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Transcript assembly and abundance estimation from RNA-Seq 1

1. Sequencing experiment

The data analyzed in the paper consisted of 430,467,018 paired 75bp reads sequenced
from the transcriptome of mouse skeletal muscle C2C12 cells induced to undergo myo-
genic differentiation. Total RNA was extracted from these cells, and subsequently mRNA
was isolated at four different time points (-24 hours, 60 hours, 120 hours, 168 hours).
cDNA was prepared following a similar procedure to the one described in [17]. Fragmen-
tation of the mRNA followed by size selection resulted in fragment lengths approximately
200nt long for all of the time-points. The distribution of fragment lengths is shown in
Supplementary Figure 1 (in Section 3 this distribution of fragment lengths is referred to
as F ). These estimates are based on alignments of the spiked-in sequences using Bowtie

0.12 [12].
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Figure 1. Fragment length distributions of C2C12 time-course libraries.

2. Mapping fragments to the genome

In principle, an algorithm that infers individual transcript abundances by measuring
the fraction of fragments originating from each of a set of known transcripts would be-
gin by computing alignments between fragments and the set of known transcripts that
may be contained in the sample. However, because the transcriptome for mouse is in-
completely annotated, such an analysis requires mapping of fragments to the genome
as a proxy for mapping directly to transcripts. This means that alignments of short
sequencing reads must be allowed to span exon-exon splice junctions in genomic coordi-
nate space. We previously developed a program called TopHat to map RNA-Seq reads
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2 C Trapnell et al.

to the genome. TopHat does not require a reference transcriptome and can therefore be
used to discover novel splice junctions. [24]

Fragments were mapped to build 37.1 of the mouse genome with TopHat version 1.0.13.
We extended our previous algorithms described in [24] to exploit the longer paired reads
used in the study. The original TopHat program used a seed-and-extend alignment
strategy to find spliced alignments of unpaired RNA-Seq experiments. However, due to
computational limitations, our original method reported only alignments across GT-AG
introns shorter than 20Kb by default. This strategy also could not align reads that
spanned multiple splice junctions. However, as sequencing technology has improved
and longer (paired end) reads have become available, we have modified the software to
employ new strategies to align reads across splice junctions. TopHat version 1.0.7 and
later splits a read 75bp or longer in three or more segments of approximately equal size
(25bp), and maps them independently. Reads with segments that can be mapped to
the genome only non-contiguously are marked as possible intron-spanning reads. These
“contiguously unmappable” reads are used to build a set of possible introns in the
transcriptome.

2.1. Discovering splice junctions. Suppose S is a read of length l that crosses a splice
junction. TopHat splits S into n = bl/kc segments where k = 25bp (k is a parameter
that can be adjusted by the user in TopHat). At most one of these segments must cross
the splice junction, and junctions can be discovered if they lie in any of the segments.
TopHat maps the segments s1, ..., sn with Bowtie to the genome, and checks for internal
segments s2, ..., sn−1 that do not map anywhere to the genome, as well as for pairs of
successive segments si, si+1 that both align to the genome, but not adjacently. When
a segment si fails to align because it crosses a splice junction, but si−1 and si+1 are
aligned (say at starting at positions x and y, respectively), TopHat looks for the donor
and acceptor sites for the junction near x and y. Assuming (without loss of generality)
that the transcript is on Crick strand of the genome the donor must fall within k bases
upstream of position x + k, and the acceptor must be within k bases downstream of y,
a total of k possible exon-exon splice junctions. Similarly, when successive segments si
and si+1 align to the genome non-adjacently at positions x and y, the junction spanned
by the read must be from positions x+ k to y in the genome.
TopHat accumulates an index of potential splice junctions by examining segment map-

ping for all contiguously unmappable reads. For each junction the program then concate-
nates kbp upstream of the donor to kbp downstream of the acceptor to form a synthetic
spliced sequence around the junction. The segments of the contiguously unmappable
reads are then aligned against these synthetic sequences with Bowtie. The resulting
contiguous and spliced segment alignments for these reads are merged to form complete
alignments to the genome, each spanning one or more splice junctions.

2.2. Resolving multiple alignments for fragments. The alignments for both reads
from a mate pair are examined together to produce a set of alignments for the corre-
sponding library fragment as a whole, reported in SAM format [14]. These fragment
alignments are ranked according to the procedure described below, and only highest
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Transcript assembly and abundance estimation from RNA-Seq 3

ranking alignments are reported. The ranks are designed to incorporate very loose as-
sumptions on intron and gene length, namely that introns longer than 20kb are rare.
Let x and y be fragment alignments. Then x < y if any of the following (applied in
order) are true:

(1) x is a singleton, and y has both ends mapped,
(2) x crosses more splice junctions than y,
(3) the reads from x map significantly farther apart in the genome than expected

according to the library’s fragment length distribution (≥ 3 s.d.), and the reads
from y do not,

(4) the reads from x are significantly closer together than expected according to the
library’s fragment length distribution, and the reads from y are not,

(5) The reads from x map more than 100bp farther apart than the reads from y,
(6) x and y both span an intron, and x spans a longer one,
(7) x has more mismatches than y to the genome.

Fragments that have multiple equally good alignments according to the above rules
are all reported. If there are n alignments for a fragment, each is assigned a probability
of only 1/n of being correct. The SAM format encodes this probability in the mapping
quality field, which is later used by Cufflinks to reduce the contribution of multiply
mapping fragments (to 1/n of a uniquely mappable read) in FPKM calculations (FPKM
is a measurement of expression, and is formally defined in Section 3). The recent work
of Li et al. [13] addresses the problem of probabilistically assigning multi-reads, and it
should be possible to incorporate the ideas of that paper into future versions of Tophat
and Cufflinks.

Sample Sequenced Aligned Singleton Spliced Multi-mapping Total
fragments fragments fragments fragments fragments alignments

-24 hours 42,184,539 35,852,366 11,031,886 8,824,825 1,768,041 41,663,170
60 hours 70,192,031 57,071,494 18,104,211 15,778,114 2,265,378 64,637,511
120 hours 41,069,106 27,914,989 14,431,734 7,711,026 1,881,772 33,929,133
168 hours 61,787,833 50,705,080 20,396,250 14,585,287 2,458,292 58,797,912
Total 215,233,509 171,543,929 63,964,081 46,899,252 8,373,483 199,027,726

Table 1. Number of fragments sequenced, aligned and mapped with
TopHat. Singleton fragments are fragments for which only one end could
be mapped. Spliced fragments include at least one end that maps across
a junction. The numbers in the total alignment column may not be the
sum of the entries in each row, because some fragments fall into multiple
classes.
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4 C Trapnell et al.

3. Transcript abundance estimation

3.1. Definitions. A transcript is an RNA molecule that has been transcribed from
DNA. A primary transcript is an RNA molecule that has yet to undergo modification.
The genomic location of a primary transcript consists of a pair of coordinates in the
genome representing the 5′ transcription start site and the 3′ polyadenylation cleavage
site. We denote the set of all transcripts in a transcriptome by T . We partition tran-
scripts into transcription loci (for simplicity we refer to these as loci) so that every locus
contains a set of transcripts all of whose genomic locations do not overlap the genomic
location of any transcript in any other locus. Formally, we consider a maximal parti-
tion of transcripts into loci, a partition denoted by G, where the genomic location of a
transcript t ∈ g ∈ G does not overlap the genomic location of any transcript u where
u ∈ h ∈ G and h 6= g. We emphasize that the definition of a transcription locus is
not biological; transcripts in the same locus may be regulated via different promoters,
and may differ completely in sequence (for example if one transcript is in the intron of
another) or have different functions. The reason for defining loci is that we will see that
they are computationally convenient.

We assume that at the time of an experiment, a transcriptome consists of an ensemble
of transcripts T where the proportion of transcript t ∈ T is ρt, so that

∑
t∈T ρt = 1 and

0 ≤ ρt ≤ 1 for all t ∈ T . Formally, a transcriptome is a set of transcripts T together
with the abundances ρ = {ρt}t∈T . For convenience we also introduce notation for the
proportion of transcripts in each locus. We let σg =

∑
t∈g ρt. Similarly, within a locus

g, we denote the proportion of each transcript t ∈ g by τt = ρt

σg
. We refer to ρ, σ and τ

as transcript abundances.
Transcripts have lengths, which we denote by l(t). For a collection of transcripts

S ⊂ T in a transcriptome, we define the length of S using the weighted mean:

(1) l(S) =

∑
t∈S ρtl(t)∑
t∈S ρt

.

It is important to note that the length of a set of transcripts depends on their relative
abundances; the reason for this will be clear later.

