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Supplementary	information	S2	|	Inhibitors	of	cell	cycle	proteins	in	clinical	development	

Inhibitor	
(synonym)	
[company]	

Major	targets		
(IC50)	

Preclinical	studies	
(in	vitro,	mouse	models)	

Clinical	trials	
(open/active/completed)	

Pan-CDK	inhibitors	
Flavopiridol‡	
(alvocidib)	[Tolero	
Pharmaceuticals]	

CDK9	(6	nM),	CDK1	(30-50	
nM),	CDK2	(70-170	nM),	CDK4	
(100	nM)1,	2	

• Caused	G1	arrest,	G2	arrest	and	apoptosis	in	vitro3,	4	
• Induced	tumour	regression	in	leukaemia	and	lymphoma	xenografts4	

• Phase	II:	AML,	lymphoma,	
AML,	multiple	myeloma	and	
many	others	

R-roscovitine*	
(seliciclib)	[Cyclacel	
Pharmaceuticals]	

CDK2	(100-710	nM),	CDK7	
(490	nM),	CDK1	(650-2690	
nM),	ERK2	(1.2-14	µM)5,	6	

• Induced	G2/M	arrest	and	cell	death	in	vitro5,	6	
• Slightly	inhibited	growth	of	colorectal	cancer	and	uterine	cancer	
xenografts5	

• Phase	I:	advanced	solid	
tumours	

Dinaciclib‡	
(SCH	727965/	MK-
7965)	[Merck	&	Co.]	

CDK2	(1	nM),	CDK5	(1	nM),	
CDK1	(3	nM),	CDK9	(4	nM),	
CDK7	(NA),	CDK6	(NA)7	

• Induced	G1	arrest,	G2/M	arrest	and	apoptosis	in	vitro7	
• Reduced	cell	migration	in	vitro8	
• Exhibited	anti-tumour	activity	in	ovarian7	and	pancreatic	cancer8,	
ALL9	and	NRASQ61L-mutant	melanoma10	

• Phase	III:	CLL	
• Phase	II:	melanoma,	CLL,	
lung,	breast,	multiple	
myeloma	

AT7519‡	
(AT7519M)	[Astex	
Therapeutics]	

CDK9	(<10	nM),	CDK5	(13	nM),	
CDK2	(47	nM),	GSK3β	(89	nM),	
CDK4	(100	nM),	CDK6	(170	
nM),	CDK1	(210	nM)11	

• Induced	mainly	G2/M	arrest	in	vitro11	
• Showed	promising	anti-tumour	activity	in	ovarian12	and	colon	
cancer11	and	AML	xenografts13	
• Achieved	tumour	regression	and	improved	survival	in	MYCN	
transgenic	neuroblastoma	model14	

• Phase	II:	CLL,	mantle	cell	
lymphoma,	multiple	
myeloma	
• Phase	I:	non-Hodgkin’s	
lymphoma	

Milciclib*	
(PHA-848125/	PHA-
848125AC)	[Tiziana	
Life	Sciences]	

CDK2	(45-363	nM),	TRKA	(53	
nM),	CDK7	(150	nM),	CDK4	
(160	nM),	CDK5	(265	nM),	
CDK1	(398	nM)15	

• Induced	G1	arrest	and	cell	death	via	autophagy	in	vitro15,	16	
• Inhibited	tumour	growth	of	ovarian	cancer15	and	glioma	
xenografts16,	KRASG12D-induced	lung	cancer17	and	DMBA-induced	
mammary	cancer18;	extended	survival	of	mice	bearing	leukaemia18	
and	intracranial	glioma	xenografts16	

• Phase	II:	thymoma,	thymic	
carcinoma	
• Phase	I:	advanced	solid	
tumours	

TG02*	
[Tragara	
Pharmaceuticals]	

CDK9	(3	nM),	CDK5	(4	nM),	
CDK2	(5	nM),	CDK3	(8	nM),	
CDK1	(9	nM),	LCK	(11	nM),	
TYK2	(14	nM),	FYN	(15	nM),	
JAK2	(19	nM),	FLT3	(19	nM)19	

• Induced	G1	arrest	and	apoptosis	in	vitro19	
• Caused	tumour	regression	and	extended	survival	of	mice	with	AML	
xenografts19	

