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Supplemental Table 1 - Metabolic targets for cancer therapy 

Targets Pathways Agents or approaches 
(company)* Development stage Observations Refs 

Bioenergetic metabolism 

CPT1 β oxidation 

Etomoxir 
Oxfenicine 
Perhexiline 
RNAi 

Perhexiline is approved for use 
an antianginal agent in Asia, 
Australia and New Zealand 

Inhibition of CPT1 exerts anticancer effects in  
vitro and in vivo, yet it remains unclear whether 
these stem from the blockage of β-oxidation 

1-3 

Complex I Mitochondrial 
respiration 

Metformin 
Phenformin 

Metformin is prescribed for the 
treatment of type 2 diabetes 

The antineoplastic activity of metformin is 
independent of glycaemia and may reflect 
its capacity to inhibit mitochondrial respiration 

4,5 

GAPDH Glycolysis 3-BP 
Koningic acid Preclinical data 

In glycolytic cancer cells, GAPDH inhibition 
leads to ATP depletion and caspase-independent 
cell death, hence suppressing in vivo growth 

6,7 

GLUD1 Glutamine 
metabolism 

EGCG 
RNAi 

EGCG is in 
clinical development 

The safety and therapeutic potential of EGCG is being 
tested in cohorts of patients affected by multiple neoplasms 8 

GLUT1 Glycolysis WZB117  
RNAi Preclinical data Pharmacological or genetic inhibition of GLUT1 

exerts antineoplastic effects, both in vitro and in vivo 9,10 

GLUT4 Glycolysis Dehydrosilybin 
Silybin Preclinical data Both these flavonoids reduce the viability of cultured 

cancer cells in a GLUT4-dependent manner 11 

GLS1 Glutamine 
metabolism 

968 
BPTES 
RNAi 

Preclinical data Malignant cells expressing mutant IDH1 may 
be particularly sensitive to GLS1-targeting agents 12,13 

Glutamine Glutamine 
metabolism 

Phenylacetate 
Phenylbutyrate 

Prescription drugs for the 
treatment of hyperammonaemia 

Phenylacetate rapidly reacts with circulating glutamine to form 
phenylacetylglutamine, which is readily excreted in urine 14 

HADHA β oxidation Ranolazine 
Trimetazidine 

Prescription drugs for the 
treatment of angina 

The actual antineoplastic potential of HADHA- 
targeting interventions remains to be elucidated 2,15,16 

Hexokinases Glycolysis 

2-DG 
3-BP 
Lonidamine 
Methyl jasmonate 
RNAi 

The clinical development 
of 2-DG, 3-BP and lonidamine 
has been discontinued 

It remains to be determined whether the anticancer effects  
of 3-BP and lonidamine stem from the inhibition of HKs 17-22 
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LDHA Glycolysis 

3-BP 
FX11 
Galloflavin 
RNAi 

Preclinical data 
Targeting LDHA limits MYC-driven carcinogenesis, 
and – coupled to NAMPT inhibitors – mediates 
robust antineoplastic effects in vivo 

23-25 

MCT1 TCA cycle 

AR-C155858 
AR-C117977 
AZD3965 (AstraZeneca) 
CHC 
RNAi 

AZD3965 is in 
clinical development 

AZD3965 is currently being tested in a phase I 
clinical trial enrolling patients with advanced solid  
tumours; these agents may be incompatible with 
the use of MCT1-transported drugs, such as 3-BP 

7,26 

MCT4 Glycolysis CD44 RNAi 
CD147 RNAi Preclinical data Silencing CD44 and/or CD147 results in the downregulation 

of MCT4 coupled to the inhibition of tumour progression 27,28 

PC TCA cycle RNAi Preclinical data Targeting PC exerts antineoplastic effects, especially 
when glutamine cannot be used by cancer cells 29 

PDK1 TCA cycle DCA DCA is a prescription drug for 
the treatment of lactic acidosis 

DCA is well tolerated by patients with glioblastoma multiforme 
and provokes profound mitochondrial defects in cancer cells 30 

PDK2 TCA cycle AZD7545 (AstraZeneca) 
Radicicol Preclinical data 

The anticancer effects of radicicol may be independent 
from its capacity to inhibit PDHK2, while the antineoplastic 
potential of AZD7545 remains entirely unexplored 

31,32 

PFKFB3 Glycolysis 

3PO 
PFK15 
Pfkfb3+/- mice 
RNAi 

Preclinical data 

Inhibition of PFKFB3 exerts anticancer effects in tumour-
bearing mice and prevents HRAS-driven carcinogenesis; in 
part, these effects may result from the ability of PFKFB3-
targeting interventions to inhibit vessel sprouting 

33-36 

PKM2 Glycolysis TLN-232 (Thallion) 
RNAi 

The clinical development of 
TLN-232 has been discontinued 

Inhibition of PKM2 reverses the Warburg effect (at 
least in some tumour models), yet may favour anabolism 37-39 

