Supplemental Table 1 - Metabolic targets for cancer therapy

Targets	Pathways	Agents or approaches (company)*	Development stage	Observations	Refs
Bioenergetic n	netabolism				-
CPT1	β oxidation	Etomoxir Oxfenicine Perhexiline RNAi	Perhexiline is approved for use an antianginal agent in Asia, Australia and New Zealand	Inhibition of CPT1 exerts anticancer effects in <i>vitro</i> and <i>in vivo</i> , yet it remains unclear whether these stem from the blockage of β -oxidation	1-3
Complex I	Mitochondrial respiration	Metformin Phenformin	Metformin is prescribed for the treatment of type 2 diabetes	The antineoplastic activity of metformin is independent of glycaemia and may reflect its capacity to inhibit mitochondrial respiration	4,5
GAPDH	Glycolysis	3-BP Koningic acid	Preclinical data	In glycolytic cancer cells, GAPDH inhibition leads to ATP depletion and caspase-independent cell death, hence suppressing <i>in vivo</i> growth	6,7
GLUD1	Glutamine metabolism	EGCG RNAi	EGCG is in clinical development	The safety and therapeutic potential of EGCG is being tested in cohorts of patients affected by multiple neoplasms	8
GLUT1	Glycolysis	WZB117 RNAi	Preclinical data	Pharmacological or genetic inhibition of GLUT1 exerts antineoplastic effects, both <i>in vitro</i> and <i>in vivo</i>	9,10
GLUT4	Glycolysis	Dehydrosilybin Silybin	Preclinical data	Both these flavonoids reduce the viability of cultured cancer cells in a GLUT4-dependent manner	11
GLS1	Glutamine metabolism	968 BPTES RNAi	Preclinical data	Malignant cells expressing mutant IDH1 may be particularly sensitive to GLS1-targeting agents	12,13
Glutamine	Glutamine metabolism	Phenylacetate Phenylbutyrate	Prescription drugs for the treatment of hyperammonaemia	Phenylacetate rapidly reacts with circulating glutamine to form phenylacetylglutamine, which is readily excreted in urine	14
HADHA	β oxidation	Ranolazine Trimetazidine	Prescription drugs for the treatment of angina	The actual antineoplastic potential of HADHA- targeting interventions remains to be elucidated	2,15,16
Hexokinases	Glycolysis	2-DG 3-BP Lonidamine Methyl jasmonate RNAi	The clinical development of 2-DG, 3-BP and lonidamine has been discontinued	It remains to be determined whether the anticancer effects of 3-BP and lonidamine stem from the inhibition of HKs	17-22

