

SUPPLEMENTARY INFORMATION

In format as provided by the authors

You are what you eat: diet, health and the gut microbiota

Niv Zmora, Jotham Suez and Eran Elinav

https://doi.org/10.1038/s41575-018-0061-2

Ref	Organism	Diet, nutrient or feeding pattern	Microbiota member(s)	Phenotype	Causative/associative	Method(s) of confirmation
1	Mouse	HFD, NC	Various bacteria	Weight gain	Causative	GF mice
2	Mouse	HFD	Various bacteria (Down: Lactobacillus spp., Bifidobacterium spp., Bacteroides/Prevotella spp.)	Glucose intolerance, weight gain, adiposity	Causative	Antibiotics
3	Mouse	HFD	Decrease in Bacteroides-like bacteria, Eubacterium rectale-Clostridium coccoides group and bifidobacteria	Obesity, diabetes, insulin resistance	Associative	
4	Mouse	HFD	Various bacteria	Random plasma glucose and GTT	Causative	FMT in GF mice
5	Mouse	HFD	Up: Firmicutes, Down: Proteobacteria	Weight gain, increased adiposity	Associative	
6	Mouse	HFD	Up: Firmicutes, <i>Ruminococcaceae, Rikenellaceae,</i> Down: Bacteriodetes, Proteobacteria, <i>Bacteroidaceae</i> , Clostridiales, <i>Provotellaceae</i>	Weight gain, increased adiposity	Associative	
7	Mouse	HFD	Down: Bacteroidetes, Up: Firmicutes, Proteobacteria	Weight gain	Causative	KO model
8	Rat	HFD	Up: Firmicutes, Down: Bacteroidetes	Hyperphagia, obesity	Causative	Antibiotics, FMT in GF mice, metabolite supplementation
9	Mouse	HFD	Down: Akkermansia muciniphila	Akkermanis reverses HFD-induced fat-mass gain, metabolic endotoxemia, adipose tissue inflammation and insulin resistance	Causative	Administration of causative agent
10	Mouse	HFD	Up: Desulfovibrio, Down: S24–7, Lachnospiraceae	Exacerbated colitis	Associative	
11	Mouse	HFD	Up: Firmicutes, Deferribacteres, Down: Bacteroidetes, Actinobacteria, Proteobacteria	(KO model) Increased energy expenditure and reduced weight gain	Causative	FMT in GF mice

12	Mouse	parental HFD	Up: ratio Firmicutes/Bacteriodetes, Lachnospiraceae, Clostridiales	Exacerbated infection, EAE and allergic sensitization	Causative	Co-housing experiments
13	Mouse	HFD (+ parental HFD)	Up: Tenericutes, Verrucomicrobia, Down: Coriobacteriaceae, Peptococcaceae	Weight gain, fatty liver	Associative	
14	Mouse	HFD + grape polyphenols	Up: Akkermansia muciniphila, Down: Firmicutes/Bacteroidetes ratio	Attenuated weight gain, adiposity, serum TNF, IL-6, LPS, glucose intolerance.	Associative	
15	Mouse	HFD + milk sphingomyelin	Up: Firmicutes <i>, Bifidobacterium,</i> Down: Bacteroidetes, Actinobacteria	Altered lipid metabolism genes, reduced serum LPS	Associative	
16	Mouse	HFD + FOS	Up: Bifidobacterium	Reduced endotoxemia and inflammatory cytokines, improved glycemic control	Associative	
17	Mouse	HFD + GOS	Up: S24-7, Parabacteroides, Down: Coriobacteriaceae, Olsenella, Mucispirillum	Modulation of HFD phenotype: serum triglycerides, plasma LPS, inflammatory cytokines	Asssociative	
18	Mouse	HFD + wheat arabinoxylan	Up: Bacteroides/Prevotella spp., Roseburia, Bifidobacterium animalis lactis	Ameliorated effects of HFD	Associative	
19	Human, mouse	HFD, feeding time-shifted	Various bacteria	Weight gain, glucose intolerance	Causative	Antibiotics, FMT in GF mice
20	Mouse	HFD, time- restricted feeding	Down: Lactobacillus, Lactococcus, Up: Oscillibacter	Weight gain, glucose intolerance, increased cholesterol levels	Associative	
21	Mouse	NC, circadian clock manipulation	Various bacteria	Elevated plasma TG, FFA, insulin and glucose	Causative	Antibiotics, GF mice, KO models, metabolite deprivation
22	Mouse	HFD + vitamin D deficiency	Up: Helicobacter hepaticus, Down: Akkermansia muciniphila	Insulin resistance and NAFLD	Associative	
23	Human	HFHSD	Various bacteria	Obesity	Causative	FMT in GF mice