One grouping of transcripts that we will focus on is the set of transcripts within a
locus that share the same transcription start site (TSS). Unlike the concept of a locus,
grouping by TSS has a biological basis. Transcripts within such a group are by definition
alternatively spliced, and if they have different expression levels, this is most likely due
to the spliceosome and not due to differences in transcriptional regulation.

3.2. A statistical model for RNA-Seq. In order to analyze expression levels of tran-
scripts with RNA-Seq data, it is necessary to have a model for the (stochastic) process
of sequencing. A sequencing experiment consists of selecting a total of M fragments of
transcripts uniformly at random from the transcriptome. Each fragment is identified
by sequencing from its ends, resulting in two reads called mate pairs. The length of a
fragment is a random variable, with a distribution we will denote by F . That is, the
probability that a fragment has length i is F (i) and

∑∞
i=1 F (i) = 1. In this paper we
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Transcript assembly and abundance estimation from RNA-Seq 5

assume that F is normal, however in principle F can be estimated using data from the
experiment (e.g. spike-in sequences). We decided to use the normal approximation to F
(allowing for user specified parameters of the normal distribution) in order to simplify
the requirements for running Cufflinks at this time.

The assumption of random fragment selection is known to oversimplify the complexi-
ties of a sequencing experiment, however without rigorous ways to normalize we decided
to work with the uniform at random assumption. It is easy to adapt the model to include
more complex models that address sequencing bias as RNA-Seq experiments mature and
the technologies are better understood.

The transcript abundance estimation problem in paired-end RNA-Seq is to estimate
ρ given a set of transcripts T and a set of reads sequenced from the ends of fragments.
In Cufflinks, the transcripts T can be specified by the user, or alternatively T can be
estimated directly from the reads. The latter problem is the transcript assembly problem
which we discuss in Section 4. We ran Cufflinks in the latter “discovery” mode where
we assembled the transcripts without using the reference annotation.

The fact that fragments have different lengths has bearing on the calculation of the
probability of selecting a fragment from a transcript. Consider a transcript t with length
l(t). The probability of selecting a fragment of length k from t at one of the positions
in t assuming that it is selected uniformly at random, is 1

l(t)−k . For this reason, we will

define an adjusted length for transcripts as

(2) l̃(t) =

l(t)∑
i=1

F (i)(l(t)− i+ 1).

We also revisit the definition of length for a group of transcripts, and define

(3) l̃(S) =

∑
t∈S ρtl̃(t)∑
t∈S ρt

.

It is important to note that given a read it may not be obvious from which transcript
the fragment it was sequenced from originated. The consistency of fragments with
transcripts is important and we define the fragment-transcript matrix AR,T to be the
M × |T | matrix with A(r, t) = 1 if the fragment alignment r is completely contained in
the genomic interval spanned by t, and all the implied introns in r match introns in t (in
order), and with A(r, t) = 0 otherwise. Note that the reads in Figure 1c in the main text
are colored according to the matrix AR,T , with each column of the matrix corresponding
to one of the three colors (yellow, blue, red) and reads colored according to the mixture
of colors corresponding to the transcripts their fragments are contained in.

Even given the read alignment to a reference genome, it may not be obvious what
the length of the fragment was. Formally, in the case that AR,T (r, t) = 1 we denote by
It(r) the fragment length from within a transcript t implied by the (presumably unique)
sequences corresponding to the mate pairs of a fragment r. If AR,T (r, t) = 0 then It(r)
is set to be infinite and F (It(r)) = 0.
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6 C Trapnell et al.

Given a set of reads, we assume that we can identify for each of them the set of
transcripts with which the fragments the reads belonged to are consistent. The rationale
for this assumption is the following: we map the reads to a reference genome, and we
assume that the read lengths are sufficiently long so that every mate-pair can be uniquely
mapped to the genome. We refer to this mapping as the fragment alignment. We also
assume that we know all the possible transcripts and their alignments to the genome.
Therefore, we can identify for each read the possible transcripts from which the fragment
it belonged to originated.

t2

t1

Figure 2. Alignments of reads to the genome (rectangles) may be con-
sistent with multiple transcripts (in this case both t1 and t2). The tran-
scripts t1 and t2 differ by an internal exon; introns are indicated by long
dashed lines. If we denote the fragment alignment by r, this means that
AR,T (r, t1) = 1 and AR,T (r, t2) = 1. It is apparent that the implied length
It1(r) > It2(r) due to the presence of the extra internal exon in t1.

We are now ready to write down the likelihood equation for the model. We will write
L(ρ|R) for the likelihood of a set of fragment alignments R constructed from M reads.
The notation Pr(trans. = t) means “the probability that a fragment selected at random
originates from transcript t”.

L(ρ|R) =
∏
r∈R

Pr(rd. aln. = r)(4)

=
∏
r∈R

∑
t∈T

Pr(rd. aln. = r|trans. = t)Pr(trans. = t)(5)

=
∏
r∈R

∑
t∈T

ρtl̃(t)∑
u∈T ρul̃(u)

Pr(rd. aln. = r|trans. = t)(6)

=
∏
r∈R

∑
t∈T

ρtl̃(t)∑
u∈T ρul̃(u)

(
F (It(r))

l(t)− It(r) + 1

)
(7)

=
∏
r∈R

∑
t∈T

αt

(
F (It(r))

l(t)− It(r) + 1

)
,(8)

where

(9) αt =
ρtl̃(t)∑
u∈T ρul̃(u)

.
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Transcript assembly and abundance estimation from RNA-Seq 7

Observe that αt is exactly the probability that a fragment selected at random comes
from transcript t, and we have that

∑
t∈T αt = 1. In light of the probabilistic meaning

of the α = {αt}t∈T , we refer to them as fragment abundances.
It is evident that the likelihood function is that of a linear model and that the like-

lihood function is concave (Proposition 15) so a numerical method can be used to find
the α. It is then possible, in principle, to recover the ρ using Lemma 14. However
the number of parameters is in the tens of thousands, and in practice this form of the
likelihood function is unwieldy. Instead, we re-write the likelihood utilizing the fact that
transcripts in distinct loci do not overlap in genomic location.

We first calculate the probability that a fragment originates from a transcript within
a given locus g:

βg :=
∑
t∈g

αt(10)

=

∑
t∈g ρtl̃(t)∑
u∈T ρul̃(u)

(11)

=

∑
t∈g σgτtl̃(t)∑

h∈G
∑

u∈h σhτul̃(u)
(12)

=
σg
∑

t∈g τtl̃(t)∑
h∈G σh

∑
u∈h τul̃(u)

(13)

=
σg l̃(g)∑
h∈G σhl̃(h)

.(14)

Recall that σg =
∑

t∈g ρt and that τt = ρt

σg
for a locus g.

Similarly, the probability of selecting a fragment from a single transcript t conditioned
on selecting a transcript from the locus g in which t is contained is

(15) γt =
τtl̃(t)∑
u∈g τul̃(u)

.

The parameters γ = {γt}t∈g are conditional fragment abundances, and they are the
parameters we estimate from the data in the next Section. Note that for a transcript
t ∈ g, αt = βg · γt and it is easy to convert between fragment abundances and transcript
abundances using Lemma 14.

We denote the fragment counts by X; specifically, we denote the number of alignments
in locus g by Xg. Note that

∑
g∈GXg = M . We also use the notation gr to denote the

(unique) locus from which a read alignment r can be obtained.
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8 C Trapnell et al.

The likelihood function is given by

L(ρ|R) =
∏
r∈R

Pr(rd. aln. = r)(16)

=
∏
r∈R

∑
g∈G

Pr(rd. aln. = r|locus = g)Pr(locus = g)(17)

=
∏
r∈R

σgr l̃(gr)∑
g∈G σg l̃(g)

Pr(rd. aln. = r|locus = gr)(18)

=
∏
r∈R

βgr

∑
t∈gr

Pr(rd. aln. = r|locus = gr, trans. = t)Pr(trans. = t|locus = gr)(19)

=
∏
r∈R

βgr

∑
t∈gr

τtl̃(t)∑
u∈gr

τul̃(u)
Pr(rd. aln. = r|locus = gr, trans. = t)(20)

=

(∏
r∈R

βgr

)(∏
r∈R

∑
t∈g

γt · Pr(rd. aln. = r|locus = gr, trans. = t)

)
(21)

=

(∏
r∈R

βgr

)(∏
r∈R

∑
t∈g

γt ·
F (It(r))

l(t)− It(r) + 1

)
(22)

=

(∏
g∈G

βXg
g

)(∏
g∈G

( ∏
r∈R:r∈g

∑
t∈g

γt ·
F (It(r))

l(t)− It(r) + 1

))
.(23)

Explicitly, in terms of the parameters ρ, Equation (23) simplifies to Equation (8)
but we will see in the next section how the maximum likelihood estimates ρ̂ are most
conveniently obtained by first finding β̂ and γ̂ using Equation (23).