Anabolic metabolism 

ACC Lipid 
biosynthesis Soraphen A Preclinical data ACC inhibition blocks fatty acid synthesis and stimulates 

β oxidation, thus limiting cancer cell growth in vitro 40 

ACLY Lipid 
biosynthesis 

SB-204990 (SmithKline Beecham) 
RNAi Preclinical data Irrespective of encouraging results, no ACLY inhibitor is 

currently being tested as an anticancer agent in clinical trials  41 

Arginine Arginine 
metabolism Arginine deiminase (Polaris) Arginine deiminase is 

in clinical development 
Intensively investigated for the treatment of 
several different tumours, with promising results 42,43 

Asparagine Asparagine 
metabolism L-asparaginase L-asparaginase is a prescription 

drug for the treatment of ALL 
L-asparaginase reduces the circulating availability of 
asparagine, which is strictly required by some ALL types 44 
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CK Lipid 
biosynthesis 

CK37 
TCD-717 (TCD Pharma) 
RNAi 

TCD-717 is in  
clinical development 

The safety and therapeutic profile of TCD-717 is currently 
being tested in patients with advanced solid tumours 45,46 

DHFR Folate 
metabolism 

Methotrexate 
Pemetrexed 

Methotrexate and pemetrexed 
are prescription drugs for the 
treatment of several tumours 

Methotrexate and pemetrexed are routinely used 
against various solid and haematological neoplasms 47 

DNA 
polymerases 

Nucleid acid 
synthesis 

Fludarabine 
Gemcitabine 

Fludarabine and gemcitabine are 
prescription drugs for the 
treatment of several tumours 

Fludarabine and gemcitabine are employed against 
haematological cancers and carcinomas, respectively 47 

HMGCR Mevalonate 
pathway Statins Statins are prescription drugs 

against hypercholesterolemia  
The antineoplastic potential of statins is being 
investigated in multiple prospective clinical trials 48,49 

IDHs Lipid 
biosynthesis 

AGI-5198 (Xcessbio) 
AGI-6780 (Xcessbio) 
RNAi 

Preclinical data 

Inhibition of both wild-type and mutant IDH  
results in multipronged antineoplastic effects,  
presumably reflecting a decrease in 2-HG levels 
as well as an interference with glutamine metabolism 

50-53 

FASN Lipid 
biosynthesis 

C75 
C247 
Orlistat 

Orlistat can be purchased over-
the-counter as a support for the 
dietary management of obesity 

In spite of promising preclinical data, no FASN inhibitor 
is being tested for its anticancer effects in clinical trials 54,55 

MGLL Lipid 
biosynthesis 

JZL184 
RNAi Preclinical data MGLL promotes migration, invasion and survival 

of malignant cells, as well as in vivo tumour growth 56 

PGAM1 PPP PGMI-004A 
RNAi Preclinical data 

Pharmacological or genetic inhibition of PGAM1 
attenuates tumour growth in vitro and in vivo, presumably 
owing to the 3PG-mediated inhibition of the PPP 

57 

PHGDH Anaplerosis RNAi Preclinical data PHGDH inhibition fails to affect serine availability, yet 
limits that of multiple intermediates of the TCA cycle 58,59 

PKM2 PPP 
TEPP-46 
SAICAR 
Serine 

Preclinical data PKM2 activators reportedly limit the diversion of glucose 
towards the PPP, hence mediating antitumour effects 60-63 

RNR Deoxynucleotide 
synthesis 

Fludarabine 
Gemcitabine 
Hydroxyurea 

Fludarabine, gemcitabine  
and hydroxyurea are 
prescription drugs for the 
treatment of several tumours 

Hydroyxurea is currently employed for the treatment of 
myeloproliferative disorders, psoriasis and CML 47 

TKTL1 PPP RNAi Preclinical data Depletion of TKTL1 limits the proliferation 
of gastric cancer cells in vitro and in vivo  64 

TYMS Thymidine 
synthesis 5-FU Prescription drug for the 

treatment of several tumours 
5-FU is routinely employed for the treatment 
of colorectal, pancreatic and breast carcinoma 47 
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Other metabolic circuitries 

CAs Extracellular pH 
regulation 

Acetazolamide 
Indisulam 
RNAi 

Acetazolamide is a prescription 
drug for the treatment of 
glaucoma and several 
neurological disorders 

Inhibition of CAs results in the normalization of extracellular 
pH, therefore limiting local invasion and metastasis 65 

CPT1 NADPH 
metabolism 

Etomoxir 
RNAi Preclinical data Inhibition of CPT1 results in the accumulation  

of ROS, ATP depletion and cell death 1-3 

HIF-1 Hypoxic 
responses 

Acriflavine 
PX-478 Preclinical data Most, if not all, HIF-1-targeting agents have 

failed (or never reached) clinical development 66 

IDO Tryptophan 
metabolism RNAi Preclinical data IDO-derived kynurenine promotes tumour progression 

via cell-intrinsic and cell-extrinsic mechanisms  67 

mTOR Cell growth 
Autophagy 

Rapalogues 
Torins 

Rapalogues are prescription 
drugs for the treatment of graft 
rejection and several tumours 

