- 2 Endonuclease G promotes autophagy by suppressing mTOR
- **signaling and activating DNA damage response**
- 4

5

Figure S2. ENDOG promotes autophagic flux in L02 cells. a-b. Representative 18 images (a) and quantitative results (b) of autophagosome and autolysosome in wild-19 20 type and ENDOG overexpressed L02 cells upon different treatments. (WT: wild-type; OE: ENDOG overexpressed; CT: control; Star.: starvation for 6 hours; Rapa.: 21 Rapamycin, 1 μ M for 6 hours; CQ: 50 μ M for 6 hours; Scale bar =10 μ m; n = 100 22 independent cells exainined over 3 independent experiments; data are presented as 23 mean values \pm SD, ** p < 0.01, *** p < 0.001). Source data are provided as a Source 24 Data file. 25

27 Figure S3. ENDOG promotes autophagic flux in HepG2. a-b. Representative images (a) and quantitative results (b) of autophagosome and autolysosome in wild-type and 28 ENDOG overexpressed HepG2 cells upon different treatments. (WT: wild-type; OE: 29 30 ENDOG overexpressed; CT: control; Star.: starvation for 6 hours; Rapa.: Rapamycin, 1 μ M for 6 hours; CQ: 50 μ M for 6 hours; Scale bar =10 μ m; n= 100 independent cells 31 examined over 3 independent experiments, data are presented as mean values \pm SD, 32 ** p < 0.01, *** p < 0.001). c. Representative western blots and quantitative results of 33 autophagy related proteins in HepG2 cells under the normal or starvation conditions. 34 (Star.: starvation for 6 hours; n = 4 independent samples; data are presented as mean 35 values \pm SD, * p < 0.05; *** p < 0.001). Source data are provided as a Source Data 36 file. 37

Figure S4. Loss of ENDOG represses starvation-induced autophagy.

a. Representative images of GFP-LGG-1 puncta in the pharyngeal muscle of control or ENDOG loss (*cps-6*;GFP::LGG-1) *C. elegans*. (white arrows, GFP-LGG-1 puncta, Star.: starvation for 4 hours; Scale bar =50 μ m; biological repeated three times). **b-e.** Representative western blots andquantitative results of mTOR pathway and autophagy related proteins in MHCC97-H (**b-c**) and PLC/PR/5cells (**d-e**) following the starvation treatment for 6 hours. (n = 3-4 independent samples; data are presented as mean values \pm SD, ** P < 0.01). Source data are provided as a Source Data file.

3-3 γ peptide. **b.** Co-IP experiments showed that interaction between ENDOG and 14-3-3 γ in Myc-14-3-3 γ (left) or Myc-ENDOG (right) overexpressed L02 cell (biological repeated three times). **c.** Representative IF staining images showed the co-localization of 14-3-3 γ and ENDOG in L02 cell (white arrows). (Scale bar =10 µm; biological repeated three times). Source data are provided as a Source Data file.

57 Figure S6. 14-3-3y repressed the ENDOG-induced mTOR repression and

autophagy. Western blots of the indicated proteins. (ENDOG or 14-3-3γ were
transfected for 48 hours; HBSS treated for 6 hours; S: short exposure; L: long exposure;
biological repeated three times). Source data are provided as a Source Data file.

61

62

Figure S7. Interactive docking prediction of 14-3-3γ and ENDOG by Zdock Server

and Co-IP confirmation. a. The phosphorylated Threonine-128 of ENDOG have two
hydrogen bonds with Serine-59 of 14-3-3γ. b. The phosphorylated Serine-288 of
ENDOG have one hydrogen bonds with Glutamic Acid-18 of 14-3-3γ. c. Wild-typeor
indicated mutant ENDOG were overexpressed in the ENDOG knockout cells for 48
hours. Co-IP experiments were performed by Anti-myc. (WT: wild-type; T128D: T128

- to D128 mutation of ENDOG; S288D:S288 to D288 mutation of ENDOG; biological
- repeated three times). Source data are provided as a Source Data file.

Figure S8. Phosphorylation of T128 and S288 is necessary for ENDOG-mediated autophagy. a-b. Western blots of the indicated proteins (a) and the quantification of LCEB-II (b). (ENDOG KO cells transfected with pK-Myc, wild type ENDOG, ENDOG-DD and ENDOG-AA for 48 hours; BafA1: 100 nM, for 6 hours; S: short exposure; L: long exposure; n = 4 independent samples; data are presented as mean values \pm SD, * p < 0.05; ** p < 0.01). Source data are provided as a Source Data file.

