			J 1 J	1.2	
Effect of hypoxia	Resistance/ sensitivity	Mechanism	Agents affected	Example	Ref
Lack of oxidation of DNA free radicals by O_2	Resistance	Failure to induce DNA breaks	Ionising radiation	2-3-fold increase in radiation dose required for equivalent cell kill	1
			DNA-breaking antibiotics	Bleomycin	2
Cell cycle arrest in G1 or G2 phase	Resistance	Repair before progression to S or M phase	Cycle-selective chemotherapy drugs	5-fluorouracil	3
Cell cycle arrest in S-phase	Sensitivity	Collapse of stalled replication forks	PARP-1 inhibitors ^a	ABT-888	4
Distance from vasculature (indirect)	Resistance	Compromised drug exposure	Drugs extensively bound in tumour cells	Taxanes	5
Extracellular	Resistance	decreased uptake	Basic drugs	Doxorubicin	6
acidification (indirect)	Sensitivity	Increased uptake	Acidic drugs	Chlorambucil	7
Resistance to apoptosis	Resistance	Genetic selection of TP53 mutants	Multiple		8
		Downregulation of Bid,Bax	Multiple	Etoposide	9
Genomic instability	Resistance	Mutagenesis ¹⁰	Multiple	DHFR amplification and methotrexate	11
Suppression of DNA repair	Resistance	Downregulation of MMR	DNA methylating agents		12
	Sensitivity	Downregulation of NER	Bulky DNA monoalkylating and crosslinking agents		13
		Downregulation of HR	DNA crosslinking agents	Cisplatin	114
HIF-1 stabilisation	Resistance	Expression of ABC transporters	ABC transporter substrates	MDR1 and doxorubicin	15
		Downregulation of	DNA double strand	Etoposide	16

Table 1 | Mechanisms of resistance (and sensitivity) of hypoxic cells to cytotoxic therapy

^aAlso sensitised by downregulation of HR under hypoxia. DHFR, dihydrofolate reductase; NHEJ, non-homologous end joining; HR, homologous recombination repair; MMR, mismatch repair; PARP, poly(ADP-ribose) polymerase

Measure of hypoxia	Probe	Clinical setting	Outcome for hypoxic tumours	Ref
Oxygen	Eppendorf	Chemoradiation of advanced HNSCC	Worse OS	17
concentration	oxygen	Irradiation of soft tissue sarcomas	Worse DFS due to higher	18
	electrode	before surgery	rate of distant metastasis	
		Brachytherapy irradiation of localised	Decreased biochemical	19
		prostate cancer	control (PSA)	
		Cervical carcinoma	Worse DFS in node negative	20
			patients due to higher rate of	
			distant metastases	
Endogenous	HIF1a	Lymph node negative breast cancer	Worse OS	21
markers	HIF1a	BRCA-1 mutant breast cancer	Worse DFS	22
	HIF2α, CA-9	CHART trial in HNSCC	Worse local control and OS	23
	CA-9	Adjuvant chemotherapy of breast	Worse OS	24
		cancer		
	Osteopontin	Radiotherapy for HNSCC	Nimorazole (hypoxic	25
			radiosensitiser) improved	
			local control and OS	
	Lysyl oxidase (LOX)	Breast cancer	Worse metastasis-free survival	26
	Hypoxic gene	HNSCC, breast cancer	Worse outcome, multiple	27
	signature		endpoints.	
	Hypoxic gene signature	Hepatocellular carcinoma	Worse OS	28
Exogenous	Pimonidazole	Radiotherapy for advanced HNSCC	Worse local control	29
probes	EF5	Post-surgical irradiation of HNSCC	Worse DFS	30

Table 2 | Representative examples of the prognostic and predictive significance of hypoxia in human cancer

CHART, continuous hyperfractionated accelerated radiotherapy; DSF, disease-free survival; EF5, pentafluorinated etanidazole; HNSCC, head and neck squamous cell carcinoma; OS, overall survival; PFS, progression free survival; PSA, prostate specific antigen