LDHA	Glycolysis	3-BP FX11 Galloflavin RNAi	Preclinical data	Targeting LDHA limits <i>MYC</i> -driven carcinogenesis, and – coupled to NAMPT inhibitors – mediates robust antineoplastic effects <i>in vivo</i>	23-25
MCT1	TCA cycle	AR-C155858 AR-C117977 AZD3965 (AstraZeneca) CHC RNAi	AZD3965 is in clinical development	AZD3965 is currently being tested in a phase I clinical trial enrolling patients with advanced solid tumours; these agents may be incompatible with the use of MCT1-transported drugs, such as 3-BP	7,26
MCT4	Glycolysis	<i>CD44</i> RNAi <i>CD147</i> RNAi	Preclinical data	Silencing CD44 and/or CD147 results in the downregulation of MCT4 coupled to the inhibition of tumour progression	27,28
PC	TCA cycle	RNAi	Preclinical data	Targeting PC exerts antineoplastic effects, especially when glutamine cannot be used by cancer cells	29
PDK1	TCA cycle	DCA	DCA is a prescription drug for the treatment of lactic acidosis	DCA is well tolerated by patients with glioblastoma multiforme and provokes profound mitochondrial defects in cancer cells	30
PDK2	TCA cycle	AZD7545 (AstraZeneca) Radicicol	Preclinical data	The anticancer effects of radicicol may be independent from its capacity to inhibit PDHK2, while the antineoplastic potential of AZD7545 remains entirely unexplored	31,32
PFKFB3	Glycolysis	3PO PFK15 <i>Pfkfb3</i> ^{+/-} mice RNAi	Preclinical data	Inhibition of PFKFB3 exerts anticancer effects in tumour- bearing mice and prevents <i>HRAS</i> -driven carcinogenesis; in part, these effects may result from the ability of PFKFB3- targeting interventions to inhibit vessel sprouting	33-36
PKM2	Glycolysis	TLN-232 (Thallion) RNAi	The clinical development of TLN-232 has been discontinued	Inhibition of PKM2 reverses the Warburg effect (at least in some tumour models), yet may favour anabolism	37-39
Anabolic meta	bolism				
ACC	Lipid biosynthesis	Soraphen A	Preclinical data	ACC inhibition blocks fatty acid synthesis and stimulates β oxidation, thus limiting cancer cell growth <i>in vitro</i>	40
ACLY	Lipid biosynthesis	SB-204990 (SmithKline Beecham) RNAi	Preclinical data	Irrespective of encouraging results, no ACLY inhibitor is currently being tested as an anticancer agent in clinical trials	41
Arginine	Arginine metabolism	Arginine deiminase (Polaris)	Arginine deiminase is in clinical development	Intensively investigated for the treatment of several different tumours, with promising results	42,43
Asparagine	Asparagine metabolism	L-asparaginase	<i>L</i> -asparaginase is a prescription drug for the treatment of ALL	<i>L</i> -asparaginase reduces the circulating availability of asparagine, which is strictly required by some ALL types	44
·					

СК	Lipid biosynthesis	CK37 TCD-717 (TCD Pharma) RNAi	TCD-717 is in clinical development	The safety and therapeutic profile of TCD-717 is currently being tested in patients with advanced solid tumours	45,46
DHFR	Folate metabolism	Methotrexate Pemetrexed	Methotrexate and pemetrexed are prescription drugs for the treatment of several tumours	Methotrexate and pemetrexed are routinely used against various solid and haematological neoplasms	47
DNA polymerases	Nucleid acid synthesis	Fludarabine Gemcitabine	Fludarabine and gemcitabine are prescription drugs for the treatment of several tumours	Fludarabine and gemcitabine are employed against haematological cancers and carcinomas, respectively	47
HMGCR	Mevalonate pathway	Statins	Statins are prescription drugs against hypercholesterolemia	The antineoplastic potential of statins is being investigated in multiple prospective clinical trials	48,49
IDHs	Lipid biosynthesis	AGI-5198 (Xcessbio) AGI-6780 (Xcessbio) RNAi	Preclinical data	Inhibition of both wild-type and mutant IDH results in multipronged antineoplastic effects, presumably reflecting a decrease in 2-HG levels as well as an interference with glutamine metabolism	50-53
FASN	Lipid biosynthesis	C75 C247 Orlistat	Orlistat can be purchased over- the-counter as a support for the dietary management of obesity	In spite of promising preclinical data, no FASN inhibitor is being tested for its anticancer effects in clinical trials	54,55
MGLL	Lipid biosynthesis	JZL184 RNAi	Preclinical data	MGLL promotes migration, invasion and survival of malignant cells, as well as <i>in vivo</i> tumour growth	56
PGAM1	РРР	PGMI-004A RNAi	Preclinical data	Pharmacological or genetic inhibition of PGAM1 attenuates tumour growth <i>in vitro</i> and <i>in vivo</i> , presumably owing to the 3PG-mediated inhibition of the PPP	57
PHGDH	Anaplerosis	RNAi	Preclinical data	PHGDH inhibition fails to affect serine availability, yet limits that of multiple intermediates of the TCA cycle	58,59
PKM2	РРР	TEPP-46 SAICAR Serine	Preclinical data	PKM2 activators reportedly limit the diversion of glucose towards the PPP, hence mediating antitumour effects	60-63
RNR	Deoxynucleotide synthesis	Fludarabine Gemcitabine Hydroxyurea	Fludarabine, gemcitabine and hydroxyurea are prescription drugs for the treatment of several tumours	Hydroyxurea is currently employed for the treatment of myeloproliferative disorders, psoriasis and CML	47
TKTL1	РРР	RNAi	Preclinical data	Depletion of TKTL1 limits the proliferation of gastric cancer cells <i>in vitro</i> and <i>in vivo</i>	64
TYMS	Thymidine synthesis	5-FU	Prescription drug for the treatment of several tumours	5-FU is routinely employed for the treatment of colorectal, pancreatic and breast carcinoma	47