We note that it is biologically meaningful to include prior distributions on σ and τ
that reflect the inherent stochasticity and resulting variability of transcription in a cell.
This will be an interesting direction for further research as more RNA-Seq data (with
replicates) becomes available allowing for the determination of biologically meaningful
priors. In particular, it seems plausible that specific isoform abundances may vary con-
siderably and randomly within cells from a single tissue and that this may be important
in studying differential splicing. We mention to this to clarify that in this paper, the con-
fidence intervals we report represent the variability in the maximum likelihood estimates
σ̂j and τ̂ kj , and are not the variances of prior distributions.

3.3. Estimation of parameters. We begin with a discussion of identifiability of our
model. Identifiability refers to the injectivity of the model, i.e.,

(24) if Prρ1(r) = Prρ2(r) ∀r ∈ R, then ρ1 = ρ2.

The identifiability of RNA-Seq models was discussed in [9], where a standard analysis
for linear models is applied to RNA-Seq (for another related biological example, see
[20] which discusses identifiability of haplotypes in mixed populations from genotype
data). The results in these papers apply to our model. For completeness we review the
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Transcript assembly and abundance estimation from RNA-Seq 9

conditions for identifiability. Recall that AR,T is the fragment-transcript matrix that
specifies which transcripts each fragment is compatible with. The following theorem
provides a simple characterization of identifiability:

Theorem 1. The RNA-Seq model is identifiable iff AR,T is full rank.

Therefore, for a given set of transcripts and a read set R, we can test whether the
model is identifiable using elementary linear algebra. For the results in this paper, when
estimating expression with given annotations, when the model was not identifiable we
picked a maximum likelihood solution, although in principle it is possible to bound the
total expression of the locus and/or report identifiability problems to the user.

Returning to the likelihood function

(25)

(∏
g∈G

βXg
g

)(∏
g∈G

( ∏
r∈R:r∈g

∑
t∈g

γt ·
F (It(r))

l(t)− It(r) + 1

))
,

we note that both the β and γ parameters depend on the ρ parameters. However, we will
see that if we maximize the β separately from the γ, and also each of the sets {γt : t ∈ g}
separately, then it is always possible to find ρ that match both the maximal β and γ. In

other words, the problem of finding ρ̂ is equivalent to finding β̂ that maximizes
∏

g∈G β
Xg
g

and separately, for each locus g, the γ̂t that maximize

(26)
∏

r∈R:r∈g

∑
t∈g

γt
F (It(r))

l(t)− It(r) + 1
.

We begin by solving for the β̂ and γ̂ and the variances of the maximum likelihood
estimates, and then explain how these are used to report expression levels.

We can solve for the γ̂ using the fact that the model is linear. That is, the probability
of each individual read is linear in the read abundances γt. It is a standard result in
statistics (see, e.g., Proposition 1.4 in [19]) that the log likelihood function of a linear
model is concave. Thus, a hill climbing method can be used to find the γ̂. We used the
EM algorithm for this purpose.

Rather than using the direct ML estimates, we obtained a regularized estimate by
importance sampling from the posterior distribution with a proposal distribution we
explain below. The samples were also used to estimate variances for our estimates.

It follows from standard MLE asymptotic theory that the γ̂ are asymptotically mul-
tivariate normal with variance-covariance matrix given by the inverse of the observed
Fisher information matrix. This matrix is defined as follows:

Definition 2 (Observed Fisher information matrix). The observed Fisher information
matrix is the negative of the Hessian of the log likelihood function evaluated at the
maximum likelihood estimate. That is, for parameters Θ = (θ1, . . . , θn), the n × n
matrix is

Fk,l(Θ̂) = −∂
2log(L(Θ|R))

∂θkθl
|θ=θ̂.(27)
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10 C Trapnell et al.

In our case, considering a single locus g, the parameters are Θ = (γt1 , . . . , γt|g|), and
as expected from Proposition 15:

Ftk,tl(Θ̂) =
∑

r∈R:r∈g

 1(∑
h∈g γ̂h

F (Ih(r))
l(h)−Ih(r)+1

)2

F (Itk(r))F (Itl(r))

(l(tk)− Itk + 1)(l(tl)− Itl + 1)

 .(28)

Because some of the transcript abundances may be close to zero, we adopted the
Bayesian approach of [11] and instead sampled from the joint posterior distribution of Θ
using the proposal distribution consisting of the multivariate normal with mean given by
the MLE, and variance-covariance matrix given by the inverse of (28). If the Observed
Fisher Information Matrix is singular then the user is warned and the confidence intervals
of all transcripts are set to [0, 1] (meaning that there is no information about relative
abundances).

The method used for sampling was importance sampling. The samples were used to
obtain a maximum-a-posterior estimate for γ̂t for each t and for the variance-covariance
matrix which we denote by Ψg (where g ∈ G denotes the locus). Note that Ψg is a
|g| × |g| matrix. The covariance between γ̂tk and γ̂tl for tk, tl ∈ g is given by Ψg

tk,tl
.

Turning to the maximum likelihood estimates β̂, we use the fact that the model is the
log-linear. Therefore,

(29) β̂g =
Xg

M
.

Viewed as a random variable, the counts Xg are approximately Poisson and therefore

the variance of the MLE β̂g is approximately Xg. We note that for the tests in this
paper we directly used the total counts M and the proportional counts Xg, however it
is easy to incorporate recent suggestions for total count normalization, such as [3] into
Cufflinks.

The favored units for reporting expression in RNA-Seq studies to date is not using the
transcript abundances directly, but rather using a measure abbreviated as FPKM, which
means “expected number of fragments per kilobase of transcript sequence per millions
base pairs sequenced”. These units are equivalent to measuring transcript abundances
(multiplied by a scalar). The computational advantage of FPKM, is that the normaliza-
tion constants conveniently simplify some of the formulas for the variances of transcript
abundance estimates.

For example, the abundance of a transcript t ∈ g in FPKM units is

(30)
106 · 103 · αt

l̃(t)
=

106 · 103 · βg · γt
l̃(t)

.

Equation (30) makes it clear that although the abundance of each transcript t ∈ g
in FPKM units is proportional to the transcript abundance ρt it is given in terms of
the read abundances βg and γt which are the parameters estimated from the likelihood
function.
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Transcript assembly and abundance estimation from RNA-Seq 11

The maximum likelihood estimates of βg and γt are random variables, and we denote
their scaled product (in FPKM units) by At. That is Pr(At = a) is the probability that
for a random set of fragment alignments from a sequencing experiment, the maximum
likelihood estimate of the transcript abundance for t in FPKM units is a.

Using the fact that the expectation of a product of independent random variables is
the product of the expectations, for a transcript t ∈ g we have

(31) E[At] =
109Xgγ̂t

l̃(t)M
.

Given the variance estimates for the γ̂t we turn to the problem of estimating V ar[At]
for a transcript t ∈ g. We use Lemma 13 to obtain

V ar[At] =

(
109

l̃(t)M

)2 (
Ψg
t,tXg + Ψg

t,tX
2
g + (γ̂t)

2Xg

)
(32)

= Xg

(
109

l̃(t)M)

)2 (
Ψg
t,t(1 +Xg) + (γ̂t)

2
)
.(33)

This variance calculation can be used to estimate a confidence interval by utilizing
the fact [1] that when the expectation divided by the standard deviation of at least one
of two random variables is large, their product is approximately normal.

Next we turn to the problem of estimating expression levels (and variances of these
estimates) for groups of transcripts. Let S ⊂ T be a group of transcripts located in a
single locus g, e.g. a collection of transcripts sharing a common TSS.

The analogy of Equation (30) for the FPKM of the group is

106 · 103 · βg ·
(∑

t∈S γt
)

l̃(S)
(34)

= 106 · 103 · βg ·
∑
t∈S

γt

l̃(t)
.(35)

As before, we denote by BS the random variables for which Pr(BS = b) is the proba-
bility that for a random set of fragment alignments from a sequencing experiment, the
maximum likelihood estimate of the transcript abundance for all the transcripts in S
in FPKM units is b. We note that the BS are products and sums of random variables
(Equation (35)). This makes Equation (35) more useful than the equivalent unsimplified

Equation (34), especially because l̃(S) is, in general, a ratio of two random variables.
We again use the fact that the expectation of independent random variables is the

product of the expectation, in addition to the fact that expectation is a linear operator
to conclude that for a group of transcripts S,

(36) E[BS] =
109 ·Xg ·

∑
t∈S

γ̂t

l̃(t)

M
.

