a rank survey with 50 iterations per solution, we chose a preferred clustering solution and
performed a 500-iteration run to generate the final clustering result. The preferred solution was chosen
by considering profiles of the cophenetic correlation coefficient and the average silhouette width
calculated from the consensus membership matrix, Kaplan-Meier survival analysis, and clinical
covariate associations for a range of candidate clustering solutions. To visualize typical vs. atypical

cluster members, a profile of silhouette widths was calculated from the final NMF consensus

membership matrix, whereby atypical cluster members have relatively low widths.

To generate a heatmap for the NMF results, we first identified miRs that were differentially abundant

103 in R with a

between the unsupervised miRNA clusters using a SAMseq multiclass analysis (samr 2.0)
read-count input matrix and an FDR threshold of 0.05. For the heatmap, miRs that had the largest
SAMseq scores and median abundances greater than 25 RPM were included. The RPM filtering
acknowledged potential sponge effects from competitive endogeneous RNAs (ceRNAs) that can make
weakly abundant miRs less influential'®*'®®. Each row of the matrix was transformed by log;o(RPM +

1) and then the pheatmap R package (v0.7.7 or v1.0.2) was used to scale and cluster only the rows, using

a Euclidean distance metric and Ward clustering.
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In order to show the relationship between sample order in the all-sample n=178 cohort and the squamous
n=144 cohort, we used a custom Mathematica (Wolfram Research, Champaign, IL) notebook to draw a
Bezier curve between each sample’s position in the squamous and all-sample clustering solutions, and

placed the silhouette width profiles for the two solutions on either side of the graphic for orientation.

For clinical and molecular covariates, contingency table association p-values were calculated using R,
with a Chi-square or Fisher’s Exact test for categorical data, and a Kruskal-Wallis test for continuous
variables like EMT scores and purity.

Differentially Abundant miRs

We identified miRs that were differentially abundant between pairs of sample groups with unpaired two-
class SAMseq analyses, and across sets of more than two groups with multiclass SAMseq analyses using
a read-count input matrix and an FDR threshold of 0.05. For figures, filtering was done by Wilcoxon
adjusted p-value > 0.05 and a median abundance less than 50 RPM in one of the two groups being
compared, or across the tumor set for multiclass results. Unfiltered results are presented in Supplemental

Table 14.

Relationships Between Copy Number and miRNA Abundance

In order to characterize how somatic copy number alterations (SCNA) influenced miRNA abundance,
MatrixEQTL v2.1.1'° was used to calculate Spearman correlations between a) normalized (RPM)
abundance for the subset of pre-miRNAs (i.e. stemloops) that had an RPM of at least 1.0 in at least 10 of
the 178 tumor samples, and b) GISTIC2 real-valued (i.e. not thresholded) SCNAs. SCNA data used
Gencode v20 gene (miRNA) names, where 383 of the 476 stemloops selected by RPM above had
Gencode names in the SCNA file, and another 28 had overlapping genes with SCNA records (e.g. LPP

for hsa-mir-28), allowing correlations to be calculated for 411 of the RPM-selected stemloops.
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Correlations were thresholded at FDR<0.05, and for a subset of the miRNAs we generated both SCNA
vs RPM scatterplots and full-chromosome SCNA heatmap graphics using IGV 2.3.40. To generate a
heatmap of global SCNA vs. miR-based NMF unsupervised clustering, we imported the ‘seg’ data and
NMF clustering results into IGV v2.3.52, and ordered the samples to correspond to the 6-cluster miR-
based unsupervised NMF clustering heatmap. Samples were sorted in IGV by amplification at the
location of select miRNA in order to generate more focused whole-chromosome IGV graphics for a

small number of miRNAs that had the strongest relationships with SCNA.

Relationships Between Methylation and miRNA Abundance

An miRNA was considered to be epigenetically controlled if BH-corrected p-values were less than 0.01
for both a) a Spearman correlation of miRNA abundance (RPM) to beta for probes in promoter regions
associated with the miRNAs, and for b) a t-test of RPM between unmethylated (f < 0.1) and methylated

(B> 0.3) samples (an ‘epigenetically-controlled pattern’).

Relationships with EMT Scores

We identified miRNAs that have been associated with EMT®*® and then calculated Spearman
correlations between the EMT scores and RPMs for 5p and 3p mature strands for each of these miRNAs
using MatrixEQTL and filtering by FDR<0.05. Heatmaps of miR abundance were generated for the
miR-based unsupervised clusters for all samples (n=178) and squamous samples (n=144), sorting
samples by EMT score within each unsupervised cluster and displaying only miRs whose correlations
were larger than the median for each of the four cases. For TGFBR2, CREBBP, EP300, SMAD4, miR-
200a, and miR-200b, we generated covariate tracks for alterations that included mutations and
homozygous deletions downloaded from the cBio portal (www.cbioportal.org) and alterations in miR-

200a and miR-200b (Methods and Supplemental Information S15).
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miR Targeting

We assessed potential miRNA targeting for all 178 samples and then separately for the 144 squamous
samples by calculating miR-mRNA and miR-protein (RPPA) Spearman correlations with MatrixEQTL
v2.1.1 using gene-level normalized abundance RNA-seq (RSEM) data and normalized RPPA data.
Correlations were calculated with a p-value threshold of 0.05, and then the anti-correlations were filtered
at FDR<0.05. We extracted miR-gene pairs that corresponded to functional validation publications
reported by miRTarBase v4.5”. For miR-RPPA anti-correlations, all gene names that were associated

with each antibody were used. Results were displayed with Cytoscape v2.8.3.

Relationships Between Endometrial and Cervical Tumor Samples

Analyses were performed to compare miR abundance profiles between this 178-sample cervical tumor
set (CESC) and the TCGA cohort of 521 uterine corpus endometrial carcinomas (UCEC). First, we
generated an unsupervised clustering solution using methods described above and annotated a selected
clustering solution with the CESC vs. UCEC disease type, the CESC histological types, and the UCEC-
like CESC samples (see Methods and Supplemental Information S5). miRs were then identified that
were differentially abundant between UCEC and CESC samples with an unpaired two-class SAMseq

v2.0 analyses with FDR<0.05, as described above.

Results

NMF unsupervised consensus clustering for 178 primary tumor samples suggested a six-cluster solution
(Supplemental Fig. S12a, b). Median purities varied from 0.85 to 0.59 for the clusters (Supplemental
Fig. S12¢). Clusters were strongly associated with histology (p=2.2e-17), HPV clade (p=0.0018), and
unsupervised clusters from other molecular platforms (Supplemental Fig. S12b). miR Clusters 5 (n=30)
and 6 (n=11) separated the adenocarcinoma-enriched and HPV-negative samples into two subgroups;
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however, these samples were reported as a single cluster by iCluster (Adenocarcinoma cluster),
PARADIGM (C2), and mRNA (C1). In contrast, the DNA methylation CIMP-high cluster was enriched
only in miR Cluster 5. miRs that were differentially abundant between the clusters and also strongly
abundant in at least one cluster (Supplemental Fig. S12d) included many that are known to be associated
with cancer: miR-10a-5p, 21-5p, 22-3p, 143-3p, 182-5p, 203a, 205-5p, and 375. For example, for
Clusters 5 and 6 noted above, both had relatively high miR-141-3p and miR-200a-3p, and relatively low
miR-205-5p, while miR-10a-5p, 21-5p, 30a, and 375 were more abundant in Cluster 5 than in Cluster 6.
Cluster 2 had very high levels of miR-203a, Cluster 1 had high levels of miR-143-3p and low levels of
miR-200 family members, Cluster 3 had the highest levels of the oncomiR miR-21-5p, and Cluster 4 had

high levels of miR-205-5p.