23	Human	HFHSD	Up: Erysipelotrichi	Increased adiposity	Causative	FMT in GF mice
24	Mouse	HFHSD	Up: Firmicutes, Down: Bacteroidetes	Weight gain	Associative	
25	Mouse	High-fat, high- cholesterol diet	Down: Prevotella	Osteomyelitis	Causative (inverse)	Antibiotics, FMT in GF mice
26	Mouse	HFHSD + FOS	Up: Bacteroidetes, Down: Firmicutes	Elevated propionate and butyrate, IGN activation, reduced weight gain, improved glycemic control	Causative	Metabolite supplementation
27	Mouse	HFHSD + cranberry extract	Up: Akkermansia spp.	Reduced weight gain, adiposity, improved insulin sensitivity, glucose tolerance	Associative	
28	Mouse	Western diet	Up: <i>Mollicutes</i>	Increased adiposity	Causative	FMT in GF mice
29	Human	Caloric restriction	Up: Akkermansia muciniphila	Improved Disse index, reduced total and LDL cholesterol, decrease in waist circumference	Associative	
30	Human	Caloric restriction	Down: Clostridium histolyticum, Eubacterium rectale/Clostridium coccoides, Clostridium lituseburense, Up: Bacteroides/Prevotella	Weight loss	Associative	
31	Human	Caloric restriction	Increase in Bacteroides fragilis, Clostridium leptum, Bifidobacterium catenulatum, decrease in Clostridium coccoides, Lactobacillus, Bifidobacterium	Weight loss	Associative	
32	Human	Caloric restriction	Down: Actinobacteria, Up: Bacteroidetes (among other)	Weight loss, insulin sensitivity	Associative	
33	Mouse	Caloric restriction	Up: Lactobacillus	Prolonged lifespan, decreased body weight and adiposity, improved metabolic profile	Associative	

34	Mouse	High-fiber diet	Up: Bacteroidaceae, Bifidobacteriaceae	Decreased susceptibility allergic airway inflammation, elevated SCFA	Causative	Metabolite supplementation
35	Mouse	High-fiber diet	Down: Bacteroidiaceae	Chemically-induced colitis	Causative (inverse)	FMT in GF mice, metabolite supplementation
36	Human	high-fibre diet	Up: Coprococcus, Prevotella and Catenibacterium	Frailty in elderly	Associative (inverse)	
37	Mouse	AhR ligands (cruciferous vegetables)	(in KO model) Up: Bacteroidetes phylum, bacterial load	Exacerbated colitis	Associative (inverse)	KO model, metabolite supplementation and deprivation
38	Human	Fiber-deprived diet	Up: Akkermansia muciniphila, Bacteroides caccae, Down: Bacteroides ovatus, Eubacterium rectale	Mucus degradation, susceptibility to infection, weight loss	Causative	FMT in GF mice
39	Mouse	Flavonoids	Various bacteria	Accelerated weight regain	Causative (inverse)	Antibiotics, FMT to GF mice, metabolite supplementation
40	Human	Grain supplementation	Up: Firmicutes/Bacteroidetes ratio, Blautia, Bifidobacterium, Dialister, Eubacterium rectale, Roseburia faecis, Roseburia intestinalis	Reduced plasma IL-6, reduced postprandial glucose	Associative	
41	Mouse	Low carbohydrate diet	Down: Clostridiaceae, Lachnospiraceae, Ruminococcaceae, Coprococcus, Roseburia, Anaerotruncus	Reduced polyp frequency in CRC susceptible mice, reduced butyrate	Associative	
42	Human	Low-fat, high carbohydrate- diet, high glycemic index- diet	Up: Bifidobacterium, Bacteroides	Weight loss, reduced fasting glucose and cholesterol	Associative	
43	Human	Malawian diet	Up: Caudovirales order, Inoviridae family	Weight loss	Causative	FMT in GF mice
44	Human	Malawian diet + bovine milk oligosaccharides	25 distinct strains derived from Malawian microbiota	Anabolism in infancy	Causative	FMT in GF mice and piglets