Figure S9. AKT represses the phosphorylation of ENDOG. Overexpression of

activated AKT represses the phosphorylation of ENDOG in ENDOG overexpressed
L02, quantitative results on right. (Vec.: empty vector; myr-AKT: constitutively
activated AKT; co-overexpressed Flag-ENDOG and myr-AKT/Vec for 48 hours; n = 3
independent experiments; data are presented as mean values ± SD; *** p < 0.001).
Source data are provided as a Source Data file.

Figure S10. ENDOG promotes autophagy through activating the DNA damage response. a. Representative images of p-H2A.X foci and autophagosome (GFP-LC3 puncta) in wild-type and ENDOG overexpressed cells following the etoposide treatment (Etoposide: 50 μ M for 1 hour; Scale bar =10 μ m). b. Representativewestern blots (upper) andquantitative results (lower) of p-ATM, p-CHK1, p-CHK2, LC3B and ENDOG in wild-type and ENDOG overexpressed cells following the indicated

treatments (WT: wild-type; OE: ENDOG overexpressed; Eto: Etoposide, 50 μM for 1
hour; KU: KU-60019, 10 μM for 1 hour; L: long exposure; S: short exposure; n = 4
independent samples; data are presented as mean values ± SD* p < 0.05; ** p < 0.01).
Source data are provided as a Source Data file.

99

100

101 Figure S11. KU60019 treatment partially repressed the ENDOG-induced DNA

102 damage. a-b. Western blots (a) and quantification (b) of the indicated proteins in wild-

type and ENDOG overexpressed cells following the KU60019 treatment. (KU60019:

104 10 μ M for 1 hour; n = 4 independent samples; * p < 0.05; ** p < 0.01; *** p < 0.001).

105 Source data are provided as a Source Data file.

Figure S12. Endonuclease activity of ENDOG is essential for the DNA damage
 response and autophagy induction. a-c. Representative images (a) and respective
 quantitative results (b) of GFP-LC3 puncta and p-H2A.X foci under etoposide

110	treatment (c). (WT: wild-type; KO: ENDOG knockout; plasmids transiently transfected
111	for 48 hours; etoposide: 50 μ M for 1 hour; Scale bar = 10 μ m; n = 100 independent
112	cells exaimined over 3 independent experiments, data are presented as mean values \pm
113	SD, *** $p < 0.001$). d-e. Representative images of p-H2A.X foci (d) and quantitative
114	results (e) in the indicated cell groups at different time points after etoposide treatment
115	(Scale bar = $10 \ \mu m$; n = 50 independent cells). f . Western blots of the indicated proteins
116	in wild-type, ENDOG KO cells, and ENDOG KO cells transfected with the ENDOG
117	mutants. Source data are provided as a Source Data file.

Figure S13. Endonuclease activity of ENDOG is essential for ENDOG-mediated DNA damage and mTOR repression under the starvation. a-c. Representative images of comet assay (a) and the quantification of tail DNA (b) and tail moment (c).

123 (ENDOG knockout cells were transfected with pK-Myc, wild-type and EM-ENDOG 124 for 48 hours; n = 75- 150 independent cells; data are presented as mean values \pm SD; 125 *** p < 0.0001). **d-e.** Western blots (**d**) and quantification (**e**) of the indicated proteins. 126 (ENDOG knockout cells were transfected with pK-Myc, wild-type and EM-ENDOG 127 for 48 hours and treated with HBSS for 6 hours; n = 4 independent samples; S: short 128 exposure; L: long exposure; data are presented as mean values \pm SD; * p < 0.05; ** p 129 < 0.01; *** p < 0.001). Source data are provided as a Source Data file.

Representative images (c) and respective quantitative results (d) of GFP-LC3 puncta in L02 cells (Scale bar = 10 μ m; n = 100 independent cells exaimined over 3 independent experiments; data are presented as mean values \pm SD; *** p < 0.001). e-f. Western blots (e) and quantification (f) of the indicated proteins (n = 4 independent samples). (PNR-3-80: ENDOG inhibitor, 50 μ M for 24 hours; Eto.: etoposide, 50 μ M for 1 hour; data are presented as mean values \pm SD; * p < 0.05; ** p < 0.01; *** p <0.001). Source data are provided as a Source Data file.