For the five squamous miR-based clusters (Supplemental Fig. S13), many of the same miRs were
differentially and highly abundant, such as miR-21-5p, 143-3p, 203a, and 205-5p (Supplemental Fig.
S13d). Four of these five clusters corresponded to clusters from the n=178 six-cluster solution

(Supplemental Fig. S12 and S13f).

There were no statistically significant differences between overall survival across the miR-based clusters

for n=178 (Supplemental Fig. S12e; log-rank p=0.34) or for n=144 (Supplemental Fig. S13e; p=0.13).

Differentially Abundant miRs

miRs that were differentially abundant between unsupervised clusters or other sample groups were
identified by nonparametric unpaired two-class or multiclass analyses (Supplemental Table 14). miR-
944'% and 205-5p were strikingly more abundant in squamous than in adenocarcinoma samples, while

miR-192-5p, 194-5p, and particularly 375 were less abundant (Supplemental Fig. S14b). Results were
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similar for HPV16-positive squamous vs. HPV16-positive adenocarcinoma samples (Supplemental Fig.
S14c). For HPV16-positive squamous vs. HPV18-positive squamous, only miR-944 and 375 passed the
FDR<0.05 threshold (Supplemental Fig. S14d). For HPV-positive vs. HPV-negative samples, miR-944
and the weakly abundant miR-767-5p and miR-105-5p were most strongly differential (Supplemental

Fig. Sl4e).

miRs Associated With Somatic Copy Number Alterations

While somatic copy number alterations were widespread, they were relatively weakly associated with
miR clusters (Supplemental Fig. S15a). Of the miRNA stem-loops whose normalized RPM abundance
was cis-correlated with SCNA, those with Spearman cis-correlations of at least 0.3 had low FDRs, and
scatterplots were consistent with SCNA influencing miRNA abundance (Supplemental Fig. S15b, c, d).
These miRNAs included a number that were involved in potential miR-gene targeting (Supplemental

Figs. S17 and S18).

Epigenetically Controlled miRNAs

The abundance of miR-10a, 17/18a/19a/20a, 141, 150, 152, and 205 appeared to be influenced by cis-
DNA methylation, with miR-10a and 205 showing the clearest differences across miR-based clusters

(Supplemental Fig. S16).

Functionally Validated Potential miR-gene Targeting

We assessed potential miR targeting through miR-mRNA and miR-protein (RPPA) anti-correlations for
all sample and squamous only sample cohorts (FDR<0.05, (Supplemental Table 15)). Network graphics
show the subset of high-confidence, FDR-thresholded anti-correlations that have been published as
validated targets (Supplemental Figs. S17 and S18). The figures distinguish genes that are available
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only in mRNA data from those available in both mRNA and RPPA data. The figures also distinguish
between anti-correlations identified with mRNA, nonphosphorylated proteins, and phosphorylated
proteins. Many cancer-associated miRs were evident in the filtered anti-correlations. For example, a
subnetwork involving miR-200-family miRs, the EMT-related transcription factors ZEBI and ZEB?2, the
Hippo effector YAP1, ERBB2, and ERBB3 is presented in the all sample cohort. Fewer filtered targeting
relationships are reported in the squamous sample cohort, some of which include ZEBI, ZEB2, and

ESRI.

Comparing Endometrial and Cervical Tumors

Unsupervised NMF consensus clustering of miR abundance profiles was used to compare 521 TCGA
endometrial tumor samples with the 178 cervical tumor samples. Clustering solutions appeared
acceptable for between 9 and 15 clusters, which was the maximum assessed (Supplemental Fig. S19a).
Details are reported for the 12-cluster solution (Supplemental Fig. S19b). In this solution, 9 clusters
were exclusively or almost exclusively endometrial. Cluster 1 was almost exclusively cervical, Cluster
3 was enriched for cervical samples, with endometrial samples generally less typical cluster members,
and Cluster 8 was enriched for endometrial samples. Endometrial-like cervical cancer samples were
distributed across four clusters. An unpaired two-class differential abundance analysis identified miR-
944 and 205-5p as far more abundant in cervical than in endometrial tumor samples (Supplemental Fig.

S19c and Supplemental Table 14).
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S8. Reverse Phase Protein Array (RPPA) Analysis

RPPA Experiments and Data Processing

Frozen tumors were lysed using Precellys homogenization (Cayman Chemical, Ann Arbor, Michigan)
and protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mM Hepes (pH 7.4), 150 mM
NaCl, 1.5 mM MgCl,, | mM EGTA, 100 mM NaF, 10 mM NaPPi, 10% glycerol, 1 mM
phenylmethylsulfonyl fluoride, | mM Na3;VO,, and aprotinin 10 pg/mL). RPPA was performed as
described previously'®™. Briefly, tumor lysate concentrations were adjusted to 1 pg/uL as assessed by
bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were manually serial-diluted
in 5 two-fold dilutions with lysis buffer and printed on nitrocellulose-coated slides (Grace Bio-Labs)
using an Aushon Biosystems 2470 arrayer (Billerica, MA). Slides were probed with 192 validated
primary antibodies (Supplemental Table 17) followed by detection with appropriate secondary
antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG, or Rabbit anti-Goat IgG). The signal obtained
was amplified using a Cytomation—catalyzed system of Avidin-Biotinylated Peroxidase (Vectastain Elite
ABC kit from Vector Lab) binding to the secondary antibody and catalyzing Tyramide-Biotin
(PerkinElmer) conjugation to form insoluble biotinylated phenols. Signals were visualized by a
secondary streptavidin-conjugated HRP and DAB colorimetric reaction. The slides were scanned,
analyzed, and quantified using Array-Pro Analyzer software (MediaCybernetics) to generate spot
intensity (Level 1 data). SuperCurveGUI'?, which is available at
http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate relative protein levels
(in log2 scale). A fitted curve ("supercurve") was created with signal intensities on the Y-axis and
relative log2 amounts of each protein on the X-axis using a non-parametric, monotone increasing B-

108
1

spline model . Raw spot intensity data were adjusted to correct spatial bias before model fitting using

“control spots” arrayed across the slides''’. A QC metric''' was generated for each slide to determine
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slide quality and only slides with 0.8 on a 0-1 scale were used further. For replicate slides, the slide with
the highest QC score was used for analysis (Level 2 data). Protein measurements were corrected for

. o 2109,112
loading as described ™

using median-centering across antibodies (Level 3 data). Seventeen samples
with low protein levels were excluded from further analysis. In total, 192 antibodies and 155 samples
were analyzed. Antibodies were selected to represent the breadth of cell signaling and repair pathways®
conditioned on a strict validation process as previously described'®. Antibodies are labeled as
“validated” and “use with caution” based on degree of validation. Raw data (Level 1), SuperCurve

nonparameteric model fitting data (Level 2), and protein loading corrected data (Level 3) were deposited

at the DCC.