Other metabolic circuitries

Other metabol	ne en cum nes				
CAs	Extracellular pH regulation	Acetazolamide Indisulam RNAi	Acetazolamide is a prescription drug for the treatment of glaucoma and several neurological disorders	Inhibition of CAs results in the normalization of extracellular pH, therefore limiting local invasion and metastasis	65
CPT1	NADPH metabolism	Etomoxir RNAi	Preclinical data	Inhibition of CPT1 results in the accumulation of ROS, ATP depletion and cell death	1-3
HIF-1	Hypoxic responses	Acriflavine PX-478	Preclinical data	Most, if not all, HIF-1-targeting agents have failed (or never reached) clinical development	66
IDO	Tryptophan metabolism	RNAi	Preclinical data	IDO-derived kynurenine promotes tumour progression via cell-intrinsic and cell-extrinsic mechanisms	67
mTOR	Cell growth Autophagy	Rapalogues Torins	Rapalogues are prescription drugs for the treatment of graft rejection and several tumours	Although mTOR inhibitors may limit tumour growth, they may also favour chemoresistance or neocarcinogenesis	68,69
NAMPT	NADH metabolism	FK866	Clinical development Preclinical data	Associated with dose-limiting thrombocytopenic effects	70-72
NHE1	Extracellular pH regulation	Amiloride Cariporide RNAi	Amiloride is a prescription drug for the treatment of hypertension and congestive heart failure	Clinical development of cariporide has been stopped owing to an unexpected incidence of stroke	65
PTGS2 AMPK?	Cell growth Autophagy	Aspirin	Over-the-counter non-steroidal anti-inflammatory drug	Although aspirin has been shown to activate AMPK, its antineoplastic activity appears to stem from on-target effects	73-75

2-DG, 2-deoxy-*D*-glucose; 2-HG, *R*(-)-2-hydroxyglutarate; 3-BP, 3-bromopyruvate; 3PG, 3-phosphoglycerate; 3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; 5-FU, 5-fluorouracil; 968, 5-[3-bromo-4-(dimethylamino)phenyl]-2,2-dimethyl-2,3,5,6-tetrahydrobenzo[a]; ACC, acetyl-CoA carboxylase; ACLY, ATP-citrate lyase; ALL, acute lymphoblastic leukaemia; AMPK, 5'-AMP-activated protein kinase; BPTES, bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide; C75, 4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid; CA, carbonic anhydrase; CHC, *a*-cyano-4-hydroxycinnamate; CK, choline kinase; CK37, *N*-(3,5-dimethylphenyl)-2-[[5-(4-ethylphenyl)-1H-1,2,4-triazol-3-yl]sulfanyl] acetamide; CML, chronic myelogenous leukaemia; CPT1, carnitine palmitoyltransferase I; DCA, dichloroacetate; DHFR, dihydrofolate reductase; EGCG, epigallocatechin gallate; FASN, fatty acid synthase; FK866, N-[4-(1-benzoyl-4-piperidinyl)butyl]-3-(3-pyridinyl)-2E-propenamide; FX11, 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GBM, glioblastoma multiforme; GLS1, glutaminase 1; GLUD1, glutamate dehydrogenase 1; GLUT, glucose transporter; HADHA, trifunctional protein, *a* subunit; HIF-1, hypoxia-inducible factor 1; HK, hexokinase; HMGCR, 3-hydroxy-3-methyl-glutaryl-COA reductase; IDH, isocitrate dehydrogenase; IDO, indoleamine-2,3-dioxygenase; JZL184, 4-nitrophenyl-4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate; LDHA, lactate dehydrogenase A; MCT, monocarboxylate transporter; MGLL, monoacylglycerol lipase; mTOR, mammalian target of rapamycin; NAMPT, nicotinamide phosphoribosyltransferase; TEPP-46, 6-[(3-aminophenyl)methyl]-4,6-dihydro-4-methyl-2-(methylsulfinyl)-5h-thieno[2',3':4,5]pyrrolo[2,3-d]pyridazin-5-one; NHE1, Na⁺/H⁺ exchanger 1; PC, pyruvate carboxylase; PDK1, pyruvate dehydrogenase kinase 1;