145 Figure S15. Caspase-8/tBid mediate starvation induced autophagy and the release of ENDOG from mitochondria. a. Sub-cellular fractionation isolation shows 146 starvation promotes the release of ENDOG from mitochondria to cytosol and nuclei in 147 L02 cells (Star.: Starvation for 6 hours; C: cytoplasm; M: mitochondria; N: nuclear 148 biological repeated three times). b. Inhibition of caspase-8 represses the release of 149 ENDOG from mitochondria in L02 cells (Star.: Starvation for 6 hours; Z-IETD-FMK: 150 caspase-8 inhibitor, 50 µM for 2 hours; C: cytoplasm; M: mitochondria; N: nuclear; 151 biological repeated three times). c. Representativeimmunofluorescent staining images 152

153	of Cytochrome c (mitochondria marker) and ENDOG under caspase-8 inhibitor and
154	starvation treatment (Star.: starvation for 6 hours, Z-IETD-FMK: 10 μ M for 2 hours;
155	Scale bar =10 μ m; biological repeated three times). d. Quantitative analysis for
156	the colocalization of ENDOG with mitochondria (Cyto c) in (c) by ImageJ plugin
157	JACOP (n = 4 independent field; data are presented as mean values \pm SD, ** p < 0.01).
158	e. Western blots (left) and quantitative results (right) showed inhibition of caspase-8
159	represses starvation-induced autophagy (n = 3 independent experiments; data are
160	presented as mean values \pm SD). f. Immunofluorescent staining of endogenous LC3B
161	(Star. : starvation for 6 hours, Z-IETD-FMK: 10 μ M for 2 hours; Scale bar = 10 μ m;
162	100 independent cells exainined over 3 independent experiments; data are presented
163	as mean values \pm SD; *** p < 0.001). Source data are provided as a Source Data file.
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	

Position	Peptide	ANN	PSSM	SVM	Consensus
12	AGLTLA[S]GAGL	0.118	-0.242	-1.087	-0.404
77	GLAQLK[S]RESY	0.296	0.020	-0.532	-0.072
80	QLKSRE[S]YVLC	0.236	0.018	-0.860	-0.202
89	LCYDPR[T]RGAL	0.178	-0.014	-0.886	-0.241
120	DFREDD[S]VHAY	0.500	0.229	-0.434	0.098
128	HAYHRA[T]NADY	0.380	0.138	-0.545	-0.009
135	NADYRG[S]GFDR	0.291	0.023	-0.511	-0.066
151	AANHRW[S]QKAM	0.243	-0.065	-0.857	-0.226
158	QKAMDD[T]FYLS	0.269	-0.069	-0.606	-0.135
162	DDTFYL[S]NVAP	0.091	-0.174	-1.274	-0.452
183	NNLEKY[S]RSLT	0.039	-0.304	-1.443	-0.569
185	LEKYSR[S]LTRS	0.499	0.191	-0.233	0.152
187	KYSRSL[T]RSYQ	0.461	0.766	-0.114	0.371
189	SRSLTR[S]YQNV	0.076	0.117	-1.615	-0.474
197	QNVYVC[T]GPLF	0.394	0.342	-0.252	0.161
205	PLFLPR[T]EADG	0.321	0.091	-0.592	-0.060
211	TEADGK[S]YVKY	0.105	-0.129	-1.133	-0.386
227	NHVAVP[T]HFFK	0.128	-0.251	-1.327	-0.482
246	GQIELR[T]YVMP	0.031	-0.252	-1.869	-0.697

175 Table S1. Candidate 14-3-3-binding sites of ENDOG

269	FLVPIE[S]IERA	0.157	-0.115	-0.892	-0.283
274	ESIERA[S]GLLF	0.097	-0.015	-1.104	-0.341
288	ILARAG[S]LKAI	0.916	1.139	1.564	1.206
293	GSLKAI[T]AGSK	0.491	0.067	-0.353	0.068
296	KAITAG[S]K	0.160	0.021	-1.083	-0.301

- 176 (Data analysis from http://www.compbio.dundee.ac.uk/1433pred)
- 177 ANN Artificial Neural Network (cut-off = 0.55)
- 178 PSSM Position-Specific Scoring Matrix (cut-off = 0.80)
- 179 SVM Support Vector Machine (cut-off = 0.25)
- 180 Consensus Average of the scores provided by the three methods (cut-off = 0.50)

182 Table S2. Primary antibodies used in the present study.

Antibody	Company (catalognumber)	Application		
Parimary antibodies				
ACTB	Sigma (A8481)	WB, 1:10000		
ATG5	Cell Signaling Technology (12994)	WB, 1:5000		
ATG7	Sigma (A2857)	WB, 1:5000		
ENDOG	Cell Signaling Technology (4969)	WB, 1:1000		
ENDOG	NOVUS (IMG-5565-2)	IF, 1:100		
Flag-tag	Sigma (F1804)	IP, 1:1000		
GFP	Sigma (11814460001)	WB, 1:10000		
LC3B	Sigma (L7543)	WB, 1:5000		
Myc-tag	Proteintech (16286-1-AP)	IP, 1:1000		
p-4EBP1 (Thr 37/46)	Cell Signaling Technology (2855)	WB, 1:1000		
p-mTOR (Ser 2448)	Cell Signaling Technology (5536)	WB, 1:2000		

