Association analysis identifies 38 susceptibility loci for inflammatory bowel disease and shows pervasive sharing of genetic risk across diverse populations

Supplementary Materials

Table of Contents

Supplementary Tables

Supplementary Table 1. Association statistics from the transethnic meta analysis for all previously identified and novel loci (Separate excel file) Supplementary Table 2. Minimal p-values for association within each of the 231 IBD loci for each separate ancestral cohort. (Separate excel file) Supplementary Table 3. Heterogeneity of effect of associations among the four ancestry cohorts (Separate excel file) Supplementary table 4. Overlap with other diseases or traits for 38 novel loci Supplementary Table 5. Association results for the current analysis for all previously reported variants associated to non-European IBD (Separate excel file) Supplementary Table 6. Functional Annotation 38 Novel SNPs - Expression Quantitative Trait Loci (eQTL) for the 38 novel IBD risk loci. (Separate excel file) Supplementary Table 7. ENCODE Annotation 38 novel SNPs (Separate excel file) Supplementary Table 8. Functional Annotation 38 Novel SNPs - Non-synonymous coding SNPs Supplementary Table 9. Functional Annotation - GRAIL and DAPPLE results (Separate excel file) Supplementary Table 10. GCTA analysis

<u>Supplementary Table 11</u>. Clinical Details and Phenotypic Comparisons European and non-European IBD.

Supplementary Table 12. Per-population Immunochip cohorts

Supplementary Figures

Supplementary Figure 1. Map origin of the samples included in the non-CEU cohort Supplementary Figure 2. Comparison of the current trans-ethnic association analysis to the previous published IIBDGC GWAS-Immunochip analysis Supplementary Figure 3. Principal Component Analysis all included cohorts Supplementary Figure 4. Quantile–quantile plots of each individual ancestral Supplementary Figure 5. Manhattan Plots CD, UC and IBD for Trans-Ethnic Association Analysis (Mantra) all ancestral cohorts combined Supplementary Figure 6. Manhattan Plots CD, UC and IBD for each association analysis (MMM) for each separate ancestral cohort Supplementary Figure 7. Regional plots for the 38 novel IBD loci (separate PDF file) Supplementary Figure 8. GRAIL connectivity network Supplementary Figure 9. Heterogeneity of Odds Ratios between non European and European UC and CD Supplementary Figure 10. Comparison of Variance explained per risk variant between Non-European and European Populations Supplementary Figure 11. Dendogram of included populations

Supplementary Note

Members of the International IBD Genetics Consortium

Members of the International MS Genetics Consortium

Supplementary Table 4. Overlap with other diseases or traits for 38 novel loci. For each of the 38 newly identified IBD loci, this table shows whether it overlaps known GWAS loci of other diseases and phenotypes, obtained from the NHGRI GWAS Catalog.

SNP	CHR	BP_HG19/n27	Associations all other traits		
			Total cholesterol, LDL cholesterol, Lipid metabolism		
rs1748195	1	63049593	phenotypes, Triglycerides		
rs34856868	1	92554283	Total cholesterol, Height, Multiple sclerosis		
rs11583043	1	101466054			
			Activated partial thromboplastin time, D-dimer levels,		
			Hemostatic factors and hematological phenotypes,		
			Hippocampal atrophy, QT interval, Soluble levels of		
rs6025	1	169519049	adhesion molecules, Venous thromboembolism		
rs10798069	1	186875459			
rs7555082	1	198598663	Mean corpuscular hemoglobin, Red blood cell traits		
rs11681525	2	145492382	Common traits (Other)		
rs4664304	2	160794008	Educational attainment, Type 2 diabetes		
rs3116494	2	204592021			
rs111781203	2	228660112	Pulmonary function (interaction)		
rs35320439	2	242737341			
			Behcets disease, Celiac disease, Monocyte		
rs113010081	3	46457412	chemoattractant protein-1, Obesity-related traits		
rs616597	3	101569726	Multiple sclerosis		
rs724016	3	141105570	Height, Prostate cancer, Red blood cell traits		
			Total cholesterol, Fibrinogen, LDL cholesterol,		
rs2073505	4	3444503	Triglycerides		
rs4692386	4	26132361	Rheumatoid arthritis, Type 1 diabetes		
			Allergic sensitization, Helicobacter pylori serologic		
rs6856616	4	38325036	status, Self-reported allergy		
rs2189234	4	106075498	Pulmonary function, Pulmonary function (interaction)		
rs395157	5	38867732			
rs4703855	5	71693899			
rs564349	5	172324978			
			Basal cell carcinoma, Black vs. blond hair color, Black		
			vs. red hair color, Chronic lymphocytic leukemia, Eye		
			color, Freckles, Freckling, Hair color, Non-melanoma		
rs7773324	6	382559	skin cancer, Progressive supranuclear palsy, Tanning		
rs13204048	6	3420406	Crohns disease		
rs7758080	6	149577079	Alopecia areata, Breast cancer		
			Caffeine consumption, Coffee consumption, HDL		
rs1077773	7	17442679	cholesterol, Metabolic traits		
rs2538470	7	148220448			