Prodrug	Clinical status	Company/ Institution	Chemical class	Mechanism of activation ^a	Mechanism of cytotoxicity	One-electron reductases	Two- electron reductas es	K ₀₂ (μM)	Ref
Tirapazamine (SR 4233)	Phase III, cervix (Closed)	SRI Internationa l/NCI	Aromatic <i>N</i> -oxide	1,3 [R•]	Complex DNA damage	CYPOR, iNOS	NQO-1 ^b	~ 1	31
Apaziquone (EO9)	Phase III, bladder (Closed)	Spectrum	Quinone	1,4 [X,Y]	ICL	CYPOR	NQO-1		32
TH-302	Phase I/II , multiple (active)	Threshold	Nitro	1,3 [D]	ICL	CYPOR		~10°	33
PR-104	Phase I/II, leukaemia (active)	Proacta/U. Auckland	Nitro	1/2, 4,5,6 [Y,Z]	ICL	CYPOR, iNOS,MTRR, NDOR1	AKR1C 3	~0.1	34
Banoxantrone (AQ4N)	Recent Phase I/II	Novacea	Aliphatic <i>N</i> -oxide	2,5 [Y]	TopoII	iNOS	CYP3A 4, CYP2S1		35
Prolarix (CB 1954 + EP- 0152R)	Phase II, HCC (discontinue d)	BTG	Nitro	1 /2,4,5,6 [Y,Z]	ICL	CYPOR, iNOS	NQO-1, NQO-2		36
RH1	Recent Phase I	CRUK	Quinone	1,4 [X,Y]	ICL		NQO-1, NQO-2		37
NLCQ-1	Preclinical	Evanston Hospital	Nitro	1,4,5	TopoII or Multiple?	CYPOR		~1°	38
SN30000 (CEN-209)	Preclinical	Centella/U. Auckland	Aromatic <i>N</i> -oxide	1,3 [R•]	Complex DNA damage	CYPOR		~ 1	39
SN29730	Preclinical	U. Auckland	Nitro	1, 4,5,6 [Z]	Adenine N3 alkylation	CYPOR			40
KS119W	Preclinical	Yale U.	Nitro	1,4,5,6 [D]	Guanine O6 ICL	B5R, CYPOR			41

Table 3 Bioreductive prodrugs of DNA-reactive cytotoxins recently or currently in	clinical
development.	

See FIG. 2B for additional chemical structures. ^aReaction numbers refer to FIG. 2A. Active cytotoxins (X,Y etc in FIG. 2A) are shown in square brackets. ^bDetoxifying. ^cGas phase O_2 concentration ⁴² (K_{O2} values of 2-nitroimidazoles are typically much lower based on solution oxygen concentrations). AKR, aldo-keto reductase; B5R, NADH:cytochrome b5 reductase, CYP, cytochrome P450; CYPOR,

NADPH:cytochrome P450 oxidoreductase; HCC, hepatocellular carcinoma; NDOR1, NADPH-dependent diflavin oxidoreductase-1; ICL, DNA interstrand crosslink; iNOS, inducible nitric oxide synthase; MTRR, methionine synthase reductase

Table 4 | Representative examples of pharmacological approaches to molecular targets in hypoxic cells.

Pathway	Target	Agent	Class	Ref
HIF-1a expression.	HIF antisense mRNA	EZN-2698	RNA oligonucleotide	43
	Topoisomerase I	Topotecan	Camptothecan analogues	44
	Multiple	PX-478	Melphalan N-oxide	45
	Translation	Digoxin	Cardiac glycoside	46
	HSP90	Geldanamycin, 17-AAG	Benzoquinone ansamycin antibiotics	47
	HIF-p300 binding	Chetomin and analogues	Dithiodiketopiperazine	48
HIF-1	Thioradovin 1	PX12	Imidazole disulfide	49
transcription	Thioredoxin-1	PMX290	Indoloquinol	50
	DNA binding	Echinomycin	DNA intercalator	51
	CA-9/CA-12	Aryl sulfonamides	Sulfonamide zinc binders	52
		Glufosfamide	Glucose isophosphoramide mustard	53
HIF-1 target genes		2-GLU-SNAP Glucose SNAP conjugate		54
	GLUT-1	Fasentin	Oxobutanilide	55
		STF-31154	Unknown	56
	Hexokinase II	5TDG, 2DG, 2FDG	Glycolysis inhibitors	57-59
	MCT1	α-Cyano-4- hydroxycinnamate	Lactate transport inhibitor	60
Receptor tryosine kinases	VEGFR	Bevacizumab	Monoclonal antibody	61