Although mTOR inhibitors may limit tumour growth, they 
may also favour chemoresistance or neocarcinogenesis 68,69 

NAMPT NADH 
metabolism FK866 Clinical development 

Preclinical data Associated with dose-limiting thrombocytopenic effects 70-72 

NHE1 Extracellular pH 
regulation 

Amiloride 
Cariporide 
RNAi 

Amiloride is a prescription drug 
for the treatment of hypertension 
and congestive heart failure 

Clinical development of cariporide has been  
stopped owing to an unexpected incidence of stroke 65 

PTGS2 
AMPK? 

Cell growth 
Autophagy Aspirin Over-the-counter non-steroidal 

anti-inflammatory drug 
Although aspirin has been shown to activate AMPK, its 
antineoplastic activity appears to stem from on-target effects 73-75 

 
2-DG, 2-deoxy-D-glucose; 2-HG, R(-)-2-hydroxyglutarate; 3-BP, 3-bromopyruvate; 3PG, 3-phosphoglycerate; 3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; 5-FU, 5-fluorouracil; 

968, 5-[3-bromo-4-(dimethylamino)phenyl]-2,2-dimethyl-2,3,5,6-tetrahydrobenzo[a]; ACC, acetyl-CoA carboxylase; ACLY, ATP-citrate lyase; ALL, acute lymphoblastic leukaemia; 

AMPK, 5’-AMP-activated protein kinase; BPTES, bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide; C75, 4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid; CA, 

carbonic anhydrase; CHC, α-cyano-4-hydroxycinnamate; CK, choline kinase; CK37, N-(3,5-dimethylphenyl)-2-[[5-(4-ethylphenyl)-1H-1,2,4-triazol-3-yl]sulfanyl] acetamide; CML, 

chronic myelogenous leukaemia; CPT1, carnitine palmitoyltransferase I; DCA, dichloroacetate; DHFR, dihydrofolate reductase; EGCG, epigallocatechin gallate; FASN, fatty acid 

synthase; FK866, N-[4-(1-benzoyl-4-piperidinyl)butyl]-3-(3-pyridinyl)-2E-propenamide; FX11, 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid; GAPDH, 

glyceraldehyde-3-phosphate dehydrogenase; GBM, glioblastoma multiforme; GLS1, glutaminase 1; GLUD1, glutamate dehydrogenase 1; GLUT, glucose transporter; HADHA, 

trifunctional protein, α subunit; HIF-1, hypoxia-inducible factor 1; HK, hexokinase; HMGCR, 3-hydroxy-3-methyl-glutaryl-CoA reductase; IDH, isocitrate dehydrogenase; IDO, 

indoleamine-2,3-dioxygenase; JZL184, 4-nitrophenyl-4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate; LDHA, lactate dehydrogenase A; MCT, monocarboxylate 

transporter; MGLL, monoacylglycerol lipase; mTOR, mammalian target of rapamycin; NAMPT, nicotinamide phosphoribosyltransferase; TEPP-46, 6-[(3-aminophenyl)methyl]-4,6-

dihydro-4-methyl-2-(methylsulfinyl)-5h-thieno[2',3':4,5]pyrrolo[2,3-d]pyridazin-5-one; NHE1, Na+/H+ exchanger 1; PC, pyruvate carboxylase; PDK1, pyruvate dehydrogenase kinase 1; 
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PDK2, pyruvate dehydrogenase kinase 2; PFK15, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PGAM1, 

phosphoglycerate mutase 1; PGMI-004A, PGAM1 inhibitor 004A; PHGDH, phosphoglycerate dehydrogenase; PKM2, pyruvate kinase, muscle, M2 isoform; PPP, pentose phosphate 

pathway; PTGS2, prostaglandin-endoperoxide synthase 2; PX-478, S-2-amino-3-[4'-N,N,-bis(2-chloroethyl)amino]phenyl propionic acid N-oxide dihydrochloride; RNAi, RNA 

interference; RNR, ribonucleotide reductase; ROS, reactive oxygen species; SAICAR, succinylaminoimidazolecarboxamide ribose-5'-phosphate; SB-204990, (2R)-2-[(2S)-8-(2,4-

dichlorophenyl)-2-hydroxyoctyl]-2-hydroxybutanedioic acid; TCA, tricarboxylic acid; TKTL1, transketolase-like protein 1; TLN-232, D-Phe-Cys-D-Trp-Lys-Cys-Thr-NH2; TYMS, 

thymidylate synthase; WZB117, 3-hydroxy-benzoic acid 1,1′-(3-fluoro-1,2-phenylene) ester. *Where company name is not indicated, this is not applicable, the agent is an academic 

compound or it is a generic drug. 
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