rs17057051	8	27227554	7554 Alzheimers disease, Alzheimers disease (late onset)		
rs7011507	8	49129242			
			Cardiac hypertrophy, Interstitial lung disease,		
rs3740415	10	104232716	Telomere length, Uterine fibroids		
			Ankylosing spondylitis, Coagulation factor levels,		
			Mean platelet volume, Multiple sclerosis, Platelet		
rs7954567	12	6491125	counts, Primary biliary cirrhosis		
			Alcohol consumption, Alcohol consumption		
			Biomedical quantitative traits, Blood pressure, Celiac		
			disease, Celiac disease and Rheumatoid arthritis, Total		
			cholesterol, Chronic kidney disease, Coronary heart		
			disease, Diastolic blood pressure, Drinking behavior,		
			Esophageal cancer, Gamma glutamyl transpeptidase,		
			Glycemic traits, HDL cholesterol, Hematocrit,		
			Hematological and biochemical traits, Hematological		
			parameters, Hemoglobin, LDL cholesterol, Mean		
			platelet volume, Metabolite levels, Renal function-		
			related traits (BUN),Renal function-related traits		
			(sCR), Response to alcohol consumption (flushing		
			response),Tetralogy of Fallot, Type 1 diabetes, Upper		
			aerodigestive tract cancers, Urate levels, mean		
rs653178	12	112007756	corpuscular hemoglobin concentration		
rs11064881	12	120146925			
			Bone mineral density, Cortical thickness, End-stage		
rs9525625	13	43018030	coagulation		
rs3853824	17	54880993	Breast cancer, Urate levels		
rs17736589	17	76737118	Retinal arteriolar caliber		
rs9319943	18	56879827			
rs7236492	18	77220616			
rs727563	22	41867377			

Supplementary Table 8. Functional annotation of 38 Novel SNPs – Non-synonymous coding SNPs. Non-synonymous coding SNPs in high LD (R² > 0.8 in either European (CEU+FIN+GBR+IBS+TSI) or East Asian (CHB+CHD+JPT) 1000 Genomes Phase I samples) with a novel associated variant were identified. Functional consequences (polyPhen, PhastCons and GERP scores) were identified using functionGVS (http://snp.gs.washington.edu/SeattleSeqAnnotation134/)

											Amino		
	Position							polyPhen	PhastCons	GERP	acid	Protein	DNA
	(hg19/GRCh37)	SNP	cSNP	R ² Eur	R ² Eas	Туре	Gene	score	score	score	change	position	position
1	92326871	rs34856868	rs34856868	1	1	missense	BTBD8	benign	0.859	3.42	VAL,ILE	60/379	178
2	160502254	rs4664304	rs3828323	0.78	0.84	missense	PLA2R1	benign	0	-3	GLY,SER	1106/1325	3316
4	3414301	rs2073505	rs16844401	0.25	0.8	missense	HGFAC	benign	1	4.02	ARG,HIS	509/656	1526

Supplementary Table 10. Pairwise genetic correlation (r_G) between European and non-European cohorts tagged by Immunochip SNPs. r_G and SE were estimated using the bivariate linear mix model implemented in GCTA.

Phenotype	European vs.	r _G	SE	P-value (H ₁ : r _G > 0)	P-value (H ₁ : r _G < 1)
Crobols	East Asian	0.76	0.04	<2.22E-16	4.47E-14
disease	Indian	0.56	0.09	6.58E-10	0.000343
uisease	Iranian	0.82	0.34	0.00000506	0.357
Ulcorativo	East Asian	0.79	0.04	<2.22E-16	6.61E-09
colitic	Indian	0.84	0.05	<2.22E-16	0.000823
contis	Iranian	0.67	0.08	2.61E-15	0.000675

Supplementary table 11a. Disease demographics in European and non-European IBD patients. Complete data available: ^a77%; ^b81%; ^c72%; ^d52%.