mTOR	Cell Signaling Technology (2983)	WB,1:2000
p-p70S6K (Thr 389)	Cell Signaling Technology (9234)	WB, 1:1000
p-ULK1 (Ser 757)	Cell Signaling Technology (14202)	WB, 1:1000
SQSTM1	Sigma (P0067)	WB, 1:10000
Phospho-Ser/Thr	Cell Signaling Technology (25081)	WB, 1:1000
14-3-3γ	Proteintech (12381-1-AP)	WB/IP, 1:1000
p-H2A.X (Ser139)	Cell Signaling Technology (9718)	WB, 1:1000
p-ATM (Ser1981)	Cell Signaling Technology (5883)	WB, 1:1000
p-p53 (Ser15)	Cell Signaling Technology (9286)	WB, 1:1000
p-CHK1	Cell Signaling Technology (2348)	WB, 1:2000
p-CHK2	Cell Signaling Technology (2197)	WB, 1:2000
TSC2	Proteintech (20004-1-AP)	WB, 1:1000
Vps34	Proteintech (12452-1-AP)	WB, 1:2000
GSK-3β	Proteintech(22104-1-AP)	WB, 1:5000
Phospho-Ser/Thr	Cell Signaling Technology (25081)	WB, 1:1000
Beclin1	Cell Signaling Technology (3495)	WB, 1:1000
p-Beclin1 (Ser 93)	Cell Signaling Technology (14717)	WB, 1:1000
ATG13	Cell Signaling Technology (13273)	WB, 1:5000
p-ATG13 (Ser 355)	Cell Signaling Technology (26839)	WB, 1:1000
ATG14	Cell Signaling Technology (96752)	WB, 1:5000
p-ATG14 (Ser 29)	Cell Signaling Technology (92340)	WB, 1:1000
ATG12	Cell Signaling Technology (4180)	WB, 1:5000
p-TSC2 (Ser 1387)	Cell Signaling Technology (5584)	WB, 1:1000
PARP-1	Cell Signaling Technology (9532)	WB, 1:100
p-AMPK (Thr 172)	Cell Signaling Technology (50081)	WB, 1:1000
DNA-PK	Proteintech (19983-1-AP)	WB, 1:1000
p-ATR (Ser 428)	Cell Signaling Technology (2853)	WB, 1:1000
SDHA	Proteintech (14865-1-AP)	WB, 1:5000
Hsp60	Proteintech (15282-1-AP)	WB, 1:5000

Cell Signaling Technology (9715)	WB, 1:5000	
Cell Signaling Technology (9746)	WB, 1:10000	
Cell Signaling Technology (20023)	WB, 1:1000	
Santa cruz biotechnology (13561)	WB, 1:1000	
Jackson ImmunoResearch	WB,	
(111-035-144)	1:5000-1:10000	
Jackson ImmunoResearch	WB,	
(115-035-146)	1:5000-1:10000	
Jackson ImmunoResearch	IF, 1:200-400	
(115-585-146)		
Jackson ImmunoResearch	IF, 1:200-400	
(115-545-146)		
Cell Signaling Technology (93702)	IP, 1:1000	
Abcam (ab131366)	IP, 1:1000	
	Cell Signaling Technology (9715) Cell Signaling Technology (20023) Santa cruz biotechnology (13561) Jackson ImmunoResearch (111-035-144) Jackson ImmunoResearch (115-035-146) Jackson ImmunoResearch (115-585-146) Jackson ImmunoResearch (115-545-146) Cell Signaling Technology (93702) Abcam (ab131366)	

187 Table S3. Sequences of primers used in the present study

Gene names	Sequences, 5' to 3'
Human-ATG3	TTCAGTTCACCCATGCAGGC

	GTTAACAGCCATTTTGCCACTAA		
Human-ATG5	GGGTCCCTCTTGGGGTACAT		
	ACCACACATCTCGAAGCACA		
Human-ATG7	GAGCAGCCTTGTGAGAGACA		
	GGATGCACTGGATACCAGCA		
Human-ATG12	CGAACACGAACCATCCAAGG		
	TGGTCTGGGGAAGGAGCAAA		
Human-TFEB	TTCCAACAAGGGAAGGTGACAT		
	TGGCTCCCAGCCTGAGC		
Human-BDR4	GTTGATGTGATTGCCGGCTC		
	GTGCAGAAAGCTGTTTCGGA		
Human-Zkscan3	GGTAGAGGGCCGTTACCGAG		
	TATGTGACCCATGCATCCCG		
Human-ENDOG	GGTCAAGCTGCGGCTATATT		
	CGACACGTTCTACCTGAGCA		
Human-ACTB	GTTGTCGACGACGAGCG		
	GCACAGAGCCTCGCCTT		