Nature Biotechnology: doi:10.1038/nbt.1621



12 C Trapnell et al.

In order to compute the variance of BS, we first note that

(37) V ar

[∑
t∈S

γ̂t

l̃(t)

]
=
∑
t∈S

1

l̃(t)2
Ψg
t,t +

∑
t,u∈S

1

l̃(t)l̃(u)
Ψg
t,u.

Therefore,

V ar[BS] =

Xg

(
109

M

)2
(1 +Xg)

(∑
t∈S

1

l̃(t)2
Ψg
t,t +

∑
t,u∈S

1

l̃(t)l̃(u)
Ψg
t,u

)
+

(∑
t∈S

γ̂t

l̃(t)

)2
 .(38)

We can again estimate a confidence interval by utilizing the fact that BS is approxi-
mately normal [1].

3.4. Assessment of abundance estimation. We evaluated the accuracy of Cufflinks’
transcript abundance estimates by first comparing the estimated FPKM values for the
spiked-in sequences in each sample against their intended concentrations. Spike FPKMs
were highly correlated across a 5-log dynamic range in all four samples (Supplementary
Figure 3). However, because sequenced spike fragments were unambiguously mappable,
we performed additional simulation to measure the accuracy of the software in alterna-
tively spliced loci.

To assess the accuracy of Cufflinks’ estimates, we simulated an RNA-Seq experi-
ment using the FluxSimulator, a freely available software package that models whole-
transcriptome sequencing experiments with the Illumina Genome Analyzer. [23] The
software works by first randomly assigning expression values to the transcripts provided
by the user, constructing an amplified, size-selected library, and sequencing it. Mouse
UCSC transcripts were supplied to the software, along with build 37.1 of the genome.
FluxSimulator then randomly assigned expression ranks to 18,935 transcripts, with the
expression value y computed from the rank x according to the formula

(39) y =

(
x

5.0× 107

)−0.6

e
−
“

x
9.5×103

”
−
“

x
9.5×103

”2

.

From these relative expression levels, the software constructed an in silico RNA sam-
ple, with each transcript assigned a number of molecules according to its abundances.
The software modeled the polyadenylation of each transcript by adding a poly-A tail (of
mean length 125nt) after the terminal exon. FluxSimulator then simulated reverse tran-
scription of in silico mRNAs by random hexamer priming, followed by size selection of
RT products to between 175 and 225 nt. The resulting “library” of 6,601,805 cDNA frag-
ments was then sampled uniformly at random for simulated sequencing, where the initial
and terminal 75bp of each selected fragment were reported as reads. FluxSimulator does
not allow precise control over the number of reads generated (Michael Sammeth, per-
sonal communication), but nevertheless generated 13,203,516 75nt paired-end RNA-Seq
reads. These reads included sequencing errors; FluxSimulator includes a position-specific
sequencing error model.
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Figure 3. Cufflinks’ abundance estimates of spiked-in sequences.

Fragments were mapped with TopHat to the mouse genome using identical parameters
to those used to map the C2C12 reads, mapping a total of 6,176,961 (93% of the library).
These alignments were supplied along with the exact set of expressed transcripts to
Cufflinks, to measure Cufflinks’ abundance estimation accuracy when working with
a “perfect” assembly (Supplementary Figure 4). Estimated FPKM was very close to true
in silico FPKM across a dynamic range of expression of nearly six orders of magnitude
(R2 = 0.95).

Estimation of transcript abundances by assigning fragments to them may be inaccu-
rate if one is working with an incomplete set of transcripts for a particular sample. To
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14 C Trapnell et al.

Figure 4. In silico assessment of the accuracy of Cufflinks abundance
estimation when provided with a perfect assembly (a) and after de novo
comparative assembly (b). Red points indicate in silico transcripts that
were only partially recovered, where black points were fully reconstructed
by Cufflinks. Simulated reads were aligned with TopHat and the align-
ments were provided to Cufflinks along with the structures of the tran-
scripts in the simulated sample.

Figure 5. Excluding novel C2C12 transcripts from abundance estimation
results in inaccurate estimates for known transcripts.
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evaluate the impact of missing transcripts, we removed the newly discovered transcripts
from our high-confidence set and re-estimated the abundances of known transcripts, and
then compared them to those obtained when working with the complete high-confidence
set. While estimates of known transcripts were overall similar or identical when work-
ing with both sets, reflecting single-isoform or fully annotated genes, isoforms of some
alternatively spliced genes differed greatly. (Supplementary Figure 5)

As a final note, we point out that a näıve, yet popular, current approach to expression
estimation is to sum the reads mapping to a gene (where the sum is taken across all
exons appearing in all possible isoforms), and then to normalize the count by either
the total number of exonic bases, or by the average length of the transcripts. We call
the former method the “projective normalization” method, and the latter the “average
length” method.

Proposition 3. The totally projective normalization method is correct only for single
isoform genes. If a gene has two or more isoforms the expression is underestimated.

Proof: The effective length of the gene is overestimated, hence the expression level
is underestimated. To see this, first note that the length of some transcript in a gene is
less than the total number of exonic bases among all transcripts. Then, if a1, . . . , an are
real numbers all greater than zero and b1, . . . , bn are not all equal, we have

(40)

∑n
i=1 aibi∑n
i=1 ai

< maxi(bi),

so that the effective length in equation (1) is always less than the total number of exonic
bases among all transcripts.

Stated differently, the projective normalization method has the problem that it pro-
duces numbers that are not proportional to the ρ, so that it is not additive. The average
length method is flawed for the same reason. The transcript abundances are not taken
into account in computing the effective lengths. In some cases the method might pro-
duce the correct answer (for the wrong reasons), but it is bound to be incorrect on
most examples, especially in genes with transcripts of variable lengths and non-uniform
abundances.

4. Transcript assembly

4.1. Overview. Cufflinks takes as input alignments of RNA-Seq fragments to a ref-
erence genome and, in the absence of an (optional) user provided annotation, initially
assembles transcripts from the alignments. Transcripts in each of the loci are assembled
independently. The assembly algorithm is designed to aim for the following:

(1) Every fragment is consistent with at least one assembled transcript.
(2) Every transcript is tiled by reads.
(3) The number of transcripts is the smallest required to satisfy requirement (1).
(4) The resulting RNA-Seq models (in the sense of Section 3) are identifiable.

In other words, we seek an assembly that parsimoniously explains the fragments from
the RNA-Seq experiment; every fragment in the experiment (except those filtered out
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during a preliminary error-control step) should have come from a Cufflinks transcript,
and Cufflinks should produce as few transcripts as possible with that property. Thus,
Cufflinks seeks to optimize the criterion suggested in [27], however, unlike the method
in that paper, Cufflinks leverages Dilworth’s Theorem [4] to solve the problem by
reducing it to a matching problem via the equivalence of Dilworth’s and König’s theorems
(Theorem 19 in Appendix A). Our approach to isoform reconstruction is inspired by a
similar approach used for haplotype reconstruction from HIV quasi-species [5].

4.2. A partial order on fragment alignments. The Cufflinks program loads a set
of alignments in SAM format sorted by reference position and assembles non-overlapping
sets of alignments independently. After filtering out any erroneous spliced alignments or
reads from incompletely spliced RNAs, Cufflinks constructs a partial order (Definition
16), or equivalently a directed acyclic graph (DAG), with one node for each fragment
that in turn consists of an aligned pair of mated reads. First, we note that fragment
alignments are of two types: those where reads align in their entirety to the genome,
and reads which have a split alignment (due to an implied intron).

In the case of single reads, the partial order can be simply constructed by checking the
reads for compatibility. Two reads are compatible if their overlap contains the exact same
implied introns (or none). If two reads are not compatible they are incompatible. The
reads can be partially ordered by defining, for two reads x, y, that x ≤ y if the starting
coordinate of x is at or before the starting coordinate of y, and if they are compatible.

In the case of paired-end RNA-Seq the situation is more complicated because the
unknown sequence between mate pairs. To understand this, we first note that pairs of
fragments can still be determined to be incompatible if they cannot have originated from
the same transcript. As with single reads, this happens when there is disagreement on
implied introns in the overlap. However compatibility is more subtle. We would like to
define a pair of fragments x, y to be compatible if they do not overlap, or if every implied
intron in one fragment overlaps an identical implied intron in the other fragment.

However it is important to note that it may be impossible to determine the com-
patibility (as defined above) or incompatibility of a pair of fragments. For example, an
unknown region internal to a fragment may overlap two different introns (that are incom-
patible with each other). The fragment may be compatible with one of the introns (and
the fragment from which it originates) in which case it is incompatible with the other.
Since the opposite situation is also feasible, compatibility (or incompatibility) cannot be
assigned. Fragments for which the compatibility/incompatibility cannot be determined
with respect to every other fragment are called uncertain. Finally, two fragments are
called nested if one is contained within the other.

Before constructing a partial order, fragments are extended to include their nested
fragments and uncertain fragments are discarded. These discarded fragments are used
in the abundance estimation. In theory, this may result in suboptimal (i.e. non-minimal
assemblies) but we determined empirically that after assembly uncertain fragments are
almost always consistent with one of the transcripts. When they are not, there was
no completely tiled transcript that contained them. Thus, we employ a heuristic that
substantially speeds up the program, and that works in practice.
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Figure 6. Compatibility and incompatibility of fragments. End-reads
are solid lines, unknown sequences within fragments are shown by dotted
lines and implied introns are dashed lines. The reads in (a) are compatible,
whereas the fragments in (b) are incompatible. The fragments in (c) are
nested. Fragment x4 in (d) is uncertain, because y4 and y5 are incompatible
with each other.

A partial order P is then constructed from the remaining fragments by declaring that
x ≤ y whenever the fragment corresponding to x begins at, or before, the location of the
fragment corresponding to y and x and y are compatible. In what follows we identify
P with its Hasse diagram (or covering relation), equivalently a directed acyclic graph
(DAG) that is the transitive reduction.

Proposition 4. P is a partial order.

Proof: The fragments can be totally ordered according to the locations where they
begin. It therefore suffices to check that if x, y, z are fragments with x compatible with
y and y compatible with z then x is compatible with z. Since x is not uncertain, it must
be either compatible or incompatible with z. The latter case can occur only if x and/or
z contain implied introns that overlap and are not identical. Since y is not nested within
z and x is not nested within y, it must be that y contains an implied intron that is not
identical with an implied intron in either x or z. Therefore y cannot be compatible with
both x and z. �

4.3. Assembling a parsimonious set of transcripts. In order to assemble a set of
transcripts, Cufflinks finds a (minimum) partition of P into chains (see Definition 16).
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A partition of P into chains yields an assembly because every chain is a totally ordered set
of compatible fragments x1, . . . , xl and therefore there is a set of overlapping fragments
that connects them. By Dilworth’s theorem (Theorem 17), the problem of finding a
minimum partition P into chains is equivalent to finding a maximum antichain in P (an
antichain is a set of mutually incompatible fragments). Subsequently, by Theorem 19,
the problem of finding a maximum antichain in P can be reduced to finding a maximum
matching in a certain bipartite graph that emerges naturally in deducing Dilworth’s
theorem from König’s theorem 18. We call the key bipartite graph the “reachability”
graph. It is the transitive closure of the DAG, i.e. it is the graph where each fragment x
has nodes Lx and Rx in the left and right partitions of the reachability graph respectively,
and where there is an edge between Lx and Ry when x ≤ y in P . The maximum matching
problem is a classic problem that admits a polynomial time algorithm. The Hopcroft-
Karp algorithm [10] has a run time of O(

√
V E) where in our case V is the number of

fragments and E depends on the extent of overlap, but is bounded by a constant times
the coverage depth. We note that our parsimony approach to assembly therefore has a
better complexity than the O(V 3) PASA algorithm [8].

The minimum cardinality chain decomposition computed using the approach above
may not be unique. For example, a locus may contain two putative distinct initial exons
(defined by overlapping incompatible fragments), and one of two distinct terminal and
a constitutive exon in between that is longer than any read or insert in the RNA-Seq
experiment. In such a case, the parsimonious assembly will consist of two transcripts, but
there are four possible solutions that are all minimal. In order to “phase” distant exons,
we leverage the fact that abundance inhomogeneities can link distant exons via their
coverage. We therefore weight the edges of the bipartite reachability graph based on the
percent-spliced-in metric introduced by Wang et al. in [26]. In our setting, the percent-
spliced-in ψx for an alignment x is computed by counting the alignments overlapping x in
the genome that are compatible with x and dividing by the total number of alignments
that overlap x, and normalizing for the length of the x. The cost C(y, z) assigned to
an edge between alignments y and z reflects the belief that they originate from different
transcripts:

(41) C(y, z) = − log(1− |ψy − ψz|).

Rather than using the Hopcroft-Karp algorithm, a modified version of the LEMON [7]
and Boost [15] graph libraries are used to compute a min-cost maximum cardinality
matching on the bipartite compatibility graph. Even with the presence of weighted
edges, our algorithm is very fast. The best known algorithm for weighted matching is
O(V 2logV + V E).

Because we isolated total RNA, we expected that a small fraction of our reads would
come from the intronic regions of incompletely processed primary transcripts. Moreover,
transcribed repetitive elements and low-complexity sequence result in “shadow” trans-
frags that we wished to discard as artifacts. Thus, Cufflinks heuristically identifies
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artifact transfrags and suppresses them in its output. We also filter extremely low-
abundance minor isoforms of alternatively spliced genes, using the model described in
Section 3 as a means of reducing the variance of estimates for more abundant transcripts.
A transcript x meeting any of the following criteria is suppressed:

(1) x aligns to the genome entirely within an intronic region of the alignment for a
transcript y, and the abundance of x is less than 15% of y’s abundance.

(2) x is supported by only a single fragment alignment to the genome.
(3) More than 75% of the fragment alignments supporting x, are mappable to mul-

tiple genomic loci.
(4) x is an isoform of an alternatively spliced gene, and has an estimated abundance

less than 5% of the major isoform of the gene.

Prior to transcript assembly, Cufflinks also filters out some of the alignments for
fragments that are likely to originate from incompletely spliced nuclear RNA, as these
can reduce the accuracy abundance estimates for fully spliced mRNAs. These filters and
the output filters above are detailed in the source file filters.cpp of the source code
for Cufflinks.

In the overview of this Section, we mentioned that our assembly algorithm has the
property that the resulting models are identifiable. This is a convenient property that
emerges naturally from the parsimony criterion for a “minimal explanation” of the frag-
ment alignments. Formally, it is a corollary of Dilworth’s theorem:

Proposition 5. The assembly produced by the Cufflinks algorithm always results in
an identifiable RNA-Seq model.

Proof: By Dilworth’s theorem, the minimum chain decomposition (assembly) we
obtain has the same size as the maximum antichain in the partially ordered set we
construct from the reads. An antichain consists of reads that are pairwise incompatible,
and therefore those reads must form a permutation sub-matrix in the fragment-transcript
matrix AR,T with columns corresponding to the transcripts in a locus, and with rows
corresponding to the fragments in the antichain. The matrix AR,T therefore contains
permutation sub-matrices that together span all the columns, and the matrix is full-rank.

4.4. Assessment of assembly quality. To compare Cufflinks transfrags against an-
notated transcriptomes, and also to find transfrags common to multiple assemblies, we
developed a tool called Cuffcompare that builds structural equivalence classes of tran-
scripts. We ran Cuffcompare on each the assembly from each time point against the
combined annotated transcriptomes of the UCSC known genes, Ensembl, and Vega. Be-
cause of the stochastic nature of sequencing, ab initio assembly of the same transcript in
two different samples may result in transfrags of slightly different lengths. A Cufflinks

transfrag was considered a complete match when there was a transcript with an identical
chain of introns in the combined annotation.

When no complete match is found between a Cufflinks transfrag and the transcripts
in the combined annotation, Cuffcompare determines and reports if another substan-
tial relationship exists with any of the annotation transcripts that can be found in or
around the same genomic locus. For example, when all the introns of a transfrag match
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perfectly a part of the intron chain (sub-chain) of an annotation transcript, a “contain-
ment” relationship is reported. For single-exon transfrags, containment is also reported
when the exon appears fully overlapped by any of the exons of an annotation transcript.
If there is no perfect match for the intron chain of a transfrag but only some exons
overlap and there is at least one intron-exon junction match, Cuffcompare classifies the
transfrag as a putative “novel” isoform of an annotated gene. When a transfrag is un-
spliced (single-exon) and it overlaps the intronic genomic space of a reference annotation
transcript, the transfrag is classified as potential pre-mRNA fragment. Finally, when no
other relationship is found between a Cufflinks transfrag and an annotation transcript,
Cuffcompare can check the repeat content of the transfrag’s genomic region (assuming
the soft-masked genomic sequence was also provided) and it would classify the transfrag
as “repeat” if most of its bases are found to be repeat-masked.

When provided multiple time point assemblies, Cuffcompare matches transcripts be-
tween samples that have an identical intron structure, placing all mutually matching
transcripts in the same equivalence class. The program reports a non-redundant set
of transcript structures, choosing the longest transcript from each equivalence class as
the representative transcript. Cuffcompare also reports the relationships found between
each equivalence class (transcripts that have a complete match across time points) and
reference transcripts from the combined annotation set, where applicable.