	CD) (N=21281)		UC (N=18533)			
	European (N=19290)	Non-European (N=1991)	P value	European (N=15838)	Non-European (N=2695)	P value	
Gender, male, n (%)	8467 (45.1%)	1325 (67.1%)	7.091E-78	7870 (52.1%)	1319 (50.4%)	0.09808	
Age of diagnosis, mean (±SD)	28.39 (±14.156)	27.58 (±12.192)	0.013	34.10 (±15.776)	35.76 (±13.685)	6.203E-08	
Smoking history ^ª , n (%)							
Never	8737 (57.3%)	376 (77.8%)		7174 (59.8%)	2102 (87.0%)		
Ex	2359 (15.5%)	49 (10.1%)	7.23E-19	3448 (28.7%)	47 (1.9%)	2.15E-180	
Current	4159 (27.3%)	58 (12.0%)		1382 (11.5%)	267 (11.1%)		
Family history of IBD ^b	4438 (28.3%)	88 (5.6%)	4.783E-85	2763 (21.8%)	151 (6.2%)	2.328E-70	
Primary Sclerosing Cholangitis ^c	152 (1.1%)	12 (0.8%)	0.205	374 (3.2%)	34 (1.4%)	2.84E-06	
Ankylosing Spondylitis ^d	1006 (9.6%)	14 (0.9%)	1.081E-30	535 (7.0%)	12 (0.5%)	1.771E-34	

Supplementary Table 11b. Disease phenotype of IBD in European and non-European patients. Complete data available: a86%; b83% (not mutually exclusive); ^c84%; ^d84%; ^e85%; ^f82%.

Demographics	European	non-European	P value
CD location ^a , n (%)			
L1 (ileal)	4,916 (29.6%)	498 (34.8%)	3.93E-05
L2 (colon)	3,921 (23.6%)	269 (18.8%)	3.47E-05
L3 (ileocolon)	7 <i>,</i> 778 (46.8%)	665 (46.4%)	0.7852
Upper gastrointestinal	1,738 (46.8%)	113 (7.3%)	8.693E-10
CD behavior ^b , n (%)			
B1 (Inflammatory)	7 <i>,</i> 478 (46.4%)	408 (29.9%)	4.279E-32
B2 (Stricturing)	4,453 (27.6%)	587 (43.0%)	2.738E-33
B3 (Penetrating)	4,174 (25.9%)	393 (28.8%)	0.02034
B1p (Perianal) ^c	4,516 (27.8%)	663 (42.1%)	5.355E-33
UC location ^d , n (%)			
E1 (Proctitis)	1,726 (12.9%)	285 (14.2%)	0.11
E2 (Left sided)	5,097 (38.2%)	1,033 (51.6%)	4.655E-30
E3 (Extensive)	6.526 (48.9%)	686(34.2%)	1.522E-34
Surgery, n (%)			
CD (abdominal surgery) ^e	8 <i>,</i> 656 (52.8%)	728 (48.1%)	5.42E-04
UC (colectomy) ^f	2 <i>,</i> 385 (18.5%)	100 (4.1%)	1.229E-69

Supplementary Table 12. Per-population Immunochip cohorts

Per-population Immunochip cohorts					
Population	CD	UC	Controls	Total	
European	17897	13768	33977	65642	
East Asian	1690	1134	3719	6543	
Indian	184	1239	990	2413	
Iranian	151	397	342	890	

Supplementary Figure 1: Map depicting the origin of the samples in the non-European cohort

Supplementary Figure 2: Comparison of cohorts of the current trans-ethnic association analysis to the previous IIBDGC GWAS-Immunochip analysis⁶

Jostins et al.

GWAS EU	overlap	Immunochip EU
12,882 cases	5,154 cases	25,683 cases
21,770 controls	6,465 controls	15,977 controls

Transethnic analyses

GWAS EU	overlap	Immunochip EU	non EU
12,924 cases	6,392 cases	25,273 cases	4,795 cases
21,770 controls	7,262 controls	26,715 controls	5,051 controls

Supplementary Figure 3: Principal Component Analysis all included cohorts. Principal components analysis (PCA) was performed with the first two PCs estimated from 1000 Genomes Phase I samples and projected onto each of the European and non-European samples

1KG CEU	Norway	Germany	China
1KG GBR	Sweden	Belgium	Korea
1KG FIN	Denmark	Netherlands	Japan
1KG TSI		UK	Other
1KG IBS	Italy	Australia	
1KG GIH	Canada	New Zealand	
1KG CHB	USA	Unknown	
1KG CHD	USA/Canada	Iran	
1KG CHS	Slovenia	India	
1KG KHV	Lithuania/Balti	C	

