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Supplementary table 1 | Diet–microbiome–host interactions 

Ref Organism 
Diet, nutrient or 
feeding pattern 

Microbiota member(s) Phenotype Causative/associative 
Method(s) of 
confirmation 

1 
Mouse HFD, NC Various bacteria Weight gain Causative GF mice 

2 
Mouse HFD 

Various bacteria (Down: Lactobacillus spp., 
Bifidobacterium spp., Bacteroides/Prevotella spp.) 

Glucose intolerance, 
weight gain, adiposity 

Causative Antibiotics 

3 
Mouse HFD 

Decrease in Bacteroides-like bacteria, Eubacterium 
rectale-Clostridium coccoides group and 

bifidobacteria 

Obesity, diabetes, 
insulin resistance 

Associative   

4 
Mouse HFD Various bacteria 

Random plasma 
glucose and GTT 

Causative FMT in GF mice 

5 
Mouse HFD Up: Firmicutes, Down: Proteobacteria 

Weight gain, increased 
adiposity 

Associative   

6 
Mouse HFD 

Up: Firmicutes, Ruminococcaceae, Rikenellaceae, 
Down: Bacteriodetes, Proteobacteria, 

Bacteroidaceae, Clostridiales, Provotellaceae 

Weight gain, increased 
adiposity 

Associative   

7 
Mouse HFD 

Down: Bacteroidetes, Up: Firmicutes, 
Proteobacteria 

Weight gain Causative KO model 

8 
Rat HFD Up: Firmicutes, Down: Bacteroidetes Hyperphagia, obesity Causative 

Antibiotics, FMT in GF 
mice, metabolite 
supplementation 

9 
Mouse HFD Down: Akkermansia muciniphila 

Akkermanis reverses 
HFD-induced fat-mass 

gain, metabolic 
endotoxemia, adipose 

tissue inflammation 
and insulin resistance 

Causative 
Administration of 
causative agent 

10 
Mouse HFD Up: Desulfovibrio, Down: S24–7, Lachnospiraceae Exacerbated colitis Associative   

11 
Mouse HFD 

Up: Firmicutes, Deferribacteres, Down: 
Bacteroidetes, Actinobacteria, Proteobacteria 

(KO model) Increased 
energy expenditure 
and reduced weight 

gain 

Causative FMT in GF mice 



12 
Mouse parental HFD 

Up: ratio Firmicutes/Bacteriodetes, 
Lachnospiraceae, Clostridiales 

Exacerbated infection, 
EAE and allergic 

sensitization 
Causative Co-housing experiments 

13 
Mouse 

HFD (+ parental 
HFD) 

Up: Tenericutes, Verrucomicrobia, Down: 
Coriobacteriaceae, Peptococcaceae 

Weight gain, fatty liver Associative   

14 
Mouse 

HFD + grape 
polyphenols 

Up: Akkermansia muciniphila, Down: 
Firmicutes/Bacteroidetes ratio 

Attenuated weight 
gain, adiposity, serum 
TNF, IL-6, LPS, glucose 

intolerance. 