Table 2 includes the classifications of the transfrags reported by Cufflinks after
assembling the C2C12 reads. While only 13.5% of assembled transfrags represent known
transcripts, Cufflinks assigns more than 76% of reads to these, reflecting the fact that
moderate and highly-abundant transfrags generate most of the library fragments in
the experiment. Less abundant transcripts receive less complete sequencing coverage,
resulting in numerous transfrags that partially but compatibly match known transcripts.
Supplementary Figure 7 shows the categories of Cufflinks transfrags as estimated depth
of sequencing coverage increasing.

Category Transfrags % of total transfrags Assembled reads (%)
Match to known isoform 39,857 13.5 76.7
Novel isoform of known gene 18,565 6.3 11.3
Contained in known isoform 71,029 24.1 4.6
Repeat 41,906 14.2 0.6
Intronic 32,658 11.1 0.6
Polymerase run-on 18,522 6.3 0.5
Intergenic 48,604 16.5 1.2
Other artifacts 22,483 7.7 4.5
Total transfrags 293,624 100.0 100.0

Table 2. Classification of all transfrags produced at any time point
with respect to annotated gene models and masked repeats in the mouse
genome. Transfrags that are present in multiple time point assemblies are
multiply counted to preserve the relative distribution of transfrags among
the categories across the full experiment.
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Figure 7. Categorization of Cufflinks transcripts by estimated depth
of read coverage.

We selected the Cufflinks transfrags that did not have a complete match or “contain-
ment” relationship with a known annotation transcript, but were classified by Cuffcompare

as putative “novel isoforms” of known genes. We explored the sequence similarity be-
tween these transfrags and two sets of mRNA sequences: one set representing the mouse
transcriptome and consisting of all mouse ESTs in dbEST plus all reviewed or validated
RefSeq mouse mRNAs, and the other consisting of all reviewed or validated RefSeq
mRNAs from other mammalian species.

We used megablast to map all mouse ESTs onto this set of Cufflinks transfrags, only
keeping EST alignments where at least 80% of the EST length was aligned with at least
95% identity. We calculated transfrag coverage by tiling overlapping EST mappings on
each transfrag and counted only those transfrags that are covered by ESTs for at least
80% of the transfrag length without any coverage gaps, and with coverage discontinu-
ities only allowed at no more than 10% distance from either end. For the mouse mRNAs
alignments we also used megablast with the same basic coverage cutoffs (minimum 80%
covered with no more than 10% unaligned on either side of the overlap) but applied to
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each pairwise alignment independently (i.e. as opposed to EST alignments, no cover-
age tiling was considered for mRNA alignments). For alignments with the non-mouse
mRNAs we used discontiguous megablast with a dual (combined) discontiguous word
template (option -N 2), with the same coverage assessment protocol as in the case of
mouse mRNA alignments but with the percent identity cutoff lowered to 80%.
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Figure 8. New and known isoforms of Fhl3 recovered by Cufflinks at
each time point (a) were confirmed by form-specific RT-PCR (b).

To assess the dependence of assembly quality on the depth of sequencing, we mapped
and assembled subsets of our reads at the 60 hour time point. We partitioned the three
Illumina lanes’ worth of data (a total of 140 million reads) into 64 subsets. We then
processed a single subset with TopHat and Cufflinks, as above, and compared the
resulting transfrags to the output of Cufflinks on all three lanes using Cuffcompare.
We repeated the mapping and assembly with two subsets, four subsets, eight, and so
on. Figure 4 in the main text shows the fraction of reference transcripts captured by
Cufflinks using all three lanes that are still captured when less data is available. For
transcripts with low abundance (<15 FPKM), increased sequencing yields more full-
length transcripts. However, for even moderately abundant transcripts (≥15 FPKM),
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Figure 9. RT-PCR of selected genes. For Schip1, Cufflinks assembled
a known and a novel isoform (with a new TSS), both of which are detected
by RT-PCR. Prkar1a is annotated with two alternate first exons and start
sites in UCSC known genes, both of which were detected. Cufflinks as-
sembles the known isoform of the splicing factor Sfpq, along with a novel
variant that contains most of RIKEN clone. Tpm1, a gene known to have
muscle- and non-muscle-specific isoforms displays previously observed al-
ternative first and last exons.

75% or more of the transcripts are recovered with only 40 million reads, or a lane’s worth
of Illumina GA II sequencing.
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Primer name sequence product length endpoint gel score
FHL3 Ex1Ex3

Left CTCGCCGCTGCTCTCTCG 221 +++
Right GTGTTGTCATAGCACGGAACG

FHL3 Ex2Ex3
Left AGGAAGGGCTCACAAGTGG 407 +++

Right ATAGCACGGAACGCAGTAGG
Sfpq Ex9Ex10

Left GTGGTGGCATAGGTTATGAAGC 936 +++
Right CCATTTTCAAAAGCTTTCAAGG

Sfpq Ex9Ex11
Left GTGGTGGCATAGGTTATGAAGC 172 +++

Right CTCAAGTAAATAAGACTCCAAAATCAGC
Prkar1aEx1Ex3

Left ACAGCAGGGATCTCCTTGTCC 418 +++
Right CCTCTCAAAGTATTCCCGAAGG

Prkar1aEx2Ex3
Left GCTATCGCAGAGTGGTAGTGAGG 279 +++

Right CCTCTCAAAGTATTCCCGAAGG
Schip1Ex1Ex3

Left GGCTATGAGGGTGAAAAGTGC 1050 +++
Right GTATAGATTCCTGGGCCATCG

Schip1Ex2Ex3
Left CAGCATGAGTGGTAACCAAGG 269 +++

Right GTATAGATTCCTGGGCCATCG
Tpm1Ex1Ex3

Left TGAACAAAAGACCCCAGAGG 565 +++
Right CTGAAGTACAAGGCCATCAGC

Tpm1Ex2Ex3
Left AGTTTTATTGAGCGTTGAGACG 318 +++

Right CTGAAGTACAAGGCCATCAGC
Table 3. Form-specific RT-PCR primers for selected genes, designed
with Primer3 [22].

5. Analysis of gene expression dynamics

Expression dynamics of genes are composed of absolute changes in overall transcript
abundances, as well as relative changes in transcript abundances over time. Moreover,
select groups of transcripts, for example transcripts grouped by TSS, may exhibit specific
dynamics due to the underlying biological mechanisms that drive expression.

In this section we describe statistical tests we developed in the multiple hypothesis
testing framework for examining absolute and relative changes in arbitrary groups of
transcripts.

5.1. Selection of high-confidence transcripts for expression tracking. We first
restricted our analysis of expression dynamics over the time-course to a set of transcripts
we believed were fully sequenced and correctly assembled, and we focused only on known
and reliable novel isoforms of annotated genes. This set consisted of transcripts that
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either were present in the UCSC genome browser, Ensembl, or Vega annotated transcrip-
tomes, or were found in multiple C2C12 time point assemblies. We ignored transfrags
classified as intronic pre-mRNA or polymerase run-on, as well as intergenic repeats to
focus on coding genes and long non-coding RNAs. This high-confidence set contained a
total of 17,416 transcripts, 13,692 of which were in UCSC known genes, Ensembl or VEGA
annotation and 3,724 of which are novel. Running Cufflinks’ abundance estimation
algorithm on this high-confidence set of transcripts at each time point allowed us to scan
for differentially expressed transcripts, differentially spliced pre-mRNAs, and genes with
shifts in promoter preference.

5.2. Testing for changes in absolute expression. Between any two consecutive
time points, we tested whether a transcript was significantly (after FDR control [2])
up or down regulated with respect to the null hypothesis of no change, with variability
in expression due solely to the uncertainties resulting from our abundance estimation
procedure. This was done using the following testing procedure for absolute differential
expression:

We employed the standard method used in microarray-based expression analysis and
proposed for RNA-Seq in [3], which is to compute the logarithm of the ratio of intensities
(in our case FPKM), and to then use the delta method to estimate the variance of the
log odds. We describe this for testing differential expression of individual transcripts
and also groups of transcripts (e.g. grouped by TSS).

We recall that the MLE FPKM for a transcript t in a locus g is given by

(42)
109Xgγ̂t

l̃(t)M
.

Given two different experiments resulting in Xa
g ,M

a and Xb
g ,M

b respectively, as well as

γ̂at and γ̂bt , we would like to test the significance of departures from unity of the ratio of
MLE FPKMS, i.e. (

109Xa
g γ̂

a
t

l̃(t)Ma

)
/

(
109Xb

g γ̂
b
t

l̃(t)M b

)
(43)

=
Xa
g γ̂

a
tM

b

Xb
g γ̂

b
tM

a
.(44)

This can be turned into a test statistic that is approximately normal by taking the
logarithm, and normalizing by the variance. We recall that using the delta method, if

X is a random variable then V ar[log(X)] ≈ V ar[X]
E[X]2

.