Supplementary Figure 4: Quantile–quantile plots for the p-values of each individual ancestral group - MMM analysis. The x-axis indicates the expected distribution of - log10(P values). The y-axis indicates the observed distribution of -log10 (P values). The overall inflation of the observed distribution of association test statistics is reflected by the lambda (λ). Considering the size of the European cohort a lambda equivalent for 1000 cases and 1000 controls is also provided. a. East Asian b. Indian c. Iranian d. European

Supplementary Figure 5: Manhattan plots for transethnic association analysis. MANTRA association results are plotted for Crohn's disease (CD), ulcerative colitis (UC) and combined inflammatory bowel disease (IBD). The x-axis indicates the position of all tested SNPs per chromosome. The y-axis shows the strength of association (log₁₀ Bayes factor)

Supplementary Figure 6: Manhattan for each separate ancestral cohort. MMM association results are plotted for each ancestral cohort. The x-axis of each plot indicates the position of all tested SNPs per chromosome. The y-axis shows the strength of association (-log₁₀ P-value). In rows from top to bottom: East Asian, Indian, Iranian and European. In columns from left to right: Crohn's disease (CD), ulcerative colitis (UC) and combined inflammatory bowel disease (IBD).

Supplementary Figure 8: GRAIL Connectivity Network.

The GRAIL network includes all genes that reside in loci associated with IBD, have a GRAIL p-value<0.05 and interact with at least one other GRAIL gene. The edge weights are proportional to the connection scores and we only plotted edges with scores \geq 0.5. We colored the previous GRAIL genes in light blue, newly connected genes in previously identified loci in dark blue, and genes from newly associated loci in gold. Genes in loci that have BF<6 are shown as diamonds. As in the previous publication, only the main cluster was shown in this figure. ⁶

Supplementary Figure 9: Odds ratio comparison between European and non-European populations at SNPs associated with CD or UC or IBD (both). For each SNP, ORs (on log-scale) were estimated within each population for each phenotype. The colour of each point denotes the association P-value for that phenotype in the non-European population. The red line indicates the best fitting linear regression line, weighted by the inverse of the variance of the log ORs in the non-European population. The regression coefficient, significance and goodness of fit are listed in red.

Supplementary Figure 10:_Comparison of Variance explained per risk variant between Non-European and European Populations. Each box represents an independently associated SNP with that disease. Only SNPs with an association P-value < 0.01 are included in the non-European panel. The size of each box is proportional to the amount of variance explained in disease liability for that variant. The colours of the boxes denote whether the difference in variance explained is due to differences in allele frequencies ($F_{st} > 0.1$ /monomorphic in the non-European population), significant heterogeneity of odds ratios ($P < 2.5 \times 10^{-4}$) or both.

Supplementary Figure 11: Dendogram, generated from the data used in the MANTRA analysis, showing the clustering of the populations included in our study.