45	Human	Malawian diet	Up: Bilophila wadsworthia, members of Desulfovibrio, Clostridium innocuum	Weight loss	Causative	FMT in GF mice
45	Human	Malawian diet + therapeutic food	Up: Bifidobacterium, Lactobacillus, Ruminococcus, Faecalibacterium prausnitzii, Down: Bacteroidales	Weight gain	Associative	
46	Mouse	Malnutrition + inulin	Up: Lactobacillus	Ameliorate giardiasis	Associative	
47	Human	Dietary emulsifiers	Up: Proteobacteria, <i>Enterobacteriaceae,</i> Down: <i>Bacteroidaceae</i>	Elevated fasting glucose, LPS, faecal Lcn2 levels, shortened thickened colons, mild splenomegaly, increased adiposity	Causative	FMT in GF mice
48	Mouse	Dietary emulsifiers	Down: Bacteroidales, Up: <i>Ruminococcus gnavus;</i> Up: <i>Akkermansia muciniphila</i> in IL10 KO mice	Low-grade inflammation and adiposity	Causative	FMT in GF mice
49	Human, mouse	NAS	Up: Bacteroidales, <i>Bacteroides</i> , Down: Clostridiales, <i>Clostridium</i>	Glucose intolerance, elevated acetate and propionate	Causative	Antibiotics, FMT in GF mice, in vitro culture
50	Mouse	Sucralose	Down: <i>Clostridium</i> cluster XIVa	Increased hepatic cholesterol and cholic acid, luminal butyrate and secondary/primary bile acids ratio	Associative	
51	Mouse	Saccharin	Up: Corynebacterium, Roseburia, Turicibacter, Down: Ruminococcus, Adlercreutzia, Dorea	Elevated hepatic iNOS, TNF	Associative	
52	Rat	Aspartame + HFD / NC	(NC) Up: total bacteria, <i>Enterobacteriaceae,</i> <i>Clostridium leptum,</i> (HFD) Up: <i>Roseburia</i> spp., Down: Firmicutes/Bacteroidetes ratio	Impaired glucose and insulin sensitivity	Associative	
53	Rat	Splenda (sucralose- glucose- maltodextrin)	Down: total anaerobes, Bifidobacterium, Lactobacillus, Bacteroides, Clostridium	Weight gain	Associative	
54	Mouse	Increased omega-3 : omega-6 fatty	Up: Proteobacteria, <i>Prevotella, Fusobacterium,</i> <i>Clostridium</i> cluster XI, SFB, Down: <i>Bifidobacterium,</i> <i>Akkermansia muciniphila, Lactobacillus, Clostridium</i>	Metabolic endotoxemia	Causative (inverse)	Antibiotics, co-hosing experiments

		acids ratio	clusters IV and XIVa, Enterococcus faecium			
55	Mouse	Saturated fat	Up: Bacteroides, Turicibacter, Bilophila	Weight gain, increased fasting insulin and glucose levels, insulin resistance	Causative	KO models, FMT in GF mice, pathway inhibitor
56	Mouse	Palmitate	Down: Prevotellaceae, S24-7	EAE, decrease in SCFA	Causative	FMT in GF mice, metabolite supplementation
57	Human	Saturated fat	Up: Anaerotruncus, Desulfovibrio_and Coprobacillus	Frailty in elderly	Associative	
57	Mouse	Saturated fat	Up: Bilophila wadsworthia	Genetically-induced colitis	Associative	
58	Mouse	Linoleic acid	Up: Bacteroides/Prevotella, Akkermansia	Elevated stomach leptin protein, elevated stomach gene expression	Associative	
59	Human, mouse	L-carnitine	Various bacteria	Atherosclerosis	Causative	Antibiotics, metabolite supplementation
60	Mouse	TMAO, choline	Up: Allobaculum, Down: SFB, Lachnospiraceae	Platelet hyperreactivity, enhanced thrombosis	Causative	FMT in GF mice
61	Human	Choline levels manipulation	Down: Gammaproteobacteria	Increase in liver fat	Asociative	
62	Mouse	Low- nitrite/nitrate diet	Up: Actinobacteria, Bifidobacteriales, Down: Betaproteobacteria, Burkholderiales, Bacillales (among others)	Metabolic syndrome	Associative	
63	Mouse	Vitamin D- deficient diet	Up: Bacteroidetes	Severity of infectious and chemically- induced colitis	Associative	
64	Human	Vitamin D- deficient diet	Up: Prevotella, Down: Haemophilus, Veillonella	Increased LPS	Associative	
65		Vitamin D-	Up: Bacteroidetes, Firmicutes, Actinobacteria,	Severity of infectious	Associative	