Associative   

15 
Mouse 

HFD + milk 
sphingomyelin 

Up: Firmicutes, Bifidobacterium, Down: 
Bacteroidetes, Actinobacteria 

Altered lipid 
metabolism genes, 
reduced serum LPS 

Associative   

16 
Mouse HFD + FOS Up: Bifidobacterium 

Reduced endotoxemia 
and inflammatory 

cytokines, improved 
glycemic control 

Associative   

17 
Mouse HFD + GOS 

Up: S24-7, Parabacteroides, Down: 
Coriobacteriaceae, Olsenella, Mucispirillum 

Modulation of HFD 
phenotype: serum 

triglycerides, plasma 
LPS, inflammatory 

cytokines 

Asssociative   

18 
Mouse 

HFD + wheat 
arabinoxylan 

Up: Bacteroides/Prevotella spp., Roseburia, 
Bifidobacterium animalis lactis 

Ameliorated effects of 
HFD 

Associative   

19 Human, 
mouse 

HFD, feeding 
time-shifted 

Various bacteria 
Weight gain, glucose 

intolerance 
Causative 

Antibiotics, FMT in GF 
mice 

20 
Mouse 

HFD, time-
restricted 
feeding 

Down: Lactobacillus, Lactococcus, Up: Oscillibacter 
Weight gain, glucose 

intolerance, increased 
cholesterol levels 

Associative   

21 
Mouse 

NC, circadian 
clock 

manipulation 
Various bacteria 

Elevated plasma TG, 
FFA, insulin and 

glucose 
Causative 

Antibiotics, GF mice, KO 
models, metabolite 

deprivation 

22 
Mouse 

HFD + vitamin D 
deficiency 

Up: Helicobacter hepaticus, Down: Akkermansia 
muciniphila 

Insulin resistance and 
NAFLD 

Associative   

23 
Human HFHSD Various bacteria Obesity Causative FMT in GF mice 



23 
Human HFHSD Up: Erysipelotrichi Increased adiposity Causative FMT in GF mice 

24 
Mouse HFHSD Up: Firmicutes, Down: Bacteroidetes Weight gain Associative   

25 
Mouse 

High-fat, high-
cholesterol diet 

Down: Prevotella Osteomyelitis Causative (inverse) 
Antibiotics, FMT in GF 

mice 

26 
Mouse HFHSD + FOS Up: Bacteroidetes, Down: Firmicutes 

Elevated propionate 
and butyrate, IGN 

activation, reduced 
weight gain, improved 

glycemic control 

Causative 
Metabolite 

supplementation 

27 
Mouse 

HFHSD + 
cranberry 

extract 
Up: Akkermansia spp. 

Reduced weight gain, 
adiposity, improved 
insulin sensitivity, 
glucose tolerance 

Associative   

28 
Mouse Western diet Up: Mollicutes Increased adiposity Causative FMT in GF mice 

29 
Human 

Caloric 
restriction 

Up: Akkermansia muciniphila 

Improved Disse index, 
reduced total and LDL 
cholesterol, decrease 

in waist circumference 

Associative   

30 
Human 

Caloric 
restriction 

Down: Clostridium histolyticum, Eubacterium 
rectale/Clostridium coccoides, Clostridium 
lituseburense, Up: Bacteroides/Prevotella 

Weight loss Associative   

31 
Human 

Caloric 
restriction 

Increase in Bacteroides fragilis, Clostridium leptum, 
Bifidobacterium catenulatum, decrease in 

Clostridium coccoides, Lactobacillus, 
Bifidobacterium 

Weight loss Associative   

32 
Human 

Caloric 
restriction 

Down: Actinobacteria, Up: Bacteroidetes (among 
other) 

Weight loss, insulin 
sensitivity 

Associative   

33 
Mouse 

Caloric 
restriction 

Up: Lactobacillus 

Prolonged lifespan, 
decreased body weight 

and adiposity, 
improved metabolic 

profile 

Associative   



34 
Mouse High-fiber diet Up: Bacteroidaceae, Bifidobacteriaceae 

Decreased 
susceptibility allergic 
airway inflammation, 

elevated SCFA 

Causative 
Metabolite 

supplementation 

35 
Mouse High-fiber diet Down: Bacteroidiaceae 

Chemically-induced 
colitis 

Causative (inverse) 
FMT in GF mice, 

metabolite 
supplementation 

36 
Human high-fibre diet Up: Coprococcus, Prevotella and Catenibacterium Frailty in elderly Associative (inverse)   

37 
Mouse 

AhR ligands 
(cruciferous 
vegetables) 

(in KO model) Up: Bacteroidetes phylum, bacterial 
load 

Exacerbated colitis Associative (inverse) 
KO model, metabolite 
supplementation and 

deprivation 

38 
Human 

Fiber-deprived 
diet 

Up: Akkermansia muciniphila, Bacteroides caccae, 
Down: Bacteroides ovatