
Supplemental Online Results:	  
	  
Functional, phylogenetic, and computational determinants of prediction accuracy using 
reference genomes 
 
A series of tests determined the relationship between PICRUSt’s prediction accuracy and the 
functional content, phylogenetic composition or annotation accuracy of the genes and 
metagenomes being inferred. We first assessed several methods for predicting the presence or 
absence of KOs within genomes, including nearest neighbor and several ancestral state 
reconstruction-based methods. All methods outperformed our random method that inferred the 
genome content by taking the average presence or absence for each function across all 
genomes (mean=0.77 +/- 0.05 s.d). Methods based on ASR significantly outperformed simply 
taking the functional content of the nearest neighbor among sequenced genomes (Wilcoxon 
rank sum test p< 2.2e-16; ASR mean=0.955 +/- 0.04 s.d , Nearst Neighbor mean=0.940 +/- 
0.06 s.d; Supplemental Fig. 5 and Supplemental Fig. 6).   Although the magnitude of the 
difference in balanced accuracy (1.5%) is modest, it represents a large difference in error rates 
because both methods perform well.  Overall, ASR reduced error rates by ~33%.  ASR methods 
also allow for the calculation of 95% confidence intervals on PICRUSt’s gene content prediction.   
These confidence intervals capture uncertainty in gene content prediction owing to a variety of 
factors (see Discussion).  Characterization when closely related reference genomes are plentiful 
or unavailable suggest that in either case these confidence intervals are slightly conservative, 
but otherwise accurately capture uncertainty in gene content predictions (Supplemental Fig. 7).   
Given these results, the phylogenetically independent contrasts (PIC) method50 was chosen 
because of its fast computation time, ability to generate confidence intervals that reflect the 
strength of evidence for prediction (Supplemental Fig. 7), slight tendency towards specificity 
over sensitivity (Supplemental Fig. 6), as well as recent successes in accurately predicting 16S 
rRNA gene copy number using this method51. 
 
PICRUSt’s accuracy in predicting gene contents (COGs or KOs) for each organism correlated 
with the phylogenetic distance from that organism to a sequenced genome (Spearman r=0.75, 
p<0.001; Supplemental Fig. 8). This is consistent with the observed correlation between the 
availability of closely related reference genomes (as captured through NSTI scores) and 
metagenome prediction accuracy (Figure 3). The 14 genomes with an associated accuracy 
<0.75 were either poorly annotated draft genomes (n=6), reduced intracellular endosymbionts 
(n=6) or isolates recently sequenced by the Genomic Encyclopedia of Bacteria and Archaea 
because of their phylogenetic novelty52 (n=2). We found that although PICRUSt was robust to 
substantial rearrangement of the tips of the 16S phylogenetic tree (Supplemental Fig. 9), large 
errors in phylogenetic placement could still cause poor performance. For example, Coxiella 
burnetii RSA 334 was reconstructed with the worst balanced accuracy (0.61), but closer 
inspection showed that this was likely due to issues with contamination or incorrect annotation 
rather than the inference method; its reference phylogenetic placement branches from the 
Archaea instead of its proper placement within the Gammaproteobacteria. 
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Prediction of 16S rRNA copy number using PICRUSt improves estimation of microbial 
relative abundance.	  
	  
High-throughput sequencing of 16S rRNA marker genes is extensively used to characterize 
microbial communities. One criticism of such approaches is that marker genes vary in copy 
number (e.g. between 1 and 15 according to previous studies and IMG annotations)51, 53, 54. 
Therefore, the relative abundance of 16S genes could, in theory, be as much as 15-fold different 
from the relative abundance of organisms. Because PICRUSt allows inference of the gene copy 
number of an organism from its 16S rRNA sequence, PICRUSt provides predictions of 16S 
rRNA copy number that can be used to convert the relative abundance of 16S rRNA sequences 
into an estimated relative abundance of organisms. These estimates are used by PICRUSt 
internally when estimating metagenomes, but the same script may also be used separately to 
normalize 16S rRNA analyses for differences in copy number51 prior to analysis of the microbial 
community.	  
	  
To assess the accuracy of PICRUSt’s predictions of 16S rRNA copy number, we employed a 
cross-validation approach on all finished bacterial and archaeal genomes in the IMG database 
(1412 annotations total). In this cross-validation, a test dataset was constructed for each 
genome. Each of these test datasets excluded the genome to be predicted, but contained all 
other annotated genomes in our reference set. For each test dataset, the 16S rRNA copy 
number for the test organism was predicted using PICRUSt, and the predicted value compared 
against the actual copy number (Supplemental Fig. 14).	  
	  
PICRUSt predictions were well correlated with actual annotations (Supplemental Fig. 14; 
Pearson r2 = 0.787; mean absolute error +/- 0.62 copies). We expected that this prediction 
accuracy would depend on the evolutionary distance separating the predicted organism from its 
closest relative in which copy number is known. To quantify the effect of this distance, PICRUSt 
predictions were tested against additional cross-validation datasets which excluded all 
annotated neighbors within a particular distance of the predicted organism (Supplemental Fig. 
15). These datasets were constructed for all distances between 0.0 and 0.30 units of branch 
length, in increments of 0.03 units of branch length on the reference Greengenes phylogeny. 
These evaluations revealed that PICRUSt prediction of 16S copy number retains substantial 
accuracy (Supplemental Figs. 15 and 16; Pearson r2=0.64; Mean absolute error +/- 1.2 copies), 
even when copy number annotations are unavailable for close relatives (within 0.06 units of 
branch length, corresponding to roughly the same genus). Having characterized error in 
PICRUSt’s predictions, we also wanted to test whether distance to the nearest reference 
genome might bias PICRUSt estimates. To test for bias based on availability of reference data, 
we plotted the absolute error in PICRUSt’s 16S rRNA copy number predictions against the 
minimal distance to the nearest reference genome (Supplemental Fig. 17). The results show no 
apparent trend between the minimal distance to the nearest reference genome and the absolute 
error in the prediction, indicating that PICRUSt predictions are not systematically biased 
upwards or downwards by the availability of reference genomes.	  
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Supplemental Fig. 15 compares PICRUSt accuracy to the simpler approach of predicting the 
copy number of the most closely related genome (‘nearest neighbor prediction’). These 
characterizations indicate that depending on the average distance to references, PICRUSt and 
nearest neighbor approaches may perform identically, or PICRUSt may perform somewhat 
better on average (Supplemental Fig. 15, Blue vs. Green lines). Therefore nearest neighbor 
prediction may be useful for rapidly achieving an approximate prediction prior to using 
PICRUSt’s more detailed evolutionary method. Regardless of the exact prediction method 
selected, the efficacy of PICRUSt’s approach on any given dataset can be estimated ahead of 
time by calculating the average distance to a reference genome (Nearest Sequenced Taxon 
Index; see main text) using PICRUSt’s built-in tools, and comparing against Supplemental Figs. 
15 and 16.	  
	  
In addition to a slight average improvement over nearest neighbor methods, PICRUSt results 
improve substantially on the default approach of predicting the average copy number (or, 
equivalently, a random copy number) in terms of both absolute error and correlation. Predicting 
the average copy number produces an average absolute error of +/- 2.98 16S rRNA gene 
copies for this dataset (vs. +/- 0.62 copies for PICRUSt predictions). Moreover, while predicting 
a fixed copy number produces no correlation between true and observed copy number (r2 = 0.0; 
Supplemental Fig. 15), PICRUSt predictions explain most variation in 16S rRNA copy number, 
so long as reasonably related reference genomes are available (NSTI <= 0.09). It is worth 
noting that the poorly performing fixed number approach is equivalent to the current state-of-
the-art for 16S studies, which generally assume that 16S rRNA relative abundance is identical 
to organismal relative abundance (see Kembel et al.51 for a more detailed discussion of this 
issue). Indeed even when the nearest annotated relative is constrained to be at least 0.27 units 
of branch length from the predicted genome (~ 9x as divergent as members of the same 
‘species-level’ OTU), the mean absolute error (+/- 1.97 copies) is still much lower using 
PICRUSt predictions than predicting a fixed number. We therefore expect that PICRUSt 
normalization of OTU tables by estimated 16S rRNA copy number should improve estimates of 
microbial relative abundance for many communities.	  
	  
Kembel et al.51 recently reported a method for estimating 16S rRNA copy number in 
unsequenced bacteria, as well as the application of that estimate to normalize 16S rRNA 
libraries for variance in 16S copy number between species. The method described relies on an 
algorithm derived from ancestral state reconstruction that is similar to PICRUSt. Kembel et al. 
report that the Pearson correlation (r) of 0.81 for true vs. estimated copy number, corresponding 
to an r2 of ~0.6651. This is somewhat lower than PICRUSt results when using all IMG 16S rRNA 
copy number annotations as a reference (PICRUSt r2 = 0.79 using 1,412 annotations), but still 
higher than our results when restricting reference genomes to be outside the genus level 
(exclusion distance = 0.06 16S rRNA substitutions/site; r2 = 0.64). Kembel et al.51 used a 
smaller reference set (881 16S rRNA gene copy number annotations in the full dataset, of which 
484 were incorporated into pruned trees for cross-validation), which may tend to result in more 
distant reference genomes being used in any given prediction. Therefore, it seems likely that the 
somewhat higher correlation between true and estimated copy numbers when predicting with 
PICRUSt is due to the larger reference dataset used or possibly the details of the cross-
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validation analysis, rather than any algorithmic differences (which appear to be relatively minor). 
These results therefore provide independent confirmation of the efficacy of 16S rRNA gene 
copy number estimation using evolutionary techniques. 
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Supplemental Figures 

 
Supplemental Figure 1. Individual gene family (KEGG Ortholog) abundances predicted by 
PICRUSt in 530 HMP microbiomes. Columns represent samples, and rows represent the 4000 
KOs with highest average abundance (for visualization) of 6,885 total gene families (KOs) 
predicted by PICRUSt for these HMP body sites. Samples and KOs are hierarchically clustered 
using Euclidean distance and complete linkage. Blue colored intensity represents the 
abundance of each KO on a log scale (see legend).    
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Supplemental Figure 2: Prediction accuracy within the HMP “mock community” data 
sets. A) “Even” community and B) “staggered” community. Each point is the relative abundance 
of a KEGG Ortholog (KO) gene family for PICRUSt predictions based on 16S data (y-axis) and 
that expected from metagenomic sequencing (x-axis). 
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Supplemental Figure 3: Effect of metagenomic sequencing depth on PICRUSt accuracy. 
Paired shotgun metagenomes and 16S rRNA gene surveys are colored by study as indicated in 
legend. Cross-validation studies presented here use sequenced shotgun metagenomes as a 
control for PICRUSt predictions. However, undersampling of an underlying biological 
metagenome by shotgun sequencing can lead to a poor perceived accuracy of PICRUSt in our 
cross validation analysis, since the resulting sequenced metagenome may not properly 
represent the true metagenome. See also the metagenome rarefaction analysis (Fig. 4, dashed 
red line). PICRUSt accuracy values presented here therefore represent conservative estimates. 
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Supplemental Figure 4: Effect of 16S sequencing depth on PICRUSt accuracy. Paired 
shotgun metagenomes and 16S rRNA gene surveys are colored according to study as indicated 
in legend. Compared to shotgun metagenomic sequencing depth (Supplemental Fig. 3), 16S 
sequencing depth has relatively little effect on PICRUSt accuracy, likely due to the lower 
number of distinct 16S sequences in most communities relative to the number of gene that must 
be sampled across the metagenome (See also the rarefaction analysis in Fig. 4). 
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Supplemental Figure 5. Influence of ancestral state reconstruction method on PICRUSt 
genome prediction accuracy. “Random” uses the mean abundance of the KO from a random 
genome for its prediction (this has the same mean accuracy as predicting the average KO 
value). “Nearest” uses the KO profile from the nearest reference genome in the reference 16S 
phylogenetic tree. Other methods use ancestral state reconstruction methods as indicated by 
their labels, along with a novel weighting method to extend predictions from ancestral nodes to 
tips in the tree (see Methods S1). Due to the long computation time required to calculate 
ancestral states across the tree of life using maximum likelihood methods (ACE ML and ACE 
REML), accuracy was evaluated on a subset of 100 random traits and genomes with accuracy 
distributions representative of the entire dataset (data not shown). The ACE PIC ASR method 
was chosen as the default ASR method in PICRUSt due its speed, ability to create confidence 
intervals for each prediction, and because it is significantly more accurate than the nearest 
neighbor approach (mean “ACE PIC”=0.955; mean “Nearest”=0.940; Wicoxon rank sum test p< 
2.2e-16). Note that all methods are available as options in the PICRUSt software. 
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Supplemental Figure 6. True positive rate (TPR) versus false positive rate (FPR) for 
various methods of genome content prediction. Several methods were tested for their effect 
on a genome content prediction accuracy with the best performing genomes being in the top left 
point of each plot (high TPR (y-axis) and low FPR (x-axis)). The “ACE PIC” method for 
ancestral state reconstruction shows generally lower FPR relative to the similarly accurate 
COUNT Wagner method (see Supplemental Fig. 5). “Random” and “Nearest” are shown for 
reference and are described in Supplemental Fig. 5. 
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Supplemental Figure 7.  Confidence intervals for PICRUSt prediction using sufficient or 
insufficient reference datasets.  Illustration of confidence intervals for per-genome prediction, 
using prediction of E.coli K12 MG1655 (IMG 646311926) as an example.  The axes represent 
true gene copy numbers from genome sequence data vs. PICRUSt predicted gene copy 
numbers.  Points are filled to 1% transparency per occurrence, so darker points reflect common 
gene copy numbers. Blue dotted lines reflect linear regression of PICRUSt predictions vs. 
expected values  A) Prediction using all other IMG bacterial genomes (Pearson r2 = 0.93; 
Balanced Accuracy = 0.977).  When all other reference genomes are available for prediction, 
error bars are extremely narrow (< 1 gene copy).  97.7% of genes fall within PICRUSt’s 95% 
confidence intervals for prediction with the full dataset in panel A, indicating the CI is slightly 
conservative  B) When all genomes within 0.20 16S rRNA substitutions/site are excluded (e.g. a 
very poor prediction- NSTI >= 0.20; Pearson r2 = 0.31; Balanced Accuracy = 0.77), error bars 
widen to reflect uncertainty.   Although some individual gene copy numbers are predicted 
incorrectly, aggregate values are conservative-  even using this extremely limited training set 
(panel B), 99.5% of genes fall within the confidence intervals.  Similar tests applied to 
Bacteroidetes thetaiotaomicron VPI-4582 (IMG 637000026), and Pelagibacter ubique HTCC 
1062 (IMG 637000058) also produced empirical CIs that were slightly conservative (ranging 
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from 97.4-99.9% effective CIs).  Separate testing of upper and lower confidence bounds found 
that in all cases the CIs were generally accurate, though slightly conservative (empirical CIs 
were in all cases >= 95%), with lower bounds being somewhat more conservative than upper 
bounds because genes could not be present in fewer than 0 copies. 

 

 
Supplemental Figure 8. Genome prediction accuracy with respect to distance to nearest 
sequenced reference genome. Plot shows trend of being able to predict the content of each 
genome in IMG based on the 16S distance to its nearest reference genome (based on 
phylogenetic distance) for both KOs (A) and COGs (B). Outliers (balanced accuracy<0.75) are a 
combination of reduced genomes and poorly annotated draft genomes (see text).  
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Supplemental Figure 9. Effects of errors in genomes’ phylogenetic placement on genome 
prediction accuracy. Each series represents predictions of the genome of a sequenced 
organism with increasing levels of added phylogenetic error (Escherichia coli K12 MG1655, 
solid; Bacteroidetes thetaiotaomicron, dashed; Pelagibacter ubique, dotted). This distance-
based holdout procedure has the effect of simulating the difficulty in predicting the contents of a 
known genome using PICRUSt if the phylogeny describing its relatives was incorrect. Blue lines 
represent PICRUSt predictions, red lines represent the accuracy of predicting a random 
genome from the same Greengenes subtree (for reference). For visual clarity each line is a 
moving average (period 3) of the results). In each trial, neighbors at increasing distances to the 
genome to be predicted had their phylogenetic placement scrambled (increments of 0.01 units 
of branch length, across the range 0.0 to 0.90). The x-axis thus indicates the distance within 
which phylogenetic placement was scrambled, and the y-axis the Spearman correlation 
coefficient for PICRUSt predictions (blue) of gene family abundance vs. actual (IMG annotated, 
red) values. 
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Supplemental Figure 10. Accuracy of COG functions using genome holdout evaluation. 
The ability of PICRUSt to predict the presence/absence of each individual COG orthologous 
families at the gene level was evaluated using genome holdouts (see Methods). Each COG 
family was then grouped into its corresponding higher-level category (i.e. letter code). The 
resulting distributions of Spearman correlation accuracies is shown here. In agreement with the 
KO analysis (Fig. 6), ion transport and carbohydrate metabolism have slightly decreased 
accuracy. In addition, COGs that are likely laterally transferred such as restriction 
endonucleases, which are found in the defense mechanisms category, also show decreased 
accuracy. 
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Supplemental Figure 11. PICRUSt analysis of algal cover and predicted gene frequency 
in reef-building corals. 16S rRNA gene amplicons from 335 coral mucus DNA samples from 
an ongoing in situ experimental intervention in the Florida Keys were sequenced with 454 
pyrosequencing, analyzed in QIIME using standard workflows, and converted to predicted gene 
abundances using PICRUSt (weighted NSTI = 0.12 +/- 0.02 s.d.)  Those abundances were then 
summarized using KEGG Pathways. Relative algal cover reflects benthic quadrant surveys of 
algal cover. Scores are normalized to mean algal cover and reported as z-scores. Each of these 
pathways varied significantly by algal cover (FDR-corrected ANOVA; q < 0.05).   For all 
pathways shown, Spearman regression against algal cover using transformed data (as shown) 
was significant for all categories (p < 0.05; r2 > 0.80).  The raw (non-transformed) algal cover 
data was also correlated with all KEGG pathways; all shown categories were independently 
identified as significant in that analysis (FDR-corrected regression q < 0.05) with the exception 
of  “Secretion systems”, which attained q=0.057.  Blue diamonds:  secretion systems; Blue 
triangles:  ribosomal biogenesis; Red circles: Carbohydrate metabolism - Galactose 
metabolism; Red triangles: Carbohydrate metabolism - Ascorbate and alderate metabolism.   
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Supplemental Figure 12. Within-subjects beta-diversity of microbial composition versus 
inferred gene content for vaginal samples. Each point represents the mean Bray-Curtis 