66	Mouse	Selenium- deficient diet	Coxsackievirus B3	Myocarditis	Associative	
67	Mouse	Heme	Up: Akkermansia muciniphila	Differential expression of oncogenes, tumor suppressors, epithelial proliferation	Causative	Antibiotics
68	Mouse	Iron sulfate	Up: Bifidobacterium, Succinivibrio, Turicibacter, Clostridium, Down: Desulfovibrio, Bacteroides	Terminal ileitis	Associative	
69	Mouse	Elemental diet	Nippostrongylus brasiliensis, Giardia muris	Exacerbted infection, mucosal damage	Associative	
70	Mouse	Acesulfame- potassium	Up: Bacteroides, Anaerostipes and Sutterella	Weight gain, increase in LPS synthesis genes, increase pyruvic acid, cholic acid in feces	Associative	
71	Human	Long-stay care diet	Various bacteria	Frailty in elderly	Associative	
72	Human	Vegetable/fruit juice restricted diet	Up: Bacteroidetes, Cyanobacteria, Down: Firmicutes, Proteobacteria	Reduced body weight, increased plasma and urine nitric oxide	Associative	
73	Rat	Pterostilbene	Down: Firmicutes, Up: Akkermansia, Odoribacter	Reduced weight gain, adipocity, insulin resistance and cholesterol	Associative	
74	Human	Synbiotic (FOS/inulin mix, Bifidobacterium longum)	Up: Bifidobacterium longum	Reduced sigmoidoscopy score, reduced inflammatory markers, reduced beta-defensins	Associative	
75	Human	Barley-kernel bread	Up: Prevotella copri	Improved postprandial glucose metabolism	Causative	GF colonized with causative agent
76	Human	Personally- tailored diet	Up: Roseburia inulinivorans, Eubacterium eligens, Bacteroides vulgatus, Alistipes puterdinis, Down: Anaerostipes	Improved glycemic response	Associative	

A list of prominent studies linking dietary practices, nutrient deprivation or supplementation or dietary patterns with members of the microbiota and an observed phenotype in the host. The column "Organism" displays the host which originally harboured the studied microbiota (can be different than the experimental animal in cases of gnotobiotic models). "Microbiota members" includes the major taxa which differed between the interventional group to control or before and after treatment, where "Up:" indicates taxa which were relatively more abundant or that increased following intervention, and "Down:" indicates taxa which were less adundant or that decreased following intervention. The column "Phenotype" usually refers to observed clinical features. "Causative / associative" indicates the nature of the link found between the diet and the microbiota to the phenotype (if an inverse correlation is found or if the phenotype is attenuated by the diet and the microbiota, the word "inverse" appears in brackets). "Methods of confirmation" are specified in case of a causative interactions. CRC, colorectal cancer; EAE, Experimental autoimmune encephalomyelitis; FFA, free-fatty acids; FMT, faecal microbiota transplantation; FOS, fructooligosaccharides; GF, germ-free; GTT, glucose tolerance test; HFD, high-fat diet; HFHSD, high-fat high-sugar diet; IGN, intestinal gluconeogenesis; IL, interleukin; iNOS, Inducible nitric oxide synthase; KO, knock-out; LPS, lipopolysaccharide; NAS, non-caloric artificial sweeteners; NC, normal chow; SCFA, short-chain fatty acids; TG, triglycerides; TMAO, trimethylamine oxide; TNF, tumor necrosis factor.