• Phase	I:	CLL,	AML,	ALL,	MDS,	
multiple	myeloma	

CYC065*	
[Cyclacel	
Pharmaceuticals]	

CDK2	(5	nM),	CDK5	(21	nM),	
CDK9	(26	nM),	CDK3	(29	nM),	
CDK7	(193	nM),	CDK4	(232	
nM)20	

• Induced	apoptosis	in	trastuzumab-resistant	breast	cancer	cells21	
• Inhibited	growth	of	trastuzumab-resistant	breast	cancer	xenografts21	

• Phase	I:	advanced	solid	
tumours	and	lymphomas	

RGB-286638‡	
[Agennix]	

CDK9	(1	nM),	FMS	(1	nM),	
CDK1	(2	nM),	CDK2	(3	nM),	
GSK3β	(3	nM),	CDK4	(4	nM),	
CDK3	(5	nM),	CDK5	(5	nM),	
TAK1	(5	nM)22	

• Induced	cell	cycle	arrest	and	apoptosis	and	inhibited	transcription	in	
vitro22	
• Inhibited	tumour	growth	and	extended	survival	of	mice	bearing	
multiple	myeloma	xenografts22	

• Phase	I:	advanced	solid	
tumours23	

CDK4	and	CDK6-selective	inhibitors	
Palbociclib*	
(PD0332991)	
[Pfizer]	

CDK4	(9-11	nM),	CDK6	(15	
nM)24	

• Inhibited	cell	proliferation	and	induced	G1	arrest	in	RB-positive	
cancer	cells24	
• Inhibited	growth	of	rhabdomyosarcoma25,	multiple	myeloma26,	
AML27,	ALL28	and	dermatofibrosarcoma29	xenografts	
• 	Induced	tumour	regression	in	glioblastoma	and	colorectal	cancer	
xenografts24	
• Showed	synergistic	anti-tumour	activity	with	PI3K	inhibition	in	
PI3KCA-mutant	triple-negative	breast	cancer	xenografts	Ø 30	

• Phase	III:	breast,	lung	
• Phase	II:	breast,	lung,	head	
and	neck,	multiple	myeloma,	
AML,	ALL,	gastrointestinal,	
ovarian,	hepatocellular,	
prostate,	melanoma,	
liposarcoma,	urothelial,	
lymphoma,	endometrial,	
oligoastrocytoma,	
oligodendroglioma	

Ribociclib*	
(LEE011)	[Novartis]	

CDK4	(10	nM),	CDK6	(39	nM)31	 • Induced	G1	arrest	and	senescence	in	RB+	cancer	cells	in	vitro32	
• Inhibited	tumour	growth	in	neuroblastoma32,	rhabdomyosarcoma33	
and	Ewing	sarcoma	xenografts34	
• Caused	tumour	regression	in	liposarcoma	xenografts35	

• Phase	III:	breast	
• Phase	II:	breast,	melanoma,	
liposarcoma,	prostate,	lung,	
uterine,	gastrointestinal,	
ovarian,	paediatric	glioma,	
hepatocellular,	teratoma,	
pancreatic,	colorectal	

Abemaciclib*	
(LY2835219)	[Eli	
Lilly]	

CDK4	(2	nM),	CDK6	(10	nM),	
HIPK2	(31	nM),	PIM1	(50	nM),	
CDK9	(57	nM),	DYRK2	(61	nM),	
CK2	(117	nM),	GSK3β	(192	
nM)36	

• Induced	G1	arrest	in	vitro36	
• Showed	anti-tumour	activity	in	colorectal	cancer36,	AML36,	
glioblastoma	(orthotopic)37	and	vemurafenib-resistant	melanoma	
xenografts38	

• Phase	III:	breast,	lung	
• Phase	II:	breast,	lung,	
melanoma,	mantle	cell	
lymphoma	
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CHK1	and	WEE1	inhibitors	

MK-8776‡	
(SCH	900776)	
[Merck	&	Co.]	