Population

Supplementary Note

Members of the International IBD Genetics Consortium

Shifteh Abedian^{9,26}, Clara Abraham²⁷, Jean-Paul Achkar^{28,29}, Tariq Ahmad³⁰, Rudi Alberts², Leila Amininejad^{31,32}. Behrooz Alizadeh²³. Ashwin N Ananthakrishnan^{33,34}. Vibeke Andersen^{35,36}, Vito Annese^{38,39}. Carl A Anderson¹, Jane M Andrews³⁷, Guy Aumais^{40,41}, Tobias Balschun⁴⁴. Leonard Baidoo⁴², Robert N Baldassano⁴³, Murray Barclay⁴⁶, Peter A Bampton⁴⁵. Theodore M Bayless⁴⁷. Jeffrey C Barrett¹, Claire Bewshea³⁰, Joshua C Bis⁴⁹, Alain Bitton⁵⁰, Thelma BK¹⁶, Johannes Bethge⁴⁸, Gabrielle Boucher⁵¹, Oliver Brain⁵², Stephan Brand⁵³, Steven R Brant⁴⁷, Carsten Büning⁵⁴, Jae Hee Cheon¹⁰, Angela Chew^{55,56}, Judy H Cho⁵⁷, Isabelle Cleynen⁵⁸, Ariella Cohain⁵⁹, Rachel Cooney⁶⁰, Anthony Croft⁶¹, Mark J Daly^{4,62}, Mauro D'Amato⁶³, Silvio Danese⁶⁴, Naser Ebrahim Daryani^{12,65}, Dirk De Jong⁶⁶, Katrina M de Lange¹, Martine De Vos⁶⁷, Goda Denapiene⁶⁸, Lee A Denson⁶⁹, Kathy L Devaney³³, Olivier Dewit⁷⁰, Renata D'Inca⁷¹, Hazel E Drummond⁷², Marla Dubinsky⁷³, Richard H Duerr^{42,74}, Cathryn Edwards⁷⁵, Motohiro Esaki⁷⁶, Jonah Essers^{77,78}. David Ellinghaus⁴⁴, Lynnette R Ferguson⁷⁹. Philip Fleshner⁸⁰, Tim Florin⁸¹, Denis Franchimont^{31,32}, Eleonora A Festen², Andre Franke⁴⁴, Karin Fransen³, Yuta Fuyuno¹³, Richard Gearry^{46,82}, Michel Georges^{83,84}, Christian Gieger⁸⁵, Jürgen Glas⁵⁰, Philippe Goyette⁵¹, Todd Green^{62,77}, Anne M Griffiths⁸⁶, Stephen L Guthery⁸⁷, Hakon Hakonarson⁴³, Jonas Halfvarson^{88,89}, Katherine Hanigan⁶¹, Talin Haritunians⁸⁰, Ailsa Hart¹⁴, Chris Hawkey⁹⁰, Nicholas K Hayward⁹¹, Matija Hedl²⁷, Paul Henderson⁹², Georgina L Hold⁹³, Xinli Hu⁹⁴, Hailiang Huang^{4,62}, Ken Y Hui⁵⁷, Marcin Imielinski⁴³, Andrew Ippoliti⁸⁰, Omid Jazayeri³, Laimas Jonaitis⁹⁵, Luke Jostins⁸, Tom H Karlsen^{96,97,98}. Ramesh Chandra Juyal¹⁵, Rahul Kalla⁷², Garima Juyal¹⁶, Takaaki Kawaguchi⁹⁹, Nicholas A Kennedy⁷², Mohammed Azam Khan¹⁸, Won Ho Kim¹⁰, Gediminas Kiudelis⁹⁵, Michiaki Kubo¹³, Subra Kugathasan¹⁰⁰, Takanari Kitazono⁷⁶, Christopher A Lamb¹⁰², Debby Laukens⁶⁷. Limas Kupcinskas¹⁰¹. Anna Latiano³⁸, James C Lee⁷, Charlie W Lees⁷², Marcis Leja¹⁰³, Nina Lewis⁹⁰, lan C Lawrance⁵⁶, Johan Van Limbergen⁸⁶, Paolo Lionetti¹⁰⁴, Jimmy Z Liu¹, Edouard Louis¹⁰⁵, Yang Luo¹ Reza Malekzadeh^{9,26}. Gillian Mahy¹⁰⁶, Masoud Mohammad Malekzadeh^{9,26}, John Mansfield¹⁰⁷. Suzie Marriott³⁰, Dunecan Massey⁷, Christopher G Mathew¹⁰⁸, Toshiyuki Matsui¹⁰⁹, Dermot PB McGovern⁸⁰, Vandana Midha¹⁹, Raquel Milgrom¹¹⁰, Samaneh Mirzaei^{9,26}, Mitja Mitrovic^{3,111}, Grant W Montgomery⁹¹, Satoshi Motoya¹¹², Craig Mowat¹¹³, William G Newman¹⁸, Aylwin Ng^{33,114}, Siew C Ng⁵, Sok Meng Evelyn Ng²⁷ Susanna Nikolaus⁴⁸ Elaine R Nimmo⁷², Kaida Ning²⁷, Markus Nöthen¹¹⁵, Ioannis Oikonomou²⁷ Timothy R Orchard²⁰, Orazio Palmieri³⁸, Miles Parkes⁷. Cyriel Y Ponsioen¹¹⁶, Hossein Poustchi^{9,26}. Anne Phillips¹¹³, Urõs Potocnik^{111,117}, Natalie J Prescott¹⁰⁸. Graham Radford-Smith^{61,118}, Deborah D Proctor²⁷, Jean-Francois Rahier¹¹⁹, Soumya Raychaudhuri⁹⁴, Miguel Regueiro⁴², Florian Rieder²⁸. John D Rioux^{41,51}, Stephan Ripke^{4,62}, Richard K Russell¹²⁰, Rebecca Roberts⁴⁶, Miquel Sans¹²². Jack Satsangi⁷², Eric E Schadt⁵⁹, Jeremy D Sanderson¹²¹,