Consensus Clustering

Consensus clustering was performed using an R package “ConsensusClusterPlus” to determine a robust
number of sample clusters. Pearson correlation was used as a distance metric and Ward was used as
inner and final linkage algorithm in the unsupervised hierarchical clustering analysis. Sample cluster
number and membership were determined by stability evidence of 1000 resampling iterations. After
consensus clustering analysis, 3 sample clusters were determined for all 155 samples.

Silhouette Clustering

The consensus clusters of 155 samples were validated by Silhouette Clustering. Euclidean distance
algorithm was used to compute the pairwise dissimilarities between samples. Out of 155 samples, 115
whose Silhouette width was larger than 0.02 were retained as Silhouette Core samples for further

analysis.
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Heatmap Generation

The Next Generation Clustered HeatMaps (NG-CHM) tool developed at the MD Anderson Cancer
Center was used to generate heatmaps for the Level 3 RPPA data. Antibody clusters were determined
by unsupervised hierarchical clustering in which Pearson correlation was used as a distance metric and
Ward was linkage rule. For all samples, sample clusters were supervised by the consensus clusters. For
the 115 Silhouette Core samples, sample clustering employed unsupervised hierarchical clustering using

Pearson correlation as a distance metric and Ward as linkage rule.

Statistical Analysis

Pathway scores were generated as described previously’” and the differences in pathway scores between
RPPA clusters were evaluated by the non-parametric Kruskal-Wallis one-way ANOVA method.
Correlation between RPPA clusters and other categorical variables were detected by Chi-Squared test,
while correlations with continuous variables were examined using the non-parametric Kruskal-Wallis
test. The significance of survival distributions between RPPA clusters was estimated by log-rank test
and visualized with Kaplan-Meier survival curves. All statistical analyses were done using R (version

3.0.2).

WWW.NATURE.COM/NATURE | 45



doi:10.1038/nature21386 AT\ E N SUPPLEMENTARY INFORMATION

S9. iCLUSTER Analysis

Data

Datasets used and transformations performed are described in Methods.

iCLUSTER Method

Integrative clustering of RNA-seq, methylation, CNV, and mature-strand miRNA data was performed

using R package “iCluster™.

The method utilizes joint latent variable model within a likelihood
framework with a lasso (L1) penalty in order to select the important features creating sparse solution.
The tumor subtypes are modeled as unobserved latent variables which are simultaneously estimated
from the multiple data types. Expectation Maximization (EM) algorithm is implemented for
maximizing the penalized log-likelihood. Using the algorithm, posterior mean of the latent factor
conditional to the data is estimated and then standard k-means clustering algorithm is used to draw

inference on the cluster membership of the samples. Analyses were completed with all samples and then

separately by histology (squamous and adenocarcinoma).

Optimum number of clusters k together with optimum sparseness parameter A for L1 penalty is
determined using the Proportion of Deviance (POD) method where the POD can be interpreted as the
sum of the absolute differences between obtained cluster block structure and theoretical (perfect) block

structure. Smaller POD indicates stronger cluster distinguishability.

In order to select an adequate number of features for the iCluster, analyses were carried out using 500,

250, 100, and 50 most variable features from each dataset. There was a high degree of concordance
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among the resulting clustering assignments as measured by adjusted Rand Index. The results presented

here are based on the 500 most variable features from each dataset.

Association analysis of clinical features and mutations with iCluster grouping was performed using
Kruskal Wallis, Wilcoxon Rank-Sum, or Fisher’s Exact tests. Differences in the survival of the subjects
across the cluster groups were assessed using Kaplan-Meier analysis followed by a Log-Rank test.

Heatmaps were made using the heatmap function in R package “NMF.”

Results

All samples: Integrative clustering was carried out using the 500 most variable features from each
dataset. The integrative clustering identified three clusters consisting of 50, 86, and 42 samples. The
Keratin-high cluster was entirely made up of squamous samples. The Keratin-low cluster was also
enriched for squamous samples, while the Adenocarcinoma cluster contained most of the
adenocarcinoma samples. Association analyses between the 14 significantly mutated genes (SMGs)
identified by MutSig across the three clusters were carried out using Fisher’s Exact test. KRAS
(p=9.74e-5), ERBB3 (2.63e-3), and HLA-A (2.65e-2) mutations were found to be significantly associated
with clusters. KRAS mutations were not present in the Keratin-high cluster and HLA-4 mutations were
not present in the Adenocarcinoma cluster (Fig. 2). Further association analysis of mRNA-seq
expression of these SMG genes across the 3 clusters were carried out using Kruskal Wallis test, with
NFE2L2 (4.56e-11), TGFBR2 (4.62¢-8), ERBB3 (2.14e-7), PIK3CA (1.17e-4), ARIDI1A4 (8.74e-4), and

KRAS (3.19¢-2) expression significantly associated with clusters.

Out of 178 total samples used for clustering, 112 samples had protein expression data. Association of

protein expression with cluster groups was carried out using Kruskal Wallis test, and 54 proteins were
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significantly differentially expressed across the three clusters.  Expression of Phospho-ERK
(T202/Y204) (p=3.98e-2) that maps to the SMG MAPKI and HER2 (p=3.38e-3) that maps to ERBB?2
were found to be significantly associated with clusters. APOBEC3A (p=2.90e-14), APOBEC3C
(p=1.16e-10), APOBECI (p=3.20e-11), APOBEC3B (p=3.72¢-2), and APOBEC3G (p=4.46e-2) gene
expression were significantly different across the clusters using Kruskall Wallis Test. In addition,
HPV16A vs. HPV16 non-A variants were significantly associated with the clusters (Fisher’s Exact test

p-value=0. 002679).

Squamous cell carcinoma samples: Integrative clustering analysis on 144 samples of squamous
histology identified 2 clusters with 97 and 47 samples. Association analysis with mutations in SMGs
was carried out across the two clusters, with KRAS mutations being significantly associated with the
clusters (p=0.01). mRNA-seq expression of the SMGs was assessed across the 2 clusters using
Wilcoxon test, with PIK3CA (6.29¢-6), NFE2L2 (7.24e-6), HLA-B (1.07¢-3), TGFBR2 (2.82¢-3), EP300
(5.26e-3), MAPKI (5.47e-3), HLA-A (9.47¢-3) and FBXW7 (1.11e-2) significantly associated with the

clusters.

Out of 144 total squamous samples, 92 samples had protein expression data. Association of protein
expression with cluster groups was carried out using Wilcoxon test. Multiple proteins involved in
MAPK, RTK, and Hippo pathway signaling were associated with the squamous clusters. APOBEC3A4
(p=3.09¢-11), APOBEC3C (p=9.43e-5), APOBEC3B (p=1.82e-3), APOBECI (p=5.13e-3), and
APOBEC3H (p=2.73e-2) gene expression were significantly different across the clusters using Wilcoxon

Test.
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Adenocarcinoma samples: Integrative clustering analysis on 31 adenocarcinoma samples identified 2
clusters composed of 18 and 13 samples. Associations of gene mutations were carried out across the
two clusters; however, mutations in the SMGs were not significantly associated with adenocarcinoma
clusters. mRNA-seq expression of the SMGs were assessed across the 2 clusters using Wilcoxon test,

with ARID1A expression significantly associated with clusters (p=2.76e-2).

Out of 31 total adenocarcinoma samples, 18 samples had protein expression data. Association of each
protein expression with cluster groups was carried out using Wilcoxon test. Multiple proteins involved
in metabolism and DNA damage repair were significantly associated with clusters. Gene expression of
APOBEC3D (p=2.39e-4) and APOBECI (p=4.94e-4) were significantly different across the clusters

using Wilcoxon Test.