Therefore, our test statistic is

(45)
log(Xa

g ) + log(γ̂at ) + log(M b)− log(Xb
g)− log(γ̂bt )− log(Ma)√

(Ψg,a
t,t (1+Xa

g )+(γ̂a
t )2)

Xa
g (γ̂a

t )2
+

(Ψg,b
t,t (1+Xb

g)+(γ̂b
t )2)

Xb
g(γ̂b

t )
2

.

In order to test for differential expression of a group of transcripts, we replace the
numerator and denominator above by those from Equations (36) and (38).
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It is has been noted that the power of differential expression tests in RNA-Seq depend
on the length of the transcripts being tested, because longer transcripts accumulate more
reads [18]. This means that the results we report are biased towards discovering longer
differentially expressed transcripts and genes.

5.3. Quantifying transcriptional and post-transcriptional overloading. In order
to infer the extent of differential promoter usage, we decided to measure changes in
relative abundances of primary transcripts of single genes. Similarly, we investigated
changes in relative abundances of transcripts grouped by TSS in order to infer differential
splicing. These inferences required two ingredients:

(1) A metric on probability distributions (derived from relative abundances).
(2) A test statistic for assessing significant changes in differential promoter usage

and splicing as measured using the metric referred to above.

In order to address the first requirement, namely a metric on probability distributions,
we turned to an entropy-based metric. This was motivated by the methods in [21] where
tests for differences in relative isoform abundances were performed to distinguish cancer
cells from normal cells. We extend this approach to be able to test for relative isoform
abundance changes among multiple experiments in RNA-Seq.

Definition 6 (Entropy). The entropy of a discrete probability distribution p = (p1, . . . , pn)
(0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1) is

(46) H(p) = −
n∑
i=1

pilogpi.

If pi = 0 for some i the value of pilogpi is taken to be 0.

Definition 7 (The Jensen-Shannon divergence). The Jensen-Shannon divergence of m
discrete probability distributions p1, . . . , pm is defined to be:

(47) JS(p1, . . . , pm) = H

(
p1 + · · ·+ pm

m

)
−
∑m

j=1 H(pj)

m
.

In other words, the Jensen-Shannon divergence of a set of probability distributions is
the entropy of their average minus the average of their entropies.

In the case where m = 2, we remark that the Jensen-Shannon divergence can also
be described in terms of the Kullback-Leibler divergence of two discrete probability
distributions. If we denote Kullback-Leibler divergence by

(48) D(p1‖p2) =
∑
i

p1
i log

p1
i

p2
i

,

then

(49) JS(p1, p2) =
1

2
D(p1‖m) +

1

2
D(p2‖m)
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where m = 1
2
(p1 + p2). In other words the Jensen-Shannon divergence is a symmetrized

variant of the Kullback-Leibler divergence.
The Jensen-Shannon divergence has a number of useful properties: for example it is

symmetric and non-negative. However it is not a metric. The following theorem shows
how to construct a metric from the Jensen-Shannon divergence:

Theorem 8 (Fuglede and Topsøe 2004 [6]). The square root of the Jensen-Shannon
divergence is a metric.

The proof of this result is based on a harmonic analysis argument that is the basis
for the remark in the main paper that “transcript abundances move in time along a
logarithmic spiral in Hilbert space”. We therefore call the square root of the Jensen-
Shannon divergence the Jensen-Shannon metric. We employed this metric in order to
quantify relative changes in expression in (groups of) transcripts.

In order to test for significance, we introduce a bit of notation. Suppose that S is a
collection of transcripts (for example, they may share a common TSS). We define

(50) κt =

γt

l̃(t)∑
u∈S

γu

l̃(u)

to be the proportion of transcript t among all the transcripts in a group S. We let
Z =

∑
u∈S γ̂u/l̃(u) so that κ̂t = γt

l̃(t)Z
. We therefore have that

V ar[κ̂t] =
V ar[γ̂t]

l̃(t)2Z2
,(51)

Cov[κ̂t, κ̂u] =
Cov[γ̂t, γ̂u]

l̃(t)l̃(u)Z2
.(52)

Our test statistic for divergent relative expression was the Jensen-Shannon metric.
The test could be applied to multiple time points simultaneously, but we focused on
pairwise tests (involving consecutive time points). Under the null hypothesis of no
change in relative expression, the Jensen-Shannon metric should be zero. We tested
for this using a one-sided t-test, based on an asymptotic derivation of the distribution
of the Jensen-Shannon metric under the null hypothesis. This asymptotic distribution
is normal by applying the delta method approximation, which involves computing the
linear component of the Taylor expansion of the variance of

√
JS.

In order to simplify notation, we let f(p1, . . . , pm) be the Jensen-Shannon metric for
m probability distributions p1, . . . , pm.

Lemma 9. The partial derivatives of the Jensen-Shannon metric are give by

(53)
∂f

∂pkl
=

1

2m
√
f(p1, . . . , pm)

log

(
pkl

1
m

∑m
j=1 p

j
l

)
.

Let κ̂1, . . . , κ̂m denote m probability distributions on the set of transcripts S, for ex-
ample the MLE for the transcript abundances in a time course. Then from the delta
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method we have that
√
JS(κ̂1, . . . , κ̂m) is approximately normally distributed with vari-

ance given by

(54) V ar[
√
JS(κ̂1, . . . , κ̂m)] ≈ (5f)TΣ(5f),

where Σ is the variance-covariance matrix for the κ1, . . . , κm, i.e., it is a block diagonal
matrix where the ith block is the variance-covariance matrix for the κit given by Equations
(51,52).

There are two biologically meaningful groupings of transcripts whose relative abun-
dances are interesting to track in a time course. Transcripts that share a TSS are likely
to be regulated by the same promoter, and therefore tracking the change in relative
abundances of groups of transcripts sharing a TSS may reveal how transcriptional reg-
ulation is affecting expression over time. Similarly, transcripts that share a TSS and
exhibit changes in expression relative to each other are likely to be affected by splicing
or other post-transcriptional regulation. We therefore grouped transcripts by TSS and
compared relative abundance changes within and between groups.

We define “overloading” to be a significant change in relative abundances for a set
of transcripts (as determined by the Jensen-Shannon metric, see below). The term is
intended to generalize the simple notion of “isoform switching” that is well-defined in
the case of two transcripts, to multiple transcripts. It is complementary to absolute
differential changes in expression: the overall expression of a gene may remain constant
while individual transcripts change drastically in relative abundances resulting in over-
loading. The term is borrowed from computer science, where in some statically-typed
programming languages, a function may be used in multiple, specialized instances via
“method overloading”.

We tested for overloaded genes by performing a one-sided t-test based on the asymp-
totics of the Jensen-Shannon metric under the null hypothesis of no change in relative
abundnaces of isoforms (either grouped by shared TSS for for post-transcriptional over-
loading, or by comparison of groups of isoforms with shared TSS for transcriptional
overloading). Type I errors were controlled with the Benjamini-Hochberg [2] correction
for multiple testing. A selection of overloaded genes are displayed in Supplemental Figs.
10 and 11.

Nature Biotechnology: doi:10.1038/nbt.1621



Transcript assembly and abundance estimation from RNA-Seq 29

Pkp4

−24 60 120 168

0
2

4
6

8
10

12

●

●

●

●

Fhl1

−24 60 120 168
0

20
40

60
80

●

● ● ●

Tpm1

−24 60 120 168

0
20

0
60

0
10

00

●

●
●

●

Tpm2

−24 60 120 168

0
50

0
15

00
25

00

●
● ● ●

Eya3

−24 60 120 168

0
5

10
15

●

●

● ●

Fn1

−24 60 120 168
0

10
0

30
0

50
0

●

●
●

●

Pdlim3

−24 60 120 168

0
10

20
30

40
50

60

●

●

●

●

Ddx17

−24 60 120 168

0
5

10
15

20
25

30

●

●

●
●

Cdk2

−24 60 120 168

0
5

10
15

20

●

● ●

●

Figure 10. Selected genes with post-transcriptional overloading. Tra-
jectories indicate the expression of individual isoforms in FPKM (y axis)
over time in hours (x axis). Dashed isoforms have not been previously
annotated. Isoform trajectories are colored by TSS, so isoforms with the
same color presumably share a common promoter and are processed from
the same primary transcript. It is evident that total gene expression may
remain constant during isoforms switching (Eya3) while in other cases
changes in relative abundance are accompanied by changes in absolute
expression. The Jensen-Shannon metric generalizes the notion of “isoform
switching” and is useful in cases with multiple isoforms (e.g. Ddx17).
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Figure 11. Selected genes with transcriptional overloading. Trajectories
indicate the expression of individual isoforms in FPKM (y axis) over time
in hours (x axis). Dashed isoforms have not been previously annotated.
Isoform trajectories are colored by TSS, so that isoforms with different
colors presumably vary in their promoter and are processed from different
primary transcripts.