CHK1	(3	nM),	CDK2	(160	nM),	
PIM1	(NA)39	

• Induced	DNA	double-strand	breaks,	G2/M	arrest	and	apoptosis	in	
vitro39;	sensitized	cancer	cells	to	various	chemotherapeutics40	and	to	
histone	deacetylase	inhibition41	
• Combination	with	gemcitabine	inhibited	tumour	growth	in	
pancreatic	cancer	and	induced	tumour	regression	in	ovarian	cancer	
xenografts39	

• Phase	II:	AML	
• Phase	I:	non-Hodgkin’s	
lymphoma	

LY2606368‡	
(prexasertib)	[Eli	
Lilly]	

CHK1	(<1	nM),	CHK2	(8	nM),	
RSK1	(9	nM),	MELK	(38	nM),	
SIK	(42	nM),	BRSK2	(48	nM),	
ARK5	(64	nM)42	

• Caused	DNA	double-strand	breaks	during	S	phase	(“replication	
catastrophe”),	leading	to	fragmented	chromosomes	and	mitotic	cell	
death	in	vitro42	
• Inhibited	tumour	growth	in	lung	cancer	xenografts42	

• Phase	II:	breast,	ovarian,	
prostate,	lung	
• Phase	I:	head	and	neck,	AML,	
MDS	

AZD1775*	
(MK-1775)	
[AstraZeneca]	

WEE1	(5.2	nM),	YES	(14	nM)43	 • Sensitized	p53-deficient	tumour	cells	to	apoptosis	induction	by	DNA	
damaging	agents	and	radiation43-45	
• Induced	tumour	regression	in	lung	cancer46	and	(combined	with	
gemcitabine)	in	pancreatic	cancer	xenografts47	
• Extended	survival	of	mice	with	AML48	and	high-grade	glioma	
(intracerebral)	xenografts49	
• Synergized	with	targeted	inhibition	of	CHK150-52,	histone	
deacetylases53,	54,	mTOR55	and	PARP56	

• Phase	II:	lung,	ovarian,	
pancreatic,	stomach,	AML,	
MDS,	head	and	neck	
• Phase	I:	head	and	neck,	
glioma,	pancreatic,	cervical,	
CML,	AML,	bladder	

GDC-0575*		
(Arry-575)	
[Genentech]	

CHK1	(NA)57	 • NA	 • Phase	I:	solid	tumours	and	
lymphoma	

PLK	inhibitors	
Rigosertib‡	
(ON	01910.Na)	
[SymBio	
Pharmaceuticals]	

PLK1	(9	nM),	PDGFR	(18	nM),	
BCR-ABL	(32	nM),	FLT1	(42	
nM),	SRC	(155	nM),	FYN	(182	
nM),	PLK2	(260	nM),	CDK1	
(260	nM)58	

• Induced	spindle	abnormalities,	mitotic	arrest	and	apoptosis	in	vitro58	
• Caused	tumour	regression	in	orthotopic	head	and	neck	squamous	
cell	carcinoma	xenografts59	
• Combination	with	chemotherapy	led	to	tumour	regression	in	
hepatocellular	and	breast	carcinoma	xenografts58	
• Combination	with	radiotherapy	achieved	long-lasting	tumour	
regression	in	cervical	cancer	xenografts60	

• Phase	III:	MDS,	pancreatic	
• Phase	II:	MDS,	AML,	ALL,	
CMML,	ovarian,	squamous	
cell	

Volasertib‡	
(BI	6727)	
[Boehringer	
Ingelheim]	

PLK1	(0.9	nM),	PLK2	(5	nM),	
PLK3	(56	nM)61	

• Induced	G2/M	arrest	and	apoptosis	in	vitro61	
• Caused	tumour	regression	in	colorectal	cancer61,	neuroblastoma62	
and	paediatric	ALL	xenografts62	
• Caused	tumour	regression	in	combination	with	cytarabine	or	FLT3	
inhibitor	quizartinib	in	AML63	and	with	vincristine	in	
rhabdomyosarcoma	xenografts64	

• Phase	III:	AML	
• Phase	II:	AML,	lung,	ovarian,	
urothelial,	MDS	

TKM-080301‡	
(TKM-PLK1)	
[Arbutus	
Biopharma]	