S10. PARADIGM Analysis

Data and Algorithm

The data and algorithm are described in Methods.

Consensus Clustering of PARADIGM Inferred Pathway Activation

Consensus clustering based on the 3877 most varying features (i.e. IPLs with variance within the highest
quartile) was used to identify subtypes implicated from shared patterns of pathway inference.
Consensus clustering was implemented with the ConsensusClusterPlus package in R''". Specifically,
median-centered IPLs were used to compute the squared Euclidean distance between samples, and this

metric was used as the input to the ConsensusClusterPlus algorithm. Hierarchical clustering was
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performed using the Ward’s minimum variance method (i.e. ward inner linkage option) and 80%
subsampling was performed over 1000 iterations, with the final consensus matrix clustered using
average linkage. The number of clusters was selected by considering the relative change in the area
under the empirical cumulative distribution function (CDF) curve as well as the average pairwise item-
consensus within consensus clusters. We selected k=4 as further separation provides minimal change
and decreases the within-cluster consensus. Heatmap display of the top varying IPLs was generated
using the heatmap.plus package in R. Differences in overall survival (OS) between PARADIGM
clusters were assessed by the log-rank test, and the chi-square test was used to evaluate associations with
clinical parameters (histology and HPV clade) and single platform subtypes (mRNA, copy number,

methylation, miRNA, and RPPA clusters).

Pathway biomarkers of each PARADIGM cluster (vs. all others) were identified using the t-test and
Wilcoxon Rank-Sum test with Benjamini-Hochberg (BH) false discovery rate (FDR) correction. Only
features deemed significant (FDR corrected p<0.05) by both tests and showing an absolute difference in
group means > 0.05 were considered. Interconnectivity between these pathway biomarkers within the
PARADIGM SuperPathway was assessed, and regulatory hubs with > 10 differentially activated

downstream targets were selected and displayed in a heatmap.

Pathway Biomarkers Differentiating Squamous Carcinomas and Adenocarcinomas

IPLs differentially activated between squamous carcinomas (n=144) and adenocarcinomas (n=31) were
identified using the t-test and Wilcoxon Rank-Sum test with BH FDR correction. Only features deemed
significant (FDR corrected p<0.05) by both tests and showing an absolute difference in group means >
0.05 were selected. Differentially activated IPLs were then filtered by connectivity within the

SuperPathway, such that only interconnected features via regulatory interactions were retained.
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Pathway constituents of the PARADIGM SuperPathway enriched among these selected features were
assessed using the EASE score with BH FDR correction, and subnetworks were constructed to identify

regulatory hubs with > 10 outgoing regulatory edges and visualized using Cytoscape.

Interconnected complexes and features (by any edge type) showing differential activation between
squamous and adenocarcinomas within the FGFR3 network neighborhood were visualized in Cytoscape.
In addition, the mRNA expression levels of FGFR1 and FGFR3 were compared using Spearman rank
correlation and differences in expression of these genes in squamous vs. adenocarcinomas were

visualized using box plots.

In order to illustrate the difference in p63 inferred pathway activation between squamous cell
carcinomas and adenocarcinomas, a heatmap of the scaled (mean 0 and standard deviation 1) p63
PARADIGM inferred activity, scaled log2-transformed mRNA expression, and GISTIC thresholded
copy number levels ordered by sample histology was constructed using the heatmap.plus package in R.
The loglO-transformed expression of the top two differential miRNAs between squamous vs.
adenocarcinoma - miR944 and miR205 - were also scaled and included in the heatmap, and the

expression of these miRNAs was compared to p63 mRNA expression levels using Pearson correlation.

Pathway Biomarkers Associated With HPV Status

IPLs differentially activated between HPV Clade A9 (n=120) vs. Clade A7 (n=45) were identified using
the t-test and Wilcoxon Rank-Sum test with BH FDR correction. Only features deemed significant
(FDR corrected p<0.05) by both tests and that showed an absolute difference in group means > 0.05
were selected. Differentially activated IPLs were then filtered by connectivity within the SuperPathway,

such that only interconnected features (at least 1 interaction of any kind) were retained. Subnetworks
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linked through regulatory (activation or inhibition) interactions were constructed and visualized using
Cytoscape, and constituent pathways of the PARADIGM SuperPathway enriched within these
subnetworks were assessed using the EASE score with BH FDR correction. This analysis was also
performed restricted to the squamous histology subtype (A9: n=103, A7 n=35). A similar analysis was
performed to identify pathway biomarkers distinguishing HPV negative (n=9) from HPV positive

(n=169) cases.

Results

Consensus clustering using the top varying PARADIGM inferred pathway levels (IPLs) yields 4
subtypes with characteristic patterns of pathway activation (Supplemental Fig. S48). Of note, 29 of 31
adenocarcinomas are clustered together in PARADIGM C2, which also contains 7 of the 9 HPV-
negative cases. In addition to associations with histology, PARADIGM subtypes also show significant
associations with HPV clade as well as other single platform subtypes. Highest inferred activation of
FOXA2 and XBP1-2 pathways is observed within the adenocarcinoma-enriched PARADIGM C2. Key
pathway features distinguishing PARADIGM cluster C4 from non-C4 cases include highest relative
inferred activities of pathways involving DNA damage, MYB, and IL-12. PARADIGM cluster C3 is
associated with highest inferred FOXM1 and MYC pathway activation, while the remaining
PARADIGM cluster C1 samples show highest inferred activation of HIF1A, STAT6, p53, p63, p73,

ARF2, and ERK signaling.

Of the 4692 PARADIGM IPLs identified as differentially activated between adenocarcinomas and
squamous cell carcinomas, 1098 are connected through regulatory interactions (activation or inhibition)
(Extended Data Fig. 10). Pathway enrichment and subnetwork analysis of the interconnected

differential pathway features implicates higher activation of FOXAI/ER and FOXA2 pathways in
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adenocarcinomas. In contrast, key distinguishing features of squamous carcinomas include higher
inferred activation of p53, p63, p73, AP-1, MYC, HIF1A, and MAPK signaling. Interestingly, inferred
p63 activation and to a greater extent p63 mRNA expression levels show significant correlations with
the two most differentially abundant miRNAs between squamous and adenocarcinomas: miR-944 and
miR-205. Also of note, FGFR3 appears to have higher inferred activity in squamous carcinoma, likely
attributable to higher mRNA expression levels within this histological subtype. Paradoxically, FGFR1
mRNA levels, which show a modest but significant negative correlation with FGFR3 expression, appear

higher in adenocarcinomas.

A comparison of PARADIGM inferred pathway activation between Clade A7 vs. Clade A9 HPV
positive samples identifies higher inferred activation of p53 and p63 signaling and lower FOXA1
signaling in the Clade A9 infected cases. These significant differences are retained when the analysis is
restricted to the squamous subtype (Fig. 5a). Consistent with expectations, inferred activation of NF-kB
signaling appears lower in HPV-negative relative to HPV-positive samples. Interestingly, lower inferred

activity of p53 and MAPK3 signaling is also observed.