We can visualize overloading and expression dynamics with a plot that superimposes
transcriptional and post-transcriptional overloading and gene-level expression over the
time course. We refer to these as “Minard plots”, after Charles Joseph Minard’s famous
depiction of the advance and retreat of Napoleon’s armies in the campaign against
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Russia in 1812 [25]. Minard made use of multiple visual cues to display numerous
varying quantities in one diagram. An example of a Minard plot for the gene Myc is
shown in Figure 3c, and others are given in Appendix B. The dotted line indicates gene-
level FPKM, with measured FPKM indicated by black circles. Grey circles indicate
the arithmetic mean of gene-level FPKM between consecutive measured time points,
interpolating FPKM at intermediate time points. The total gene expression overloading
is visualized as a swatch centered around the interpolated expression curve. The width
of the swatch encodes the amount of expression overloading between successive time
points. The color of the swatch indicates the relative contributions of transcriptional
and post-transcriptional expression overloading.

Some genes, such as tropomyosin I and II, feature a single primary transcript, and
so all overloading is by definition post-transcriptional. Others, like Fhl3, have two
primary transcripts, but only a single isoform arises from each, so all overloading is
transcriptional. Genes with multiple primary transcripts, one or more of which are
alternatively spliced, such as Myc or RTN4, display both forms.

6. The Cufflinks software

The transcript assembly and abundance estimation algorithms are implemented in
freely available open source software called Cufflinks that is available from
http://cufflinks.cbcb.umd.edu/

Furthermore methods for comparing annotations across time points, and for performing
the differential expression, promoter usage and splicing tests are implemented in the
companion programs Cuffdiff and Cuffcompare. Instructions on how to install and
run the software are provided on the website.

The input to Cufflinks consists of fragment alignments in the SAM format [14].
These may consist of either single fragment alignments, or alignments of mate-pairs
(paired-end reads produce better assemblies and more accurate abundance estimates
than single reads). Cufflinks will assemble the transcripts using the algorithm in
Section 4, and transcript abundances will be estimated using the model in Section 3.
Transcript coordinates and abundances are reported in the Gene Transfer Format (GTF).
User supplied annotations may be provided to Cufflinks (optional input) in which case
they form the basis for the transcript abundance estimation.

Some of the algorithms here rely on sufficient depth of sequencing in order to produce
reliable output. Cufflinks determines that depth is sufficient where possible to check
that required assumptions hold. For example, in loci where one or more isoforms have
extremely low relative expression, the observed Fisher Information Matrix may not be
positive definite after rounding errors. In this case, it is not possible to produce a
reliable variance-covariance matrix for isoform fragment abundances. Cufflinks will
report a numerical exception in this and similar cases. When an exception is reported,
the confidence intervals for the isoforms’ abundances will be set from 0 FPKM to the
FPKM for the whole gene. If such an exception is generated during a Cuffdiff run, no
differential analysis involving the problematic sample will be performed on that locus.
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7. Appendix A: Lemmas and Theorems

The following elementary/classical results are required for our methods and we include
them so that the supplement is self-contained.

Lemma 10. Let X1, . . . , Xn be random variables and a1, . . . , an real numbers with Y =∑n
i=1 aiXi. Then

(55) V ar[Y ] =
n∑
i=1

a2
iV ar[Xi] + 2

∑
i<j

aiajCov[Xi, Xj].

Lemma 11 (Taylor Series). If X and Y are random variables then

V ar[f(X, Y )] ≈
(
∂f

∂X
(E[X], E[Y ])

)2

V ar[X]

+2
∂f

∂X
(E[X], E[Y ])

∂f

∂Y
(E[X], E[Y ])Cov[X, Y ]

+

(
∂f

∂Y
(E[X], E[Y ])

)2

V ar[Y ].(56)

Corollary 12. If X and Y are independent then

V ar

[
log

(
X

Y

)]
≈ V [X]

E[X]2
+

V [Y ]

E[Y ]2
.(57)

Corollary 13. If X and Y are independent random variables then

(58) V ar[XY ] = V ar[X]V ar[Y ] + E[X]2V ar[Y ] + E[Y ]2V ar[X].

The above result is exact using the 2nd order Taylor expansion (higher derivatives
vanish).

Lemma 14 ([13]). Let a1, . . . , an, w1, . . . , wn be real numbers satisfying: wi 6= 0 and
0 ≤ ai ≤ 1 for all i,

∑n
i=1 ai = 1 and

∑n
i=1 aiwi 6= 0. Let bj =

ajwjPn
i=1 aiwi

. Then

aj =
bj

1
wjPn

i=1 bi
1

wi

.
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Proof:

bj =
ajwj∑n
i=1 aiwi

(59)

⇒
n∑
k=1

bk
wk

=
n∑
k=1

ak∑n
i=1 aiwi

(60)

=
1∑n

i=1 aiwi
(61)

=
bj
ajwj

(62)

⇒ aj =
bj

1
wj∑n

i=1 bi
1
wi

.(63)

�

Proposition 15 ([19]). Let fi(θ) =
∑d

j=1 aijθj + bi (1 ≤ i ≤ m) describe a linear

statistical model with aij ≥ for all i, j. That is,
∑m

i=1 fi(θ) = 1. If ui ≥ 0 for all i then
the log likelihood function

(64) l(θ) =
m∑
i=1

uilog(fi(θ))

is concave.

Proof: It is easy to see that

(65)

(
∂2l

∂θj∂θk

)
= −ATdiag

(
u1

f1(θ)2
, . . . ,

um
fm(θ)2

)
A,

where A is the m×d matrix whose entry in row i and column j equals aij. Therefore the
Hessian is a symmetric matrix with non-positive eigenvalues, and is therefore negative
semi-definite. �

Definition 16. A partially ordered set is a set S with a binary relation ≤ satisfying:

(1) x ≤ x for all x ∈ S,
(2) If x ≤ y and y ≤ z then x ≤ z,
(3) If x ≤ y and y ≤ x then x = y.

A chain is a set of elements in C ⊆ S such that for every x, y ∈ C either x ≤ y or y ≤ x.
An antichain is a set of elements that are pairwise incompatible.

Partially ordered sets are equivalent to directed acyclic graphs (DAGs). The following
min-max theorems relate chain partitions to antichains and are special cases of linear-
programming duality. More details and complete proofs can be found in [16].

Theorem 17 (Dilworth’s theorem). Let P be a finite partially ordered set. The maxi-
mum number of elements in any antichain of P equals the minimum number of chains
in any partition of P into chains.
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Theorem 18 (König’s theorem). In a bipartite graph, the number of edges in a maxi-
mum matching equals the number of vertices in a minimum vertex cover.

Theorem 19. Dilworth’s theorem is equivalent to König’s theorem.

Proof: We first show that Dilworth’s theorem follows from König’s theorem. Let P
be a partially ordered set with n elements. We define a bipartite graph G = (U, V,E)
where U = V = P , i.e. each partition in the bipartite graph is equally to P . Two
nodes u, v form an edge (u, v) ∈ E in the graph G iff u < v in P . By König’s theorem
there exist both a matching M and a a vertex cover C in G of the same cardinality. Let
T ⊂ S be the set of elements not contained in C. Note that T is an antichain in P . We
now form a partition W of P into chains by declaring u and v to be in the same chain
whenever there is an edge (u, v) ∈ M . Since C and M have the same size, it follows
that T and W have the same size.

To deduce König’s theorem from Dilworth’s theorem, we begin with a bipartite graph
G = (U, V,E) and form a partial order P on the vertices of G by defining u < v when
u ∈ U, v ∈ V and (u, v) ∈ E. By Dilworth’s theorem, there exists an antichain of P and
a partition into chains of the same size. The non-trivial chains in P form a matching in
the graph. Similarly, the complement of the vertices corresponding to the anti-chain in
P is a vertex cover of G with the same cardinality as the matching. �
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The equivalence of Dilworth’s and König’s theorems is depicted above. The partially
ordered set with 8 elements on the left is partitioned into 3 chains. This is the size
of a minimum partition into chains, and is equal to the maximum size of an antichain
(Dilworth’s theorem). The antichain is shown with double circles. On the right, the
reachability graph constructed from the partially ordered set on the left is shown. The
maximum matching corresponding to the chain partition consists of 5 edges and is equal
in size to the number of vertices in a minimum vertex cover (König’s theorem). The
vertex cover is shown with double circles. Note that 8=3+5.
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8. Appendix B: selected Minard plots
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