dissimilarity between all samples from the same individual using either OTUs (x-axis) or 
PICRUSt predicted KOs (y-axis). In all cases, longitudinal stability is greater when considering 
KO gene content than when using OTU taxonomic composition (i.e. all points fall below the 
diagonal). 
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Supplemental Figure 13. PICRUSt predicted metabolic pathways with significant 
differences in relative abundance during menses. A) Seven KEGG Modules were found to 
have significant difference (+/- 0.2%) in mean proportions of vaginal samples during menses 
(Welch t-test with FDR q<0.0001). Boxplots of the three most significant modules show the 
detailed differences between samples taken during non-menses (blue; n=802) and menses 
(orange; n=191): B) M00003: Gluconeogenesis, oxaloacetate => fructose-6P, C) M00120: 
Coenzyme A biosynthesis, pantothenate => CoA, and D) M00240: Iron complex transport 
system. 
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Supplemental Figure 14. PICRUSt accurately predicts 16S rRNA gene copy number for 
annotated organisms. The effect of sparse annotations on 16S rRNA copy number prediction 
accuracy was tested using cross-validation of annotated organisms. The chart compares the 
frequency of predicted vs. actual copy numbers. Each occurrence of a pair of actual vs. 
predicted values produces 1% saturation, so darker cells represent the most common 
annotations. Predicted and actual copy numbers were well correlated (Pearson r2 = 0.787; 
p<0.001). 
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Supplemental Figure 15. Comparison of 16S copy number estimation accuracy for 
nearest neighbor or PICRUSt estimation with increasing distance to a known reference 
genome. The y-axis represents the correlation between actual 16S rRNA gene copy numbers 
and predicted copy numbers. The x-axis displays the distance over which annotated neighbors 
were removed (simulating sparse annotations of 16S copy number in that portion of the tree). 
Blue line: PICRUSt estimate using Wagner parsimony reconstructions and exponential 
weighting. Green line: Nearest Neighbor estimate. Red line: Random Neighbor estimate. 
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Supplemental Figure 16. Effects of availability of reference genomes on accuracy of 16S 
rRNA gene copy number prediction. The effect of sparse annotations on 16S rRNA gene 
copy number prediction accuracy was tested using cross-validation of annotated organisms. 
Test data excluded all annotated genomes within 0.03 (panel A), 0.06 (panel B), 0.09 (panel C) 
or 0.12 (panel D) 16S substitutions/site on the Greengenes tree. For each test, PICRUSt 
predictions for 16S copy number using Wagner parsimony with exponential weighting were 
compared against the actual IMG copy number annotations. The opacity of data points 
corresponds to the number of observations, with maximum opacity capped at >= 100 
observations. 
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Supplemental Figure 17. Error in 16S rRNA gene copy number prediction is not biased 
upward or downward based on the distance to the nearest sequenced genome. Results 
reflect cross-validation of PICRUSt 16S rRNA gene copy number predictions using 16S rRNA 
annotations for all finished IMG bacterial and archaeal genomes. For each test, PICRUSt 
predictions for 16S copy number using Wagner parsimony with exponential weighting were 
compared against the actual IMG copy number annotations. The y-axis represents the 
difference between PICRUSt’s predictions and actual copy number. The x-axis reflects the 
distance to the nearest reference genome. The opacity of data points corresponds to the 
number of observations, with maximum opacity capped at >= 100 observations. Because no 
trend was observed between distance to a reference genome and error in copy number 
prediction, PICRUSt estimates of 16S rRNA copy number do not appear to be systematically 
biased upwards or downwards by increasing distance to a reference genome (although distance 
to the nearest reference genome increases error). 
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