S11. APOBEC Mutagenesis Analysis

Data Deposition

Complete output of APOBEC mutagenesis analysis used for this paper in the format of Broad Institute
GDAC Firehose is in the APOBEC CESC res3 192.7z folder placed under controlled access at:

https://tcga-data-secure.nci.nih.gov/tcgatiles/tcgajamboree/ CESC/APOBEC/.
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In order to navigate through data all files should stay in the same folder. The
“192 genome.wustl.edu CESC.IlIluminaGA_DNASeq_curated.Level 2.1.0.0.somatic.maf sorted repor
t.html” Nozzle output file provides detailed legends and annotated links to all data files. A partial set of
files containing Nozzle output, graphics summaries of analysis, and the most important data files are

provided in the open access APOBEC output.zip file on the TCGA Publication Page Portal.

Methods

The exome-wide prevalence of the APOBEC mutagenesis signature and the enrichment of this signature
over its presence expected for random mutagenesis were evaluated as described previously'® with some
additions (see Methods). On top of previously described output, several other parameters were
calculated and annotations added that characterize the prevalence of the APOBEC mutagenesis pattern
in a sample and/or that are useful for downstream analyses and comparisons. The main new parameter
used in this study was the minimum estimate of the number of APOBEC-induced mutations in a sample,
which is given the name “APOBEC_MutLoad MinEstimate.” Values were calculated as described in

Methods and are rounded to the nearest whole number.

The complete description of data files and columns in data tables are in readme files within the analysis
output APOBEC CESC res3 192.7z folder under controlled access and within the open access
APOBEC output.zip file. The values of “APOBEC MutLoad MinEstimate” and category assignments

for each sample are also presented in Supplemental Table 1.

Results

Prior research has identified a stringent mutation signature tCw—tTw or tCw—tGw (mutated nucleotide

is capitalized; w=A or T) characteristic of mutagenesis by a subclass of APOBEC cytidine deaminases
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abundant in many samples of cervical and other cancer types™'*'*'>. In this study, 150 out of 192
exomes displayed statistically significant (q<0.05) enrichment (up to 6-fold) with this signature. The
signature was carried by 46% of all mutations in the dataset, approaching 70% in some exomes. Even
the minimum estimate accounting for the random mutagenesis resulting in a fraction of APOBEC
signature mutations indicated that up to 1500 mutations in an exome can be caused by APOBECs
(Supplemental Fig. S26 and APOBEC_output.zip). APOBEC mutation load strongly correlated with the
total number of mutations in a sample (Extended Data Fig. 2h), suggesting that APOBEC mutagenesis is
the major source of mutations in cervical cancers. HPV infection, which has been previously linked
with increased APOBEC mutagenesis in head and neck cancers', was also correlated with a pattern of
APOBEC mutagenesis in cervical cancer samples (Supplemental Fig. S27). The cause of mutagenesis
may be due to high expression of APOBEC3 genes as a result of HPV at some point during (or before)
cancer development, since transcription of APOBECs is known to be induced by factors triggering the
innate immune response’ °. Indeed, expression of APOBEC34 showed the strongest positive correlation
with mutagenesis and APOBEC3B showed overall high expression in cancers of the dataset
(Supplemental Fig. S28). Mutagenesis could also be a consequence of DNA damage response (DDR)
caused by HPV''®, resulting in increased formation of single-stranded (ss) DNA — the exclusive
substrate for APOBEC cytidine deaminases. Many mutations in genes with a potential role in the
initiation and/or progression of cervical cancer carried the APOBEC mutagenesis signature, with

PIK3CA harboring the most (Extended Data Fig. 2g) similar to observations in head and neck cancers'*.
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S12. EMT mRNA Score Analysis

Methods

The EMT score was computed as previously described'®?'.

Briefly, the EMT score was the value
resulting from the difference between the average expression of mesenchymal (M) genes minus the
average expression of epithelial (E) genes. All NA values were removed from the calculation. Two-
sample t-test and ANOVA were applied to each comparison accordingly. A Cox proportional hazards
model was applied to assess whether the EMT score was associated with overall survival. Kalplan-

Meier plots (Log-rank test) were used to display the difference between groups (the median value of

EMT score of samples).

Results

EMT scores were significantly higher in UCEC-like cancers (two sample t-test, p=0.048) (Supplemental
Fig. S29b). Patients with higher EMT scores had worse overall survival (p=0.0221, log-rank test
between top and bottom median EMT score patient groups) (Supplemental Fig. S29a). EMT scores
were associated with the subtypes defined by different molecular platforms, including methylation
CIMP (p=0.024), iCluster (0.003), miRNA (p <0.001), mRNA (p=0.003), and PARADIGM (p=0.005),
which suggests the association between EMT score and global molecular alterations at different levels

(Supplemental Fig. S30).

S13. Functional Epigenetic Module (FEM) Analysis

FEM Algorithm
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The Functional Epigenetic Module (FEM) algorithm39 was used to identify potentially disrupted
signaling pathways between groups. FEM represents a tool for the integrative analysis of DNA

17 as the

methylation and gene expression data that uses protein-protein-interaction (PPI) networks
backbone for identifying subnetworks of genes that are epigenetically and functionally disregulated
based on a phenotype of interest. This methodology consists of two main parts: (i) computation of edge
weights for connected genes in the PPI network where the weights are a composite measure of each
gene’s strength of association between both gene expression and DNA methylation and the phenotype of

interest, and (ii) identification of subnetworks of genes where the average weight density is significantly

larger than the rest of the network.

We began by subsetting the data to consist of the set of genes (G) that overlapped between the gene
expression data, DNA methylation data, and genes represented in the PPI network. We then
summarized DNA methylation information at the gene level by computing the average methylation of
CpG sites mapping to within 200 bp of the transcription start site (TSS200). If there were no probes
mapping to within 200 bp of the transcription start site, the average methylation of CpGs mapping to
within the 1st exon of the gene was computed. If there were no probes mapping to within the 1st exon

of the gene, the average methylation of CpGs mapping to within 1500 bp of the TSS (TSS1500) was

(R 1 g=12,.,G

computed. We next calculated the test-statistics, "¢ and "¢ , obtained from testing the

association between both gene expression and DNA methylation with the phenotype of interest for each

t, g=1,2,..G

of the G genes. A composite test-statistic for each gene ¢’ was then computed. For genes

; (R) ; (D)
exhibiting anti-correlation between gene expression and DNA methylation (i.e. Slg”(tg )#s lg”(tg )),
composite test-statistics were taken to be the absolute difference of the DNA methylation- and gene

_[#(D) _ 4(R)
_‘tg tg

— ; (R — o7 (D)
expression-based test-statistics (i.e. ¢ ); otherwise, ly =0 if § lgn(tg )—szgn(tg ) . Weights
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between connected genes, gene g and gene h, in the PPI were taken to be the average of the composite

=

1
.o . gh:_(tg-'_th) .
test-statistics for those two genes (i.e. 2 ). Lastly, the PPI network was scanned using a
version of the spin-glass algorithm''® to identify subnetworks where the average weight density of
connected genes was significantly larger than the rest of the network. The output of the FEM

methodology is a series of subnetworks whose average weight density is statistically significantly

greater than would be expected by chance.

The analyses described above were carried out using the Bioconductor package ‘FEM’ within the R

statistical programming language.