References

- Leone, V. *et al.* Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. *Cell Host Microbe* **17**, 681–9 (2015).
- 2. Cani, P. D. *et al.* Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. *Diabetes* **57**, 1470–1481 (2008).
- 3. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–72 (2007)
- 4. Ussar, S. *et al.* Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. *Cell Metab.* **22**, 516–30 (2015)
- 5. Murphy, E. F. *et al.* Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. *Gut* **59**, 1635–1642 (2010)

- 6. Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. & Kim, D. H. High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway 22. *PLoS.ONE*. **7**, e47713 (2012)
- Hildebrandt, M. a *et al.* High-fat diet determines the composition of the murine gut microbiome independently of obesity. *Gastroenterology* 137, 1716-24–2 (2009)
- 8. Perry, R. J. et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016)
- 9. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. **110**, 9066–9071 (2013)
- 10. Cheng, L. *et al.* High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. *Int. Immunopharmacol.* **40**, 1–10 (2016)
- 11. Ruan, J.-W. *et al.* Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. *Nat. Microbiol.* **2**, 16220 (2016)
- 12. Myles, I. A. et al. Parental dietary fat intake alters offspring microbiome and immunity. J. Immunol. 191, 3200–9 (2013)
- 13. Wankhade, U. D. *et al.* Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. *PLoS One* **12**, e0175675 (2017)
- 14. Roopchand, D. E. et al. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet–Induced Metabolic Syndrome. Diabetes **64**, 2847–2858 (2015)
- 15. Norris, G. H., Jiang, C., Ryan, J., Porter, C. M. & Blesso, C. N. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. **30**, 93–101 (2016)
- 16. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia **50**, 2374–2383 (2007)

- 17. Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553 (2012).
- Neyrinck, A. M. et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6, e20944 (2011)
- 19. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014)
- Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. *Cell Metab.* 20, 1006–1017 (2014)
- 21. Mukherji, A., Kobiita, A., Ye, T. & Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. *Cell* **153**, 812–27 (2013)
- 22. Su, D. *et al.* Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. *Front. Physiol.* **7**, 498 (2016)
- 23. Turnbaugh, P. J. *et al.* The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. *Sci. Transl. Med.* **1**, 6ra14 (2009)
- 24. Carmody, R. N. et al. Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host Microbe 17, 72-84 (2014)
- 25. Lukens, J. R. et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516, 246–249 (2014)
- 26. Vadder, F. De et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 156, 1–13 (2014).
- 27. Anhê, F. F. *et al.* A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased *Akkermansia* spp. population in the gut microbiota of mice. *Gut* **64**, 872–883 (2015).
- 28. Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. *Cell Host Microbe* **3**, 213–223 (2008).

- 29. Dao, M. C. *et al. Akkermansia muciniphila* and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. *Gut* **65**, 426–436 (2016).
- 30. Nadal, I. *et al.* Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. *Int. J. Obes. (Lond).* **33**, 758–67 (2009).
- 31. Santacruz, A. *et al.* Interplay between weight loss and gut microbiota composition in overweight adolescents. *Obesity (Silver Spring).* **17**, 1906–15 (2009).
- 32. Ruiz, A. *et al.* One-year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. *Environ. Microbiol.* **19**, 1536–1551 (2017).
- 33. Zhang, C. et al. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat. Commun. 4, 2163 (2013).
- 34. Trompette, A. *et al.* Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. *Nat. Med.* **20**, 159–166 (2014).
- 35. Macia, L. *et al.* Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. *Nat. Commun.* **6**, 6734 (2015).
- 36. Jeffery, I. B., Lynch, D. B. & O'Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. *ISME J.* **10**, 170–82 (2016).
- 37. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–40 (2011).
- 38. Desai, M. S. *et al.* A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. *Cell* **167**, 1339–1353.e21 (2016).
- 39. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