L Philip Schumm¹²³, Regan Scott⁴², Stefan Schreiber^{44,48}. Mark Seielstad^{124,125} Tejas Shah¹, Yashoda Sharma²⁷, Mark S Silverberg¹¹⁰, Alison Simmons⁵², Lisa A Simms⁶¹, Ajit Sood¹²⁶, Sarah L Spain¹⁰⁸, Abhey Singh³⁰, Jurgita Skieceviciene⁹⁵, A. Hillary Steinhart¹¹⁰, Joanne M Stempak¹¹⁰, Laura Stronati¹²⁷, Joseph JY Sung⁵ Yasuo Suzuki¹²⁸, Jurgita Sventoraityte¹⁰¹, Atsushi Takahashi⁶, Masakazu Takazoe¹²⁹, Hiroki Tanaka¹¹², Stephan R Targan⁸⁰, Kirstin M Taylor¹²¹, Anje ter Velde¹¹⁶, Hiroki Tanaka¹¹². Kirstin M Taylor¹²¹, Anje ter Velde¹¹⁶. Leif Torkvist¹³⁰, Mark Tremelling¹³¹, Emilie Theatre^{83,84}, Holm H Uhlig¹³² Homayon Vahedi^{9,26}. Andrea van der Meulen¹³³, Suzanne van Sommeren², Eric Vasiliauskas⁸⁰, Nicholas T Ventham⁷², Severine Vermeire^{58,134}, Hein W Verspaget¹³³, Thomas Walters^{86,135}, Kai Wang⁴³, Ming-Hsi Wang^{28,47}, Rinse K Weersma², Zhi Wei¹³⁶, David Whiteman⁹¹, Cisca Wijmenga³, David C Wilson^{92,120}, Juliane Winkelmann^{137,138}, Ramnik J Xavier^{33,62}, Tetsuhiro Yamada⁹⁹, Keiko Yamazaki¹³, Sebastian Zeissig⁴⁸, Bin Zhang⁵⁹, Clarence K Zhang¹³⁹, Hu Zhang^{140,141}, Wei Zhang²⁷, Hongyu Zhao¹³⁹, Zhen Z Zhao⁹¹, Australia and New Zealand IBDGC, Belgium IBD Genetics Consortium, Italian Group for IBD Genetic Consortium,

NIDDK Inflammatory Bowel Disease Genetics Consortium, United Kingdom IBDGC, Wellcome Trust Case Control Consortium, Quebec IBD Genetics Consortium