Results

In an attempt to understand the implications of HPV subtype on the underlying biology of cervical
tumors, we considered several different applications of the FEM methodology to the cervical cancer
data. Specifically, FEM was used to identify disrupted subnetworks between HPV clade A7 and A9
tumors and HPV-positive and -negative tumors. Identification of disrupted subnetworks between these
groups was carried out using all Core Set samples (n = 178) and within squamous cell carcinomas (n =
144). In addition, we also examined disrupted subnetworks between HPV A7 and A9 adenocarcinoma
tumors (n = 31). There were a total of G = 6,730 genes that overlapped between the DNA methylation
data, gene expression data, and the PPI network. The total space for identifying disrupted subnetworks
therefore consisted of a PPI network spanned by the 6,730 overlapping genes and the interactions

between them.

Identification of disrupted subnetworks between HPV-positive and HPV-negative tumors
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Although only 9 out of 178 cervical tumors were HPV-negative, our analysis revealed 13 statistically
significant subnetworks (p<0.05) when FEM was applied to the data consisting of all cervical
histological subtypes (Supplemental Fig. S31 and Supplemental Table 19: Tab S1). The size of these 13
subnetworks ranged from as small as 10 genes to 44 genes. Interestingly, 3 out of the 13 identified
subnetworks were centered around genes belonging to the Fibroblast Growth Family (FGF), specifically
FGF3, FGF4, and FGFRI. Each of these genes showed statistically significant increased promoter
DNA methylation (p = 1.3e-6, 6.2e-4, and 3.8e-5, respectively) and reduced expression (p = 3.4e-9,
1.6e-11, and 1.2e-6, respectively) in HPV-positive compared with HPV-negative cervical tumors. These
findings are in agreement with recent data demonstrating that HPV16 E6/E7 infection (the predominant
HPV subtype in these samples) partially represses the proliferation, but not the invasive potential, of

cervical cancer cells stimulated by FGF2 or FGF4'"’.

Restricting analysis to only the squamous cell carcinomas (n = 144), 12 statistically significant
subnetworks between HPV-positive (n = 140) and HPV-negative (n = 4) tumors were identified
(Supplemental Table 19: Tab S2). Similar to the results obtained from fitting FEM using all cervical
histologies, 2 out of the 14 statistically significant subnetworks were centered around FGF genes,

specifically FGF3 and FGF4.

To see if the disrupted subnetworks between HPV-positive and HPV-negative cervical squamous cell
carcinomas were specific to cervical cancer, we next applied the FEM methodology to the HSNC
dataset. In a similar manner, FEM was applied to the HNSC dataset for identifying disrupted
subnetworks between HPV positive (n = 36) and HPV negative (n = 243) HNSC tumors. This analysis
revealed 11 statistically significant subnetworks, which ranged in size from as small as 18 genes to as

large as 62 genes (Supplemental Table 19: Tab S3). Although these 11 subnetworks were largely
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distinct from the 12 statistically significant subnetworks between HPV positive and HPV negative
cervical squamous cell tumors, there was one common subnetwork centered around Forkhead Box A2
(FOXA2) (Supplemental Table 19: Tabs S2, S3). Interestingly, FOXA2 showed significantly increased
promoter methylation and decreased expression in HPV positive compared to HPV negative cases in
both the HNSC tumors and squamous cell cervical tumors (Supplemental Fig. S32). It is also worth
noting that many of the genes contained in the FOXA2 subnetwork showed consistent relationships
between DNA methylation/gene expression and HPV status between the HNSC and squamous cell
cervical tumors. These findings may suggest a common pathway(s) by which HPV exerts its effects on

tumorigenesis.

Identification of disrupted subnetworks between HPV A7 and A9 tumors

We also identified disrupted subnetworks between samples infected with HPV A7 vs. A9 clades.
Applying FEM to the data consisting of all cervical histological subtypes, 8 statistically significant
subnetworks were identified between HPV A7 (n = 45) and HPV A9 (n = 120) tumors (Supplemental
Table 19: Tab S4). Restricting analysis to only the squamous cell cervical carcinomas (n = 136)
revealed 7 statistically significant subnetworks (Supplemental Table 19: Tab S5). In the analysis
restricted to non-squamous cell cervical carcinomas (n = 27), 4 statistically significant subnetworks
between HPV A7 (n = 8) and HPV A9 (n = 19) tumors were identified (Supplemental Table 19: Tab

36).

S14. Immune Response Gene Analysis

Immune Response Gene Expression Analysis
The Core Set (144 squamous cell carcinomas (SCCs), 31 adenocarcinomas (ACs) and 3 adenosquamous
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carcinomas) samples were used in this analysis and a total of 372 genes were selected based on GO
0006954 and 0006955 annotations. The gene symbols from GO selection were merged with the mRNA-

seq matrix (Supplemental Table 20).

Clustering Analysis

Consensus clustering (CC) analysis was performed based on the top 300 most variable genes filtered by
median absolute deviation using the ConsensusClusterPlus package in R. The gene count numbers were
log-transformed and median-centered. The agglomerative hierarchical clustering algorithm using
Pearson correlation distance was performed using 80% item resampling (pItem), 100% gene resampling
(pFeature), a maximum of 12 cluster counts (maxk), 1,000 resampling (reps), and a random number of
seed. The total number of clusters (k) was determined by the inspection of consensus cumulative

distribution function (CDF) curves shape, and the relative change in area under the CDFs curve'%.

Prognostic Cluster Analysis

An ExpressionSet class was designed with the TCGA mRNA-seq normalized matrix for gene expression
analysis (assaydata), which included the 372 immune and inflammatory response genes and the
AnnotatedDataFrame based on the vital status presented in Supplemental Table 1 using the Biobase
package in R. The areas under the curves (AUCs) were calculated based on each gene expression and
the living or deceased outcomes using the rowpAUCs function (genefilter package in R). Genes that
failed to accurately predict survival (AUC<0.61) were excluded'?’. The consensus clustering analysis

was performed based on the selected genes as described above.

To analyze the association of immune cytolytic activity (CYT) score with prognostic clusters and overall

survival, the geometric means of GZMA and PFR1 genes in SCC samples were estimated (Supplemental
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Table 21)'.

The expression of 372 genes was compared between immune response and prognostic clusters. After
the estimation of the dispersion for each gene using the “estimateTagwiseDisp” function, differentially
expressed (DE) genes were identified by the exact text using edgeR package. Genes with log fold-

change (logFC) > 1.0 and false discovery rate (FDR) adjusted p-value<0.05 were considered.

Gene Set Enrichment Analysis (GSEA)

GSEA was performed based on the 372 immune gene expression matrix using the GSEA software and
the Molecular Signature Database (MSigDB) REACTOME-c2.cp.reactome.v4.0.symbols.gmt
(http://www.broad.mit.edu/gsea/). One thousand total permutations were used, and SCC versus AC and
prognostic cluster C1 versus C2 were used as phenotype labels. The gene set profile was used as the
permutation type. Cytoscape software was used to create the Enrichment map. The WEB-based GEne
SeT AnaLysis Toolkit (gestalt) was used to analyze common gene pathways into each gene cluster

(http://bioinfo.vanderbilt.edu/webgestalt/).

Survival Analysis

The survival analyses for immune response clusters and prognostic clusters were carried out using

Kaplan-Meier curve and Cox proportional-hazards regression model in Rstudio.