PLK1	(targeted	by	a	lipid	
nanoparticle	formulation	of	an	
siRNA)Ø	65	

• NA	 • Phase	II:	liver,	
adrenocortical,	
neuroendocrine	
• Phase	I:	liver	

CFI-400945*	
[University	Health	
Network,	Toronto]	

PLK4	(2.8	nM),	ABL-T315I	(5	
nM),	TRKA	(6	nM),	TRKB	(9	
nM),	BMX	(17	nM),	TIE2	(22	
nM)66	

• Induced	defects	in	centriole	duplication	and	mitosis	leading	to	
apoptosis66	
• Caused	tumour	regression	in	carboplatin-resistant,	PTEN-/-	ER+	
breast	cancer	xenografts66	

• Phase	I:	advanced	cancer	

Aurora	inhibitors	
Alisertib*	
(MLN8237)	
[Millennium	
Pharmaceuticals]	

Aurora	A	(1.2	nM),	EPHA2	
(NA)67	

• Induced	mitotic	arrest,	spindle	abnormalities,	polyploidy,	followed	
by	senescence	or	apoptosis	in	vitro68,	69	
• Caused	tumour	regression	in	neuroblastoma70,	paediatric	ALL70	and	
lymphoma	xenografts67	
• Induced	tumour	regression	and	prolonged	survival	in	MYCN-driven	
mouse	model	of	neuroblastoma71	
• Combination	with	chemotherapy	induced	tumour	regression	in	
AML72,	oesophageal73	and	gastric	cancer	xenografts74	
• Synergized	with	a	DR5	agonist75	and	inhibitors	for	BCR-ABL76,	CD2077,	
MEK78	and	BCL-2	in	various	cancer	xenografts79	

• Phase	III:	peripheral	T-cell	
lymphoma	
• Phase	II:	lymphoma,	lung,	
breast,	ovarian,	prostate,	
AML,	gastroesophageal,	
melanoma,	multiple	
myeloma,	uterine,	head	and	
neck,	mesothelioma,	
neuroblastoma,	MDS,	
rhabdoid,	urothelial		

ENMD-2076*	
[Miikana	
Therapeutics]	

FLT3	(3	nM),	Aurora	A	(14	
nM),	SRC	(23	nM),	VEGFR2	(40	
nM),	FGFR1	(93	nM),	KIT	(120	
nM)80	

• Induced	G2/M	arrest	and	apoptosis	in	vitro81	
• Reduced	tumour	vascularity,	vascular	permeability	and	perfusion	in	
vivo80	
• Induced	tumour	regression	in	breast	and	colorectal	cancer,	
melanoma,	AML	and	multiple	myeloma	xenografts82	

• Phase	II:	ovarian,	breast,	
hepatocellular,	sarcoma	
• Phase	I:	multiple	myeloma	

AMG	900*	
[Amgen]	

Aurora	C	(1	nM),	Aurora	B	(4	
nM),	Aurora	A	(5	nM),	p38α	
(53	nM)83	

• Induced	mitotic	arrest,	polyploidy	and	apoptosis	in	vitro83,	84	
• Caused	tumour	regression	in	combination	with	ixabepilone	in	triple-
negative	breast	cancer	xenografts84	

• Phase	I:	AML,	advanced	solid	
tumours	

Clinical	 trial	 data	 obtained	 from	http://www.clinicaltrials.gov	 (accessed:	 26th	 August	 2016)	 *	Oral.	 ‡	 Intravenous.	Ø	meeting	 abstract	 data.	 ALL,	 acute	
lymphoblastic	leukaemia.	AML,	acute	myeloid	leukaemia.	CLL,	chronic	lymphocytic	leukaemia.	CMML,	chronic	myelomonocytic	leukaemia.	CML,	chronic	
myeloid	 leukaemia.	 DMBA,	 7,12-Dimethylbenz[a]anthracene	 (a	 carcinogen).	 ER+,	 oestrogen	 receptor-expressing	 tumours/cells.	 IC50,	 inhibitor	
concentration	 that	 causes	 50%	 inhibition	 of	 kinase	 activity	 (in	 vitro	 kinase	 assay).	MDS,	myelodysplastic	 syndromes.	 NA,	 not	 available.	 siRNA,	 short	
interfering	RNA.	 	
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