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Table 1 | Mechanisms of resistance (and sensitivity) of hypoxic cells to cytotoxic therapy 
Effect of hypoxia 
 

Resistance/ 
sensitivity 

Mechanism  Agents affected Example Ref 

Ionising radiation 2-3-fold increase in 
radiation dose required 
for equivalent cell kill 

1 Lack of oxidation 
of DNA free 
radicals by O2 

Resistance Failure to induce DNA 
breaks 

DNA-breaking 
antibiotics 

Bleomycin  2 

Cell cycle arrest 
in G1 or G2 
phase 

Resistance  Repair before 
progression to S or M 
phase 

Cycle-selective 
chemotherapy drugs 

5-fluorouracil 3 

Cell cycle arrest 
in S-phase 

Sensitivity Collapse of stalled 
replication forks 

PARP-1 inhibitorsa ABT-888 4 

Distance from 
vasculature 
(indirect) 

Resistance Compromised drug 
exposure 

Drugs extensively 
bound in tumour cells 

Taxanes 5 

Resistance decreased uptake Basic drugs  Doxorubicin 6 Extracellular 
acidification 
(indirect) 

Sensitivity Increased uptake Acidic drugs Chlorambucil 7 

Genetic selection of 
TP53 mutants 

Multiple  8 Resistance to 
apoptosis 

Resistance 

Downregulation of 
Bid,Bax 

Multiple Etoposide 9 

Genomic 
instability 

Resistance Mutagenesis 10 Multiple DHFR amplification 
and methotrexate 

11 

Resistance Downregulation of 
MMR  

DNA methylating 
agents 

 12 

Downregulation of 
NER  

Bulky DNA 
monoalkylating and 
crosslinking agents 

 13 

Suppression of 
DNA repair 

Sensitivity 
 

Downregulation of HR DNA crosslinking 
agents 

Cisplatin 114 

Expression of ABC 
transporters 

ABC transporter 
substrates 

MDR1 and doxorubicin 15 HIF-1 
stabilisation 

Resistance  

Downregulation of 
NHEJ 

DNA double strand 
breaking agents 

Etoposide 16 

aAlso sensitised by downregulation of HR under hypoxia.  DHFR, dihydrofolate 
reductase; NHEJ, non-homologous end joining; HR, homologous recombination 
repair; MMR, mismatch repair; PARP, poly(ADP-ribose) polymerase 
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Table 2 | Representative examples of the prognostic and predictive significance of hypoxia in 
human cancer 
Measure of 
hypoxia 
 

Probe Clinical setting Outcome for hypoxic 
tumours 

Ref 

Chemoradiation of advanced HNSCC Worse OS 17 
Irradiation of soft tissue sarcomas 
before surgery 

Worse DFS due to higher 
rate of distant metastasis 

18 

Brachytherapy irradiation of localised 
prostate cancer  

Decreased biochemical 
control (PSA) 

19 

Oxygen 
concentration  

Eppendorf 
oxygen 
electrode 
 

Cervical carcinoma Worse DFS in node negative 
patients due to higher rate of 
distant metastases 

20 

HIF1α Lymph node negative breast cancer Worse OS 21 
HIF1α BRCA-1 mutant breast cancer Worse DFS 22 
HIF2α, CA-9 CHART trial in HNSCC Worse local control and OS 23 
CA-9 Adjuvant chemotherapy of breast 

cancer 
Worse OS 24 

Osteopontin Radiotherapy for HNSCC Nimorazole (hypoxic 
radiosensitiser) improved 
local control and OS 

25 

Lysyl oxidase 
(LOX) 

Breast cancer Worse metastasis-free 
survival 

26	  

Hypoxic gene 
signature 

HNSCC, breast cancer Worse outcome, multiple 
endpoints. 

27 

Endogenous 
markers  

Hypoxic gene 
signature 

Hepatocellular carcinoma Worse OS 28 

Pimonidazole  Radiotherapy for advanced HNSCC Worse local control 29 Exogenous 
probes  
 

EF5 Post-surgical irradiation of HNSCC Worse DFS 30 

 CHART, continuous hyperfractionated accelerated radiotherapy; DSF, disease-free 
survival; EF5, pentafluorinated etanidazole; HNSCC, head and neck squamous cell 
carcinoma; OS, overall survival; PFS, progression free survival; PSA, prostate 
specific antigen 
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Table 3 | Bioreductive prodrugs of DNA-reactive cytotoxins recently or currently in clinical 
development.  

Prodrug Clinical 
status 

Company/ 
Institution 

Chemical 
class 

Mechanism 
of 
activationa 

 

Mechanism 
of 
cytotoxicity 

One-electron 
reductases 

Two-
electron 
reductas
es 

KO2 
(µM) 

Ref 

Tirapazamine  
(SR 4233) 

Phase III, 
cervix 
(Closed) 

SRI 
Internationa
l/NCI 

Aromatic N-
oxide 

1, 3 
[R•] 

Complex 
DNA 
damage 

CYPOR, 
iNOS 

NQO-1b ~ 1 31 

Apaziquone 
(EO9) 

Phase III, 
bladder 
(Closed) 

Spectrum Quinone 1,4 
[X,Y] 

ICL CYPOR NQO-1  32 

TH-302 Phase I/II , 
multiple 
(active) 

Threshold  Nitro 1, 3 [D] ICL CYPOR  ~10c 33 

PR-104 Phase I/II, 
leukaemia 
(active) 