Results

Consensus clustering analysis identified five immune response clusters, with most ACs (n= 29)
clustering together in cluster 5. Two adenosquamous samples cluster in C5 and one in C4. Among the
372 immune response genes analyzed, 83 were differentially expressed in C5 samples versus all other
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samples (Supplemental Table 22). Four gene clusters were differentially expressed in C5 when
compared to all other samples (Supplemental Fig. S33). Gene cluster 1 (blue) contains 9 downregulated
genes in C5 (ILIA, ILIRAP, LTB4R, S10048, S10049, S100412, GPR6S, SPINKS and KRTI). ILIA
and ILIRAP are involved in IL1 signaling, and S70048 / S10049 are involved in endogenous toll-like
receptor signaling. Cluster 2 (red) includes 3 downregulated genes in C5 (CD274, PDCDILG2, AIM?).
CD274 and PDCDILG? are involved in adaptive immune response and costimulation by CD28 family
signaling. Cluster 3 (magenta) includes 4 downregulated genes in C5 (APOL3, CXCL9, CXCLI10 and
CXCLI11I). CXCLY, CXCLI10 and CXCLI11 are involved in CXCR3-mediated signaling events. CD274
and PDCDILG?2 genes encode PDL1 ligands PDL1 and PDL2 protein, respectively. PDLI is expressed
in various solid tumors including squamous cell carcinomas of the lung, esophagus, and head and
neck'”?. These proteins suppress T-cell effector function including the cytotoxic activity and their
expression is induced by inflammatory cytokines'?. The use of PD1 immune blockage has resulted in
long-term response in a subgroup of patients with lung cancer and melanoma'**'%. The loss of AIM2
protein (absent in melanoma 2 protein) expression has been demonstrated as a prognostic marker in
colorectal cancer126, and is associated with metastatic dissemination in melanoma and cutaneous
squamous cell carcinomas'?’. dsDNA viruses are sensed by AIM2, triggering inflammosome formation
and IL1B release. This mechanism is a key activator of innate and adaptive immune responselzg. A
recent study demonstrated that the AIM2 inflammosome is activated by HPV16 in keratinocyteslzg.
CXCL9, CXCLI0 and, CXCLI11I genes encode CXCR3 ligand cytokines known as angiostatic CXC
chemokines'*’, and are potent angiogenesis inhibitors linked to cell-mediated immunity. Cluster 4 (pale
green) contains upregulated genes in C5 (ADORAI, DPP4, NFATC4, CRHRI, TCF7, FCGRT and
CCRY9). ADORAI, CRHRI and CCRY are involved in G protein-coupled receptor binding. Cluster 5
(yellow) has 12 upregulated genes (GPR44, SIGIRR, XBP1, ELF3, HLA-J, CHRNA7, HDAC9, SKAPI,

CCBP2, MNX1, CHST4 and ALOX15) that are not enriched in a common pathway.
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GSEA identified four significantly enriched Reactome pathways in SCCs compared with ACs. The
“immune response” pathway is enriched by the “innate immune system” node and the “adaptive immune
system” and its subfamily “costimulation by the CD28 family” nodes. There are 42 genes enriched and
all of them are overexpressed in SCCs compared with ACs. The CD274, PDCDILG2, PDCDI1, CD8&0,
CD86, and CTLA4 genes are in the “costimulation by the CD28 family node” and are involved in T-cell
activation. Other genes involved in T-cell activation that are highly expressed in SCCs include CD84,
CD28, GZMA, and PRF1. The median CYT score is 134.3 in ACs (range from 6.4 to 591.7) and 246.4
in SCCs (range from 5.9 to 4670) (p= 0.001). Together, these results suggest that the adaptive immune
response is repressed in ACs compared with SCCs. Adaptive immune response and T-cell modulation

have been reported as promising therapies in human cancer'*"'*,

Our data suggest that the use of
immune co-stimulatory molecules may be a potential therapy for cervical ACs. Based on the clustering
analysis, there is a subset of SCCs with a low immunogenic profile similar to ACs. In order to

determine whether immune gene expression can select groups of patients with distinct prognosis, a

prognostic clustering algorithm was developed.

Prognostic clusters: ROC analysis was used to identify groups of patients with diverse prognosis in
cervical carcinomas. The ROC analysis identified 47 genes with AUC> 0.61 (Supplemental Table 23).
Using this set of genes, cervical carcinomas can be clustered into two different expression subtypes
(Supplemental Fig. S34a), with C2 samples having worse prognosis compared with C1 samples (C1
versus C2, HR=2.9; p=0.002) (Supplemental Fig. S34b).

Of the 259 differentially expressed genes between prognostic cluster C1 and C2 samples (Supplemental
Table 24), 57 enriched genes were identified by GSEA (Supplemental Table 25). The main nodes

29 ¢

enriched in CI are “immune signaling,” “TCR and downstream TCR signaling pathways,” “adaptive
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immune system,” and “costimulation by CD28 family.” PDL1/2, PDCI, CD86/CTLA4,
CD40/CD40LG, and CD80/CD28 genes are overexpressed in prognostic cluster C1 tumors, indicating
that costimulatory and coinhibitory receptors are modulating T-cell activity. The enriched genes in
prognostic cluster C2 samples are all associated to signaling by ILs (IL1A, ILIR2, IL6, IL6ST, TRAF6,

RIPK2 and MAP3K7).

When analyzing the association between CYT score and the prognostic clusters, a significantly higher
CYT score was observed in C1 samples compared with samples in C2 cluster samples (Supplemental
Fig. S34c). The linear regression model demonstrated that all genes associated with T-cell immune
synapses are correlated with CYT, especially PDCDI (r*= 0.57), CTLA4 (r*= 0.57), LAG3 (r*= 0.57) and

CD86 (= 0.45) (Supplemental Table 26).

S15. MEMo Analysis

MEMo Analysis

miRNA binary alteration calls and MEMo analysis are described in Methods.

S16. Mitochondrial DNA Analysis

Analysis Methods

Aligned BAM files from whole genome sequencing (WGS) analysis were used to extract reads aligned
to mitochondria and GATK'**. Unified Genotyper was used to call SNVs and indels. Variants detected

in the tumor but not in the corresponding normal were called as somatic. Somatic events were annotated
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using the MITOMAP database (http://www.mitomap.org/MITOMAP). Primary tumors and blood
samples showed slightly different number of mitochondria, with their medians being 59 and 80,
respectively. By WGS, the coverage on the MT genome was sufficient to call somatic mutations,
whereas in whole exome sequencing (WES) these regions were not selected for. However, when calling
mitochondrial mutations on samples using WES data, we were able to recall 71% of variants made using

WGS data.

S17. RNA Splicing Analysis

Detecting RNA Splicing Events

SpliceSeq'** was used to analyze RNA-seq data for transcript splicing variation. SpliceSeq aligns
reads to splice graphs representing all protein coding isoforms of human genes in Ensembl. Percent
spliced in (PSI) values are generated for each potential splice event for all samples and all genes. The
type of splice events detected include exon skip (ES), retained intron (RI), alternate donor (AD),
alternate acceptor (AA), mutually exclusive exon (ME), alternate promoter (AP), and alternate
terminator (AT). PSI is the ratio of normalized read counts indicating the inclusion path vs. the total
covering a splice event (Supplemental Fig. S37). For further details on SpliceSeq methods, see:

http://bioinformatics.mdanderson.org/main/SpliceSeqV2:Methods.