PDK2, pyruvate dehydrogenase kinase 2; PFK15, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PGAM1, phosphoglycerate mutase 1; PGMI-004A, PGAM1 inhibitor 004A; PHGDH, phosphoglycerate dehydrogenase; PKM2, pyruvate kinase, muscle, M2 isoform; PPP, pentose phosphate pathway; PTGS2, prostaglandin-endoperoxide synthase 2; PX-478, S-2-amino-3-[4'-*N*,*N*,-bis(2-chloroethyl)amino]phenyl propionic acid N-oxide dihydrochloride; RNAi, RNA interference; RNR, ribonucleotide reductase; ROS, reactive oxygen species; SAICAR, succinylaminoimidazolecarboxamide ribose-5'-phosphate; SB-204990, (2*R*)-2-[(2*S*)-8-(2,4-dichlorophenyl)-2-hydroxyoctyl]-2-hydroxybutanedioic acid; TCA, tricarboxylic acid; TKTL1, transketolase-like protein 1; TLN-232, *D*-Phe-Cys-*D*-Trp-Lys-Cys-Thr-NH₂; TYMS, thymidylate synthase; WZB117, 3-hydroxy-benzoic acid 1,1'-(3-fluoro-1,2-phenylene) ester. *Where company name is not indicated, this is not applicable, the agent is an academic compound or it is a generic drug.

References

- 1. Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A. & Wu, M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. *Biochimica et biophysica acta* **1807**, 726-734 (2011).
- 2. Samudio, I. *et al.* Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. *The Journal of clinical investigation* **120**, 142-156 (2010).
- 3. Zaugg, K. *et al.* Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. *Genes Dev* **25**, 1041-1051 (2011).
- 4. Foretz, M. *et al.* Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. *The Journal of clinical investigation* **120**, 2355-2369 (2010).
- 5. El-Mir, M. Y. *et al.* Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. *The Journal of biological chemistry* **275**, 223-228 (2000).
- 6. Kumagai, S., Narasaki, R. & Hasumi, K. Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. *Biochem Biophys Res Commun* **365**, 362-368 (2008).
- 7. Birsoy, K. *et al.* MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. *Nat Genet* **45**, 104-108 (2013).
- 8. Yang, C. *et al.* Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. *Cancer Res* **69**, 7986-7993 (2009).
- 9. Liu, Y. *et al.* A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. *Molecular cancer therapeutics* **11**, 1672-1682 (2012).
- 10. Gautier, E. L. *et al.* HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. *J Exp Med* **210**, 339-353 (2013).
- 11. Zhan, T., Digel, M., Kuch, E. M., Stremmel, W. & Fullekrug, J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. *Journal of cellular biochemistry* **112**, 849-859 (2011).