Proacta/U. 
Auckland 

Nitro 1/2, 4,5,6 
[Y,Z] 

ICL CYPOR,  
iNOS,MTRR, 
NDOR1 

AKR1C
3 

~0.1  34 

Banoxantrone 
(AQ4N) 

Recent 
Phase I/II 

Novacea Aliphatic N-
oxide 

2, 5 
[Y] 

TopoII iNOS CYP3A
4, 
CYP2S1 

 35 

Prolarix (CB 
1954 + EP-
0152R) 

Phase II, 
HCC 
(discontinue
d) 

BTG Nitro 1 /2,4,5,6 
[Y,Z] 

ICL CYPOR, 
iNOS 

NQO-1, 
NQO-2 

 36 

RH1 Recent 
Phase I 

CRUK Quinone 1,4 
[X,Y] 

ICL  NQO-1, 
NQO-2 

 37 

NLCQ-1 Preclinical Evanston 
Hospital 

Nitro 1,4,5 TopoII or 
Multiple? 

CYPOR  ~1c 38 

SN30000 
(CEN-209) 

Preclinical Centella/U. 
Auckland 

Aromatic N-
oxide 

1,3 
[R•] 

Complex 
DNA 
damage 

CYPOR  ~ 1 39 

SN29730 Preclinical U. 
Auckland 

Nitro 1, 4,5,6 
[Z] 

Adenine N3 
alkylation  

CYPOR   40 

KS119W Preclinical Yale U. Nitro 1,4,5,6 
[D] 

Guanine O6 
ICL 

B5R, CYPOR   41 

See FIG. 2B for additional chemical structures. aReaction numbers refer to FIG. 2A. 
Active cytotoxins (X,Y etc in FIG. 2A) are shown in square brackets.  bDetoxifying. 
cGas phase O2 concentration 42 ( KO2 values of 2-nitroimidazoles are typically much 
lower based on solution oxygen concentrations). AKR, aldo-keto reductase; B5R, 
NADH:cytochrome b5 reductase, CYP, cytochrome P450; CYPOR, 
NADPH:cytochrome P450 oxidoreductase; HCC, hepatocellular carcinoma; NDOR1, 
NADPH-dependent diflavin oxidoreductase-1; ICL, DNA interstrand crosslink; 
iNOS, inducible nitric oxide synthase; MTRR, methionine synthase reductase 
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Table 4 | Representative examples of pharmacological approaches to molecular targets in 

hypoxic cells. 

Pathway Target Agent Class Ref 

HIF antisense mRNA  EZN-2698 RNA oligonucleotide 43 

Topoisomerase I  Topotecan Camptothecan analogues 44 

Multiple PX-478 Melphalan N-oxide 45 

Translation Digoxin Cardiac glycoside 46 

HIF-1a 
expression. 
 

HSP90  Geldanamycin, 17-AAG Benzoquinone ansamycin antibiotics 47 

HIF-p300 binding  Chetomin and analogues Dithiodiketopiperazine 48 

PX12 Imidazole disulfide 49 

Thioredoxin-1  

PMX290 Indoloquinol 50 

HIF-1 
transcription 

DNA binding Echinomycin DNA intercalator 51 

CA-9/CA-12 Aryl sulfonamides Sulfonamide zinc binders 52 

Glufosfamide Glucose isophosphoramide mustard 53 

2-GLU-SNAP Glucose SNAP conjugate 54 

Fasentin Oxobutanilide 55 

 
GLUT-1 

STF-31154 Unknown 56 

Hexokinase II 5TDG, 2DG, 2FDG Glycolysis inhibitors 57-59 

HIF-1 target 
genes  

MCT1 α-Cyano-4-
hydroxycinnamate Lactate transport inhibitor 60  

Receptor 
tryosine kinases VEGFR Bevacizumab Monoclonal antibody 61 
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Gefitinib, erlotinib ATP competitive kinase inhibitors  62 
 

EGFR  

Cetuximab Monoclonal antibody 63 

Ras-MAPK 
signalling BRAF  Sorafenib ATP competititive kinase inhibitor 64 

Rapamycin, everolimus Allosteric binders of FKBP12-
rapamycin binding domain 65 

mTORC1 

WYE-125132 ATP-competitive mTOR kinase 
inhibitor 66 mTOR 

Autophagy Chloroquine Lysosomal pH 67 

HSP90  Geldanamycin, 17-AAG Benzoquinone ansamycin antibiotic 68 

IRE1 endonuclease  Salicaldehydes IRE1 inhibitor  69 

Bortezomib Boronic acid tripeptide 70 

26S proteosome 

Nelfinavir, ritonavir HIV protease inhibitors 71 

UPR 

SERCA  2,5-Dimethyl celecoxib Celecoxib analogue 72 

Abbreviations: CA-9, carbonic anhydrase 9; EGFR, epidermal growth factor receptor; 
FKBP12, FK506 binding protein-12; HIV, human immunodeficiency virus; HSP90, 
heat shock protein 90; IRE1, inositol requiring endonuclease 1; MAPK, mitogen-
activated protein kinase; MCT1, monocarboxylate transporter 1; mTOR, molecular 
target of rapamycin; ; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SNAP, S-
nitroso-acetyl-penicillamine; VEGFR, vascular endothelial growth factor receptor. 
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