	ECED	Gefitinib, erlotinib	ATP competitive kinase inhibitors	62
	EUFK	Cetuximab	Monoclonal antibody	63
Ras-MAPK signalling	BRAF	Sorafenib	ATP competititive kinase inhibitor	64
mTOR	mTODC1	Rapamycin, everolimus	Allosteric binders of FKBP12- rapamycin binding domain	65
	miokei	WYE-125132	ATP-competitive mTOR kinase inhibitor	66
	Autophagy	Chloroquine	Lysosomal pH	67
UPR	HSP90	Geldanamycin, 17-AAG	Benzoquinone ansamycin antibiotic	68
	IRE1 endonuclease	Salicaldehydes	IRE1 inhibitor	69
	265 motocomo	Bortezomib	Boronic acid tripeptide	70
	203 proteosome	Nelfinavir, ritonavir	HIV protease inhibitors	71
	SERCA	2,5-Dimethyl celecoxib	Celecoxib analogue	72

Abbreviations: CA-9, carbonic anhydrase 9; EGFR, epidermal growth factor receptor; FKBP12, FK506 binding protein-12; HIV, human immunodeficiency virus; HSP90, heat shock protein 90; IRE1, inositol requiring endonuclease 1; MAPK, mitogen-activated protein kinase; MCT1, monocarboxylate <u>transporter</u> 1; mTOR, molecular target of rapamycin; ; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SNAP, S-nitroso-acetyl-penicillamine; VEGFR, vascular endothelial growth factor receptor.

Reference List

- 1. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. *Br. J. Radiol.* **26**, 638-648 (1953).
- 2. Teicher, B. A., Lazo, J. S. & Sartorelli, A. C. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. *Cancer Res.* **41**, 73-81 (1981).
- 3. Yoshiba, S. *et al*. Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G(1) phase cell cycle arrest. *Oral Oncol.* **45**, 109-115 (2009).
- 4. Chan, N. et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. *Cancer Res.* **70**, 8045-8054 (2010).
- 5. Kyle, A. H., Huxham, L. A., Yeoman, D. M. & Minchinton, A. I. Limited tissue penetration of taxanes: a mechanism for resistance in solid tumors. *Clin. Cancer Res.* **13**, 2804-2810 (2007).
- 6. Gerweck, L. E., Kozin, S. V. & Stocks, S. J. The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH-adapted cells. *Br. J. Cancer.* **79**, 838-842 (1999).
- 7. Brophy, G. T. & Sladek, N. E. Influence of pH on the cytotoxic activity of chlorambucil. *Biochem. Pharmacol.* **32**, 79-84 (1983).
- 8. Graeber, T. G. *et al.* Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. *Nature* **379**, 88-91 (1996).
- 9. Erler, J. T. *et al.* Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. *Mol. Cell. Biol.* **24**, 2875-2889 (2004).
- Bindra, R. S. & Glazer, P. M. Genetic instability and the tumor microenvironment: towards the concept of microvenviroment-induced mutagenesis. *Mutat. Res.* 569, 75-85 (2005).
- 11. Rice, G. C., Hoy, C. & Schimke, R. T. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc. Natl Acad. Sci. USA 83, 5978-5982 (1986).
- 12. Bindra, R. S. & Glazer, P. M. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. *Cancer Lett.* **252**, 93-103 (2007).
- 13. Yuan, J., Narayanan, L., Rockwell, S. & Glazer, P. M. Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. *Cancer Res.* **60**, 4372-4376 (2000).

- 14. Chan, N. *et al.* Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. *Cancer Res.* **68**, 605-614 (2008).
- 15. Comerford, K. M. *et al.* Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. *Cancer Res.* **62**, 3387-3394 (2002).
- Wirthner, R., Wrann, S., Balamurugan, K., Wenger, R. H. & Stiehl, D. P. Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1 alpha-deficient mouse embryonic fibroblasts. *Carcinogenesis* 29, 2306-2316 (2008).
- 17. Nordsmark, M. *et al.* Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. *Radiother. Oncol.* **77**, 18-24 (2005).
- 18. Brizel, D. M. *et al.* Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. *Cancer Res.* **56**, 941-943 (1996).
- 19. Movsas, B. *et al.* Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. *Urology* **60**, 634-639 (2002).
- 20. Fyles, A. *et al.* Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. *J. Clin. Oncol.* **20**, 680-687 (2002).
- 21. Bos, R. *et al.* Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. *Cancer* **97**, 1573-1581 (2003).
- Yan, M., Rayoo, M., Takano, E. A., Thorne, H. & Fox, S. B. BRCA1 tumours correlate with a HIF-1α phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. *Br. J. Cancer* 101, 1168-1174 (2009).
- 23. Koukourakis, M. I. *et al.* Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. *J. Clin. Oncol.* **24**, 727-735 (2006).
- 24. Tan, E. Y. *et al.* The key hypoxia regulated gene CAIX is upregulated in basallike breast tumours and is associated with resistance to chemotherapy. *Br. J. Cancer* **100**, 405-411 (2009).
- Overgaard, J. *et al.* Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. *Lancet Oncol.* 6, 757-764 (2005).
- 26. Erler, J. T. *et al.* Lysyl oxidase is essential for hypoxia-induced metastasis. *Nature* **440**, 1222-1226 (2006).