- 12. Wang, J. B. *et al.* Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. *Cancer Cell* **18**, 207-219 (2010).
- 13. Seltzer, M. J. *et al.* Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. *Cancer Res* **70**, 8981-8987 (2010).
- 14. Enns, G. M. *et al.* Survival after treatment with phenylacetate and benzoate for ureacycle disorders. *The New England journal of medicine* **356**, 2282-2292 (2007).
- 15. Andela, V. B., Altuwaijri, S., Wood, J. & Rosier, R. N. Inhibition of beta-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARgamma agonists. *FEBS letters* **579**, 1765-1769 (2005).
- 16. Suckow, M. A. *et al.* The anti-ischemia agent ranolazine promotes the development of intestinal tumors in APC(Min/+) mice. *Cancer letters* **209**, 165-169 (2004).
- Dwarakanath, B. S. *et al.* Clinical studies for improving radiotherapy with 2-deoxy-Dglucose: present status and future prospects. *Journal of cancer research and therapeutics* 5 Suppl 1, S21-26 (2009).
- 18. Goldin, N. *et al.* Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. *Oncogene* **27**, 4636-4643 (2008).
- Jae, H. J. *et al.* The antitumor effect and hepatotoxicity of a hexokinase II inhibitor 3-bromopyruvate: in vivo investigation of intraarterial administration in a rabbit VX2 hepatoma model. *Korean journal of radiology : official journal of the Korean Radiological Society* 10, 596-603 (2009).
- 20. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. *Nat Rev Drug Discov* **10**, 671-684 (2011).
- 21. Hamanaka, R. B. & Chandel, N. S. Targeting glucose metabolism for cancer therapy. *J Exp Med* **209**, 211-215 (2012).
- 22. Wolf, A. *et al.* Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. *J Exp Med* **208**, 313-326 (2011).
- 23. Shim, H. *et al.* c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. *Proceedings of the National Academy of Sciences of the United States of America* **94**, 6658-6663 (1997).
- 24. Le, A. *et al.* Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 2037-2042 (2010).

- 25. Shoshan, M. C. 3-Bromopyruvate: targets and outcomes. *Journal of bioenergetics and Siomembranes* **44**, 7-15 (2012).
- 26. Sonveaux, P. *et al.* Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. *The Journal of clinical investigation* **118**, 3930-3942 (2008).
- 27. Schneiderhan, W. *et al.* CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. *Gut* **58**, 1391-1398 (2009).
- 28. Hao, J. *et al.* In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. *PloS one* 7, e40716 (2012).
- 29. Cheng, T. *et al.* Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. *Proceedings of the National Academy of Sciences of the United States of America* **108**, 8674-8679 (2011).
- 30. Michelakis, E. D., Webster, L. & Mackey, J. R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. *British journal of cancer* **99**, 989-994 (2008).
- 31. Li, J., Kato, M. & Chuang, D. T. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. *The Journal of biological chemistry* **284**, 34458-34467 (2009).
- 32. Oikawa, T. *et al.* Dipalmitoylation of radicicol results in improved efficacy against tumor growth and angiogenesis in vivo. *Cancer science* **98**, 219-225 (2007).
- 33. Clem, B. *et al.* Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. *Molecular cancer therapeutics* 7, 110-120 (2008).
- 34. Telang, S. *et al.* Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. *Oncogene* **25**, 7225-7234 (2006).
- 35. Clem, B. F. *et al.* Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. *Molecular cancer therapeutics* **12**, 1461-1470 (2013).
- 36. De Bock, K. *et al.* Role of PFKFB3-driven glycolysis in vessel sprouting. *Cell* **154**, 651-663 (2013).
- 37. Goldberg, M. S. & Sharp, P. A. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. *J Exp Med* **209**, 217-224 (2012).

- 38. Christofk, H. R. *et al.* The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. *Nature* **452**, 230-233 (2008).
- 39. Vander Heiden, M. G. *et al.* Identification of small molecule inhibitors of pyruvate kinase M2. *Biochemical pharmacology* **79**, 1118-1124 (2010).
- 40. Beckers, A. *et al.* Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. *Cancer Res* **67**, 8180-8187 (2007).
- 41. Hatzivassiliou, G. *et al.* ATP citrate lyase inhibition can suppress tumor cell growth. *Cancer Cell* **8**, 311-321 (2005).
- 42. Ott, P. A. *et al.* Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. *Investigational new drugs* **31**, 425-434 (2013).
- 43. Yang, T. S. *et al.* A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. *British journal of cancer* **103**, 954-960 (2010).
- 44. Muller, H. J. & Boos, J. Use of L-asparaginase in childhood ALL. *Critical reviews in oncology/hematology* **28**, 97-113 (1998).
- 45. Clem, B. F. *et al.* A novel small molecule antagonist of choline kinase-alpha that simultaneously suppresses MAPK and PI3K/AKT signaling. *Oncogene* **30**, 3370-3380 (2011).
- 46. Yalcin, A. *et al.* Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. *Oncogene* **29**, 139-149 (2010).
- 47. Chabner, B. A. & Roberts, T. G., Jr. Timeline: Chemotherapy and the war on cancer. *Nat Rev Cancer* **5**, 65-72 (2005).
- 48. Nielsen, S. F., Nordestgaard, B. G. & Bojesen, S. E. Statin use and reduced cancerrelated mortality. *The New England journal of medicine* **367**, 1792-1802 (2012).
- 49. Cao, Z. *et al.* MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. *Cancer Res* **71**, 2286-2297 (2011).
- 50. Dang, L. *et al.* Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. *Nature* **462**, 739-744 (2009).