To evaluate changes in splicing patterns across CESC samples, a subset of splice events demonstrating
variation across tumor samples was selected. The splice event selection criterion was: 1) Minimum
average expression RPKM > 1.5; 2) PSI values for 95% of the samples; 3) occurrence in a highly
expressed portion of the transcript (magnitude > .3); and 4) PSI standard deviation across samples of >

.25. For genes with more than one splice event meeting this criterion, the splice event with the strongest
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average read coverages was selected. The resulting 219 splice events represent those with the strongest
differential splicing behavior across the Core Set of samples. The full set of differential splicing event

PSI values is provided in Supplemental Table 28.

Results

The PSI values of selected splice events were mean-centered across samples and used to create a
hierarchical clustered heatmap of sample vs PSI (Distance Metric = Correlation; Agglomeration Method
= Ward). The samples clustered into 3 clusters that were further investigated in downstream analysis
(Supplemental Fig. S38). Fisher’s Exact tests were performed to evaluate similarity between splicing
clusters and clinical data/clusters from other platforms. Splicing cluster 2 (orange) contains the majority
(24 of 31, Fisher’s p-value < 0.001) of adenocarcinoma samples, and therefore overlaps with many of
the other adenocarcinoma-enriched platform clusters (30 of 42 Adenocarcinoma iCluster samples, 32 of

47 mRNA C1 samples, 22 of 30 miRNA C5 samples, and 31 of 45 PARADIGM C2 samples).

Splicing clusters 1 and 3 both contain predominantly squamous samples but Cluster 3 contains a smaller
subset of squamous samples that displays a strikingly different pattern of alternative splicing. In
general, Cluster 3 does not have strong associations with clusters identified by the other platforms so this
appears to be a unique subset of squamous samples identified by splicing analysis. The only exception
is an association with PARADIGM C4 (20 of 28 members are in Splicing Cluster 3; p<0.001). Cluster 3
had no significant association with clinical annotations with the exception of vital status. Only two of
the 26 patients who died are in Cluster 3 (p<0.01). A review of purity values and leukocyte fraction

showed that the cluster is not characterized by a high level leukocytes or low level of purity.
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Several interesting splicing events distinguished the adenocarcinoma-enriched cluster C2 and the
squamous-enriched clusters C1 and C3 (Supplemental Table 29). LIMK?2 expression is associated with
drug resistance in many tumor types and LIMK?2 knockdown has been shown to enhance chemotherapy
effectiveness'””. The adenocarcinoma-enriched cluster showed stronger use of exon 1 as the first exon
(LIMK2a isoform) while the squamous clusters showed stronger use of exon 3 as the first exon (LIMK2b
isoform — missing the first LIM domain), suggesting alternate LIMK2 expression regulation with
potential impact on LIM mediated protein-protein interactions. Erbin is an adaptor protein produced by
ERBB2IP that contributes to the oncogenic effects of HER2 and has also been a target of novel mutation

136137 The ERBB2IP exon skip event removes the PDZ domain necessary for

specific immunotherapy
HER2 binding. Samples in C2 show PSI values 40% lower than C1 and C3 samples, indicating that the
Erbin expressed in C2 tumor samples is less capable of interacting with HER2. CD44 is a well-studied
transmembrane glycoprotein with both oncogenic and tumor suppressor properties and splice variants

18139 " The adenocarcinoma-enriched C2 samples

that have been associated with metastatic progression
show reduced inclusion of the CD44 variable exons 7-14 (generally referred to as v2-v9), which add

extracellular stem structure with additional binding sites for posttranslational modifications and ligand-

binding'**.

Less expected was the difference in splicing patterns that distinguish the C3 from C1 samples, as both
predominantly contain squamous samples (Supplemental Table 30). The C3 cluster has a moderately
better survival profile than the C1 cluster (p<0.05; Supplemental Fig. S39). The splice events that most
strongly distinguish C3 samples from C1 samples include several cancer related genes. MAGI3 is a
scaffold protein that regulates LPA to inhibit migration and invasion and cooperates with PTEN to
modulate AKT kinase activity related to cell survival'**'*'. The C3 cluster includes the alternate exon 8

of MAGI3 at a higher frequency (42% increase in PSI). Exon 8 contains an annotated domain but codes
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for a 25-amino acid sequence between the second WW domain and the PDZ domain that interacts with
PTEN, potentially altering protein interactions. HACEI is an E3 ubiquitin ligase that is a HER2

. 142
cooperative tumor suppressor .

Samples in C3 include exon 7 at increased frequency (43% PSI
increase). Exon 7 contains a premature stop codon leading to a truncated or degraded protein.
Interestingly, many of the top splice events that define the C3 splicing cluster involve increased
inclusion of an exon that introduces a premature stop codon or an alternate termination exon leading to a

shortened protein product. = These splicing events include ABCC3 RI 16.2, MANBA ES 2,

DAPL1 AT 4, HACE! ES 7, and TET2 RI 4.2.

S18. Batch Effect Analysis

Analysis Methods:

Hierarchical clustering and Principal Components Analysis (PCA) were used to assess batch effects in
the CESC datasets. miRNA sequencing (Illumina HiSeq), DNA methylation (Infinium HM450
microarray), mRNA sequencing (Illumina HiSeq), copy number variation (GW SNP 6), and protein
expression (RPPA) datasets were analyzed across all CESC samples. All of the datasets were at TCGA
level 3 since that is the level on which most of the analyses presented here are based. Batch effects were
assessed with respect to two variables: batch ID and Tissue Source Site (TSS). Detailed results and
batch effects analysis of other TCGA datasets can be found at

http://bioinformatics.mdanderson.org/tcgabatcheftects.

For hierarchical clustering, we used the average linkage algorithm with 1 minus the Pearson correlation
coefficient as the dissimilarity measure. Samples were clustered and then annotated with colored bars at

the bottom. Each color corresponds to a batch ID or a TSS. For PCA, we plotted the first four principal
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components, but only plots of the first two components are shown here. To make it easier to assess
batch effects, we enhanced the traditional PCA plot with centroids. Points representing samples with the
same batch ID (or TSS) were connected to the batch centroid by lines. The centroids were computed by
taking the mean across all samples in the batch. That procedure produced a visual representation of the
relationships among batch centroids in relation to the scatter within batches.

miRNA Results

Supplemental Figure S40 shows clustering and PCA plots for miRNA-seq data. miRNAs with zero
values were removed and the read counts were log,-transformed before generating the figures. The
figures show small batch effects by both batch ID and TSS; however, the magnitude of batch effects
wasn’t high and we did not believe that it warranted batch effects correction and subsequent potential

loss of important biological and technical variation in the data.

DNA Methylation Results

Supplemental Figure S41 shows clustering and PCA plots for the Infintum DNA methylation
platform. Small batch effects by batch ID and TSS were seen, but once again they were deemed

small enough not to warrant batch effects correction.

RNA-seqV2 Results

Supplemental Figure S42 shows clustering and PCA plots for the RNA-seq platform. Small batch
effects were seen by both batch ID and TSS, but not enough to warrant algorithmic batch effects

correction.
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Copy Number Variation Results

Supplemental Figure S43 shows clustering and PCA plots for the copy number variation data generated
on the SNP 6 platform. Small batch effects were seen by both batch ID and TSS, but not enough to

warrant algorithmic batch effects correction.

Protein Expression Results

Supplemental Figure S44 shows clustering and PCA plots for the protein expression data generated on
the RPPA platform. Small batch effects were seen by both batch ID and TSS, but not enough to warrant

algorithmic batch effects correction.
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