- 40. Martínez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).
- 41. Belcheva, A. et al. Gut Microbial Metabolism Drives Transformation of Msh2-Deficient Colon Epithelial Cells. Cell 158, 288–299 (2012).
- 42. Fava, F. *et al.* The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome 'at-risk' population. *Int. J. Obes.* **37**, 216–223 (2013).
- 43. Reyes, A. *et al.* Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. *Proc. Natl. Acad. Sci.* **112,** 11941–11946 (2015).
- 44. Charbonneau, M. R. *et al.* Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. *Cell* **164**, 859–71 (2016).
- 45. Smith, M. I. et al. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science. 339, 548–554 (2013).
- 46. Shukla, G., Bhatia, R. & Sharma, A. Prebiotic inulin supplementation modulates the immune response and restores gut morphology in Giardia duodenalis-infected malnourished mice. Parasitol. Res. **115**, 4189–4198 (2016).
- 47. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. *Gut* gutjnl-2016-313099 (2017). doi:10.1136/gutjnl-2016-313099
- 48. Chassaing, B. *et al.* Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. *Nature* **519**, 92–96 (2015).
- 49. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–6 (2014).
- 50. Uebanso, T. et al. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients 9, 560 (2017).

- 51. Bian, X. et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. (2017). doi:10.1016/j.fct.2017.04.045
- 52. Palmnäs, M. S. A. et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the dietinduced obese rat. PLoS One **9**, e109841 (2014).
- 53. Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E. & Schiffman, S. S. Splenda Alters Gut Microflora and Increases Intestinal P-Glycoprotein and Cytochrome P-450 in Male Rats. J. Toxicol. Environ. Heal. Part A **71**, 1415–1429 (2008).
- 54. Kaliannan, K., Wang, B., Li, X.-Y., Kim, K.-J. & Kang, J. X. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. *Sci. Rep.* **5**, 11276 (2015).
- 55. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. *Cell Metab.* **22**, 658–668 (2015).
- 56. Haghikia, A. *et al.* Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. *Immunity* **43**, 817–829 (2015).
- 36. Jeffery, I. B., Lynch, D. B. & O'Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. *ISME J.* **10,** 170–82 (2016).
- 57. Devkota, S. *et al.* Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in II10?/? mice. *Nature* (2012). doi:10.1038/nature11225
- 58. Chaplin, A., Parra, P., Serra, F. & Palou, A. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice. PLoS One **10**, e0125091 (2015).
- 59. Koeth, R. A. *et al.* Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. *Nat. Med.* **19,** 576–585 (2013).

60. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

- 61. Spencer, M. D. et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology **140**, 976–86 (2011).
- 62. Kina-Tanada, M. *et al.* Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. *Diabetologia* **60**, 1138–1151 (2017).
- 63. Assa, A. *et al.* Vitamin D deficiency predisposes to adherent-invasive Escherichia coli-induced barrier dysfunction and experimental colonic injury. *Inflamm. Bowel Dis.* **21**, 297–306 (2015).
- 64. Luthold, R. V, Fernandes, G. R., Franco-de-Moraes, A. C., Folchetti, L. G. D. & Ferreira, S. R. G. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. *Metabolism.* **69**, 76–86 (2017).
- 65. Assa, A. *et al.* Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. *J. Infect. Dis.* **210**, 1296–305 (2014).
- 66. Beck, M. A., Shi, Q., Morris, V. C. & Levander, O. A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med. **1**, 433–6 (1995).
- 67. Ijssennagger, N. *et al.* Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. *Proc. Natl. Acad. Sci.* **112**, 10038–10043 (2015).
- 68. Werner, T. et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut 60, 325–33 (2011).
- 69. Ferguson, A., Logan, R. F. & MacDonald, T. T. Increased mucosal damage during parasite infection in mice fed an elemental diet. Gut **21**, 37–43 (1980).
- 70. Bian, X. et al. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One **12**, e0178426 (2017).

- 71. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–84 (2012).
- 72. Henning, S. M. et al. Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Sci. Rep. 7, 2167 (2017).
- 73. Etxeberria, U. *et al.* Pterostilbene-induced changes in gut microbiota composition in relation to obesity. *Mol. Nutr. Food Res.* **61**, 1500906 (2017).
- 74. Furrie, E. et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut **54**, 242–9 (2005).
- 75. Kovatcheva-Datchary, P. *et al.* Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. *Cell Metab.* **22**, 971–82 (2015).
- 76. Zeevi, D. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 163, 1079–94 (2015).