- Wang, F. *et al.* Targeted inhibition of mutant IDH2 in leukemia cells induces cellular 64. differentiation. *Science* 340, 622-626 (2013).
- 52. Ward, P. S. *et al.* The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. *Cancer Cell* **17**, 225-234 (2010).
- 53. Rohle, D. *et al.* An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. *Science* **340**, 626-630 (2013).
- 54. Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M. & Kuhajda, F. P. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. *Oncogene* 24, 39-46 (2005).
- 55. Seguin, F. *et al.* The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. *British journal of cancer* **107**, 977-987 (2012).
- 56. Nomura, D. K. *et al.* Monoacylglycerol lipase regulates a fatty acid network that 70. promotes cancer pathogenesis. *Cell* **140**, 49-61 (2010).
- 57. Hitosugi, T. *et al.* Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. *Cancer Cell* **22**, 585-600 (2012).
- 58. Locasale, J. W. *et al.* Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. *Nat Genet* **43**, 869-874 (2011).
- 59. Possemato, R. *et al.* Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. *Nature* **476**, 346-350 (2011).
- 60. Anastasiou, D. *et al.* Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. *Nature chemical biology* **8**, 839-847 (2012).
- Chaneton, B. *et al.* Serine is a natural ligand and allosteric activator of pyruvate kinase 74. M2. *Nature* 491, 458-462 (2012).
- Keller, K. E., Tan, I. S. & Lee, Y. S. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. *Science* 338, 1069-1072 75. (2012).
- 63. Kung, C. *et al.* Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. *Chemistry & biology* **19**, 1187-1198 (2012).

- 4. Yuan, W. *et al.* Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. *Cancer biology & therapy* **9**, 710-716 (2010).
- 65. Neri, D. & Supuran, C. T. Interfering with pH regulation in tumours as a therapeutic strategy. *Nat Rev Drug Discov* **10**, 767-777 (2011).
- 66. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. *Nat Rev Cancer* 11, 393-410 (2011).
- 67. Opitz, C. A. *et al.* An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. *Nature* **478**, 197-203 (2011).
- 68. Sabatini, D. M. mTOR and cancer: insights into a complex relationship. *Nat Rev Cancer* **6**, 729-734 (2006).
- 69. Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. *Nat Rev Drug Discov* **10**, 868-880 (2011).
- 70. Bajrami, I. *et al.* Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. *EMBO molecular medicine* **4**, 1087-1096 (2012).
- 71. Okumura, S., Sasaki, T., Minami, Y. & Ohsaki, Y. Nicotinamide phosphoribosyltransferase: a potent therapeutic target in non-small cell lung cancer with epidermal growth factor receptor-gene mutation. *Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer* 7, 49-56 (2012).
- 72. Holen, K., Saltz, L. B., Hollywood, E., Burk, K. & Hanauske, A. R. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. *Investigational new drugs* **26**, 45-51 (2008).
- 73. Hawley, S. A. *et al.* The ancient drug salicylate directly activates AMP-activated protein kinase. *Science* **336**, 918-922 (2012).
 - 4. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. *The New England journal of medicine* **356**, 2131-2142 (2007).
 - 5. Liao, X. *et al.* Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. *The New England journal of medicine* **367**, 1596-1606 (2012).