¹Wellcome Trust Sanger Institute, Hinxton, UK. ²Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands. ³Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands. ⁴Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ⁵Department of Medicine and Therapeutics, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong. ⁶Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, Riken, Yokohama, Japan. ⁷Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, Cambridge, UK. ⁸Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, UK. ⁹Digestive Disease Research Institute, Shariati Hospital, Tehran, Iran. ¹⁰Yonsei University College of Medicine, Seoul, Korea. ¹¹Icahn School of Medicine, Mount Sinai New York, New York, USA. ¹²Department of Gastroenterology, Emam Hospital, Tehran, Iran. ¹³Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Riken, Yokohama, Japan.¹⁴IBD Unit, St Mark's Hospital, Harrow, Middlesex, UK. ¹⁵National Institute of Immunology, Aruna Asaf Ali Road, New Delhi, India. ¹⁶Department of Genetics, University of Delhi South Campus, New Delhi, India. ¹⁷Welcome Trust Center for Human Genetics, Oxford U.K. and Department of Biostatistics, University of Liverpool, Liverpool, UK. ¹⁸Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. ¹⁹Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, India. ²⁰St Mary's Hospital, London, UK. ²¹Asan Medical Center, University of Ulsan College Medicine, Seoul, Korea. ²²A list of members and affiliations appears in the Supplementary Note. ²³Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands. ²⁴These authors contributed equally to this work. ²⁵These authors jointly supervised this work. ²⁶Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran. ²⁷Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, NewHaven, Connecticut, USA.²⁸Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA. ²⁹Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. ³⁰Peninsula College of Medicine and Dentistry, Exeter, UK. ³¹Department of Brussels. Belgium. ³²Department Gastroenterology, Erasmus Hospital, of Gastroenterology, Free University of Brussels, Brussels, Belgium. ³³Gastroenterology Unit. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ³⁴Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA. ³⁵Medical Department, Viborg Regional Hospital, Viborg, Denmark. ³⁶Organ Center, Hospital of Southern Jutland Aabenraa, Aabenraa, Denmark. ³⁷Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia. ³⁸Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy. ³⁹Strutture Organizzative Dipartimentali (SOD) Gastroenterologia 2, Azienda Ospedaliero Universitaria (AOU) Careggi, Florence, Italy. ⁴⁰Department of Gastroenterology, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. ⁴¹Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada. ⁴²Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. ⁴³Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ⁴⁴Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany. ⁴⁵Department of Gastroenterology and Hepatology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, Australia. ⁴⁶Department of Medicine, University of Otago, Christchurch, New Zealand. ⁴⁷Meyerhoff Inflammatory Bowel Disease Center, Department of medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ⁴⁸Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany.⁴⁹Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA. ⁵⁰Division of Gastroenterology, Royal Victoria Hospital, Montréal, Québec, Canada. ⁵¹Research Center, Montreal Heart Institute, Montréal, Québec, Canada. ⁵²Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK. ⁵³Department of Medicine II, Ludwig-Maximilians-University Hospital Munich-Grosshadern, Munich, Germany.⁵⁴Department of Gastroenterology, Campus Charité Mitte, Universitatsmedizin Berlin, Berlin, Germany. ⁵⁵IBD unit, Fremantle Hospital, Fremantle, Australia. ⁵⁶School of Medicine and Pharmacology, University of Western Australia, Fremantle, Australia. ⁵⁷Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA. ⁵⁸Department of Clinical and experimental medicine, Translational Research in GastroIntestinal Disorders (TARGID), Katholieke Universiteit (KU) Leuven, Leuven, Belgium. ⁵⁹Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA. ⁶⁰Department of Gastroenterology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK.⁶¹Inflammatory Bowel Diseases, Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Australia. ⁶²Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. ⁶³Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.⁶⁴IBD Center, Department of Gastroenterology, Istituto Clinico Humanitas, Milan, Italy.⁶⁵Department of Gastroenterology, Tehran University of Medical Sciences, Tehran, Iran. ⁶⁶Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. ⁶⁷Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium. ⁶⁸Center of hepatology, Gastroenterology and Dietetics, Vilnius University, Vilnius, Lithuania.⁶⁹Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA. ⁷⁰Department of Gastroenterology, Université Catholique de Louvain (UCL) Cliniques Universitaires Saint-Luc, Brussels, Belgium. ⁷¹Division of Gastroenterology, University Hospital Padua, Padua, Italy. ⁷²Gastrointestinal Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. ⁷³Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA. ⁷⁴Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA. ⁷⁵Department of Gastroenterology, Torbay Hospital, Torbay, Devon, UK. ⁷⁶Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. ⁷⁷Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ⁷⁸Pediatrics, Harvard Medical School, Boston, Massachusetts, USA. ⁷⁹Faculty of Medical & Health Sciences, School of Medical Sciences, The University of Auckland, Auckland, New Zealand. ⁸⁰F.Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. ⁸¹Department of Gastroenterology, Mater Health Services, Brisbane, Australia. ⁸²Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand. ⁸³Unit of Animal Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center, University of Liege, Liege, Belgium. ⁸⁴Faculty of Veterinary Medicine, University of Liege, Liege, Belgium.⁸⁵Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.⁸⁶Division of Pediatric Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada. ⁸⁷Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA. ⁸⁸Department of Medicine, Örebro University Hospital, Örebro, Sweden. ⁸⁹School of Health and Medical Sciences, Örebro University, Örebro, Sweden. ⁹⁰Nottingham Digestive Diseases Centre, Queens Medical Centre, Nottingham, UK. ⁹¹Molecular Epidemiology, Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Australia.⁹²Child Life and Health, University of Edinburgh, Edinburgh, Scotland, UK. ⁹³Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK. ⁹⁴Division of Rheumatology Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA.⁹⁵Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania. ⁹⁶Research Institute of Internal Medicine, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway. ⁹⁷Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Rikshospitalet,