- 27. Buffa, F. M., Harris, A. L., West, C. M. & Miller, C. R. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. *Br. J. Cancer* **102**, 428-435 (2010).
- 28. van Malenstein, H. *et al.* A Seven-Gene Set Associated with Chronic Hypoxia of Prognostic Importance in Hepatocellular Carcinoma. *Clin. Cancer Res.* **16**, 4278-4288 (2010).
- 29. Kaanders, J. H. *et al.* Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. *Cancer Res.* **62**, 7066-7074 (2002).
- 30. Evans, S. M. *et al.* Patterns and levels of hypoxia in head and neck squamous cell carcinomas and their relationship to patient outcome. *Int. J. Radiat. Oncol. Biol. Phys.* **69**, 1024-1031 (2007).
- Rischin, D. *et al.* Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): A phase III trial of the Trans-Tasman Radiation Oncology Group. *J. Clin. Oncol.* 28, 2989-2995 (2010).
- 32. Jain, A. *et al.* Response of multiple recurrent TaT1 bladder cancer to intravesical apaziquone (EO9): comparative analysis of tumor recurrence rates. *Urology* **73**, 1083-1086 (2009).
- 33. Duan, J. X. *et al.* Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. *J. Med. Chem.* **51**, 2412-2420 (2008).
- Patterson, A. V. *et al.* Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. *Clin. Cancer Res.* 13, 3922-3932 (2007).
- 35. Patterson, L. H. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. *Drug Metab. Rev.* **34**, 581-592 (2002).
- 36. Knox, R. J. & Chen, S. Quinone reductase-mediated nitro-reduction: clinical applications. *Methods Enzymol.* **382**, 194-221 (2004).
- 37. Danson, S. J. et al. Phase I pharmacokinetic and pharmacodynamic study of the bioreductive drug RH1. *Ann. Oncol.* doi:10.1093/annonc/mdq638 (2011).
- 38. Papadopoulou, M. V. & Bloomer, W. D. NLCQ-1 (NSC 709257): exploiting hypoxia with a weak DNA-intercalating bioreductive drug. *Clin. Cancer Res.* **9**, 5714-5720 (2003).
- Hicks, K. O. *et al.* Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. *Clin. Cancer Res.* 16, 4946-4957 (2010).

- 40. Tercel, M. *et al.* Selective treatment of hypoxic tumor cells in vivo: Phosphate pre-prodrugs of nitro analogues of the duocarmycins. *Angew. Chem. Int. Ed.* **50**, 2606-2609 (2011).
- Baumann, R. P. *et al.* Reductive activation of the prodrug 1,2bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]car bonyl]hydrazine (KS119) selectively occurs in oxygen-deficient cells and overcomes O(6)-alkylguanine-DNA alkyltransferase mediated KS119 tumor cell resistance. *Biochem. Pharmacol.* **79**, 1553-1561 (2010).
- 42. Hu, J. *et al.* Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. *Blood* **116**, 1524-1527 (2010).
- 43. Greenberger, L. M. *et al.* A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. *Mol. Cancer Ther.* **7**, 3598-3608 (2008).
- 44. Rapisarda, A. *et al.* Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. *Mol. Cancer Ther.* **8**, 1867-1877 (2009).
- 45. Schwartz, D. L. *et al.* Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer. *Mol. Cancer Ther.* **9**, 2057-2067 (2010).
- 46. Zhang, H. *et al.* Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. *Proc. Natl Acad. Sci. USA* **105**, 19579-19586 (2008).
- 47. Isaacs, J. S. *et al.* Hsp90 regulates a von Hippel Lindau-independent hypoxiainducible factor-1 alpha-degradative pathway. *J. Biol. Chem.* **277**, 29936-29944 (2002).
- 48. Staab, A. *et al*. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. *BMC Cancer* **7**, 213 (2007).
- 49. Ramanathan, R. K. *et al.* A Phase I pharmacokinetic and pharmacodynamic study of PX-12, a novel inhibitor of thioredoxin-1, in patients with advanced solid tumors. *Clin. Cancer Res.* **13**, 2109-2114 (2007).
- 50. Jones, D. T., Pugh, C. W., Wigfield, S., Stevens, M. F. & Harris, A. L. Novel thioredoxin inhibitors paradoxically increase hypoxia-inducible factor-alpha expression but decrease functional transcriptional activity, DNA binding, and degradation. *Clin. Cancer Res.* **12**, 5384-5394 (2006).
- 51. Kong, D. *et al.* Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. *Cancer Res.* **65**, 9047-9055 (2005).
- 52. Guler, O. O., De Simone, G. & Supuran, C. T. Drug design studies of the novel antitumor targets carbonic anhydrase IX and XII. *Curr. Med. Chem.* **17**, 1516-1526 (2010).