Oslo, Norway. ⁹⁸K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. ⁹⁹IBD center, Tokyo Yamate Medical Center, Tokyo, Japan. ¹⁰⁰Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA. ¹⁰¹Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania. ¹⁰²Institute of Cellular Medicine, Newcastle University, Newcastleupon-Tyne, UK. ¹⁰³Faculty of medicine, University of Latvia, Riga, Latvia. ¹⁰⁴Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università di Firenze Strutture Organizzative Dipartimentali (SOD) Gastroenterologia e Nutrizione Ospedale pediatrico Meyer, Firenze, Italy. ¹⁰⁵Division of Gastroenterology, Centre Hospitalier Universitaire (CHU) de Liège, Liege, Belgium. ¹⁰⁶Department of Gastroenterology, The Townsville Hospital, Townsville, Australia. ¹⁰⁷Department of Gastroenterology & Hepatology, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK. ¹⁰⁸Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, UK. ¹⁰⁹Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan. ¹¹⁰Inflammatory Bowel Disease Centre, Mount Sinai Hospital, Toronto, Ontario, Canada. ¹¹¹Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia. ¹¹²Department of Gastroenterology, Sapporo-Kosei General Hospital, Sapporo, Japan. ¹¹³Department of Medicine, Ninewells Hospital and Medical School, Dundee, UK. ¹¹⁴Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. ¹¹⁵Department of Genomics Life & Brain Center, University Hospital Bonn, Bonn, Germany, ¹¹⁶Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands. ¹¹⁷Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia. ¹¹⁸Department of Gastroenterology, Royal Brisbane and Womens Hospital, Brisbane, Australia. ¹¹⁹Department of Gastroenterology, Université Catholique de Louvain (UCL) Centre Hospitalier Universitaire (CHU) Mont-Godinne, Mont-Godinne, Belgium. ¹²⁰Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, UK. ¹²¹Department of Gastroenterology, St Thomas Hospital, London, UK. ¹²²Department of Digestive Diseases, Hospital Quiron Teknon, Barcelona, Spain. ¹²³Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA. ¹²⁴Human Genetics, Genome Institute of Singapore, Singapore. ¹²⁵Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA. ¹²⁶Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, India. ¹²⁷Department of Biology of Radiations and Human Health, Agenzia nazionale per le nuove tecnologie l'energia e lo sviluppo economico sostenibile (ENEA), Rome, Italy. ¹²⁸Department of Internal Medicine, Faculty of Medicine, Toho University, Chiba, Japan. ¹²⁹Department of Medicine, Division of Gastroenterology, Tokyo Yamate Medical Center, Tokyo, Japan. ¹³⁰Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. ¹³¹Gastroenterology & General Medicine, Norfolk and Norwich University Hospital, Norwich, UK. ¹³²Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine and Children's Hospital, John Radcliffe Hospital, Oxford, UK. ¹³³Department of Gastroenterology, Leiden University Medical Center, Leiden, The Netherlands. ¹³⁴Division of Gastroenterology, University Hospital

Gasthuisberg, Leuven, Belgium. ¹³⁵Faculty of medicine, University of Toronto, Toronto, Ontario, Canada. ¹³⁶Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA. ¹³⁷Institute of Human Genetics, Technische Universität München, Munich, Germany. ¹³⁸Department of Neurology, Technische Universität München, Munich, Germany. ¹³⁹Department of Biostatistics, School of Public ¹⁴⁰Department Health, Connecticut, USA. of Yale University, NewHaven, Gastroenterology, West China Hospital, Chengdu, Sichuan, China. ¹⁴¹State Key Laboratory of Biotherapy, Sichuan University West China University of Medical Sciences (WCUMS), Chengdu, Sichuan, China.

Supplementary information

Members of the International Multiple Sclerosis Genetics Consortium

The International Multiple Sclerosis Genetics Consortium is a collaboration of investigators from 27 research groups, represented by the following investigators:

Maria Ban Sergio Baranzini ,Lisa Barcellos, Luisa Bernardinelli ,David Booth , Dorothea , Buck, Elizabeth Celius, Manuel Comabella, Alastair Compston, Chris Cotsapas , Sandra D'Alfonso, Phil De Jager, Bénédicte Dubois, Bertrand Fontaine , An Goris , Pierre-Antoine ,ourraud,Georgios Hadjigeorgiou,,David Hafler,Jonathan Haines ,Hanne Harbo ,Steve Hauser,Eva Havrdova, Clive Hawkins , Bernhard Hemmer , Jan Hillert , Rogier Hintzen , Adrian Ivinson, Jun-ichi Kira, Ingrid Kockum , Christina Lill, Roland Martin, Filippo Martinelli-Boneschi , Jacob McCauley , Jorge Oksenberg , Tomas Olsson , Annette Oturai , Aarno Palotie , Margaret Pericak-Vance , Nikolaos Patsopoulos , Isabelle Rebeix, Janna Saarela , Stephen Sawcer , Finn Sellebjerg, Graeme Stewart, Helle Bach Søndergaard, Anne Spurkland, Bruce Taylor, Frauke Zipp