- Pohl, J. *et al.* D-19575 A sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. *Cancer Chemother. Pharmacol.* 35, 364-370 (1995).
- 54. Cantuaria, G. *et al*. Antitumor activity of a novel glyco-nitric oxide conjugate in ovarian carcinoma. *Cancer* **88**, 381-388 (2000).
- 55. Wood, T. E. *et al.* A novel inhibitor of glucose uptake sensitizes cells to FASinduced cell death. *Mol. Cancer Ther.* **7**, 3546-3555 (2008).
- 56. Lai, E. W., Chan, D. A., Hay, M. P. & Giaccia, A. J. Selective cytotoxic targeting of von Hippel-Lindau-deficient renal carcinoma cells. *Proc. Am. Assoc. Cancer Res.* **51**, Abstract 67 (2010).
- 57. Song, C. W., Clement, J. J. & Levitt, S. H. Preferential cytotoxicity of 5-thio-Dglucose against hypoxic tumor cells. *J. Natl Cancer Instit.* **57**, 603-605 (1976).
- 58. Lampidis, T. J. *et al.* Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells". *Cancer Chemother. Pharmacol.* **58**, 725-734 (2006).
- 59. Kurtoglu, M., Maher, J. C. & Lampidis, T. J. Differential toxic mechanisms of 2-deoxy-D-glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. *Antioxid. Redox Signal.* **9**, 1383-1390 (2007).
- 60. Sonveaux, P. *et al.* Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. *J. Clin. Invest.* **118**, 3930-3942 (2008).
- 61. Calvani, M., Trisciuoglio, D., Bergamaschi, C., Shoemaker, R. H. & Melillo, G. Differential involvement of vascular endothelial growth factor in the survival of hypoxic colon cancer cells. *Cancer Res.* **68**, 285-291 (2008).
- 62. Pore, N. *et al.* EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. *Cancer Res.* **66**, 3197-3204 (2006).
- 63. Luwor, R. B., Lu, Y., Li, X., Mendelsohn, J. & Fan, Z. The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxiainducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression. *Oncogene* **24**, 4433-4441 (2005).
- 64. Kumar, S. M. *et al.* Mutant V600E BRAF increases hypoxia inducible factorlalpha expression in melanoma. *Cancer Res.* **67**, 3177-3184 (2007).
- 65. Pencreach, E. *et al.* Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1alpha axis. *Clin. Cancer Res.* **15**, 1297-1307 (2009).
- 66. Yu, K. *et al.* Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. *Cancer Res.* **70**, 621-631 (2010).

NATURE REVIEWS | CANCER

- 67. Rouschop, K. M. *et al.* The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. *J. Clin. Invest.* **120**, 127-141 (2010).
- 68. Mabjeesh, N. J. *et al.* Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. *Cancer Res.* **62**, 2478-2482 (2002).
- 69. Volkmann, K. *et al.* Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. *J. Biol. Chem.* **286**, 12743-12755 (2011).
- Fels, D. R. *et al.* Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. *Cancer Res.* 68, 9323-9330 (2008).
- 71. Gills, J. J. *et al.* Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. *Cancer Res.* **13**, 5183-5194 (2007).
- 72. Pyrko, P. *et al.* Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. *Mol. Cancer Ther.* **6**, 1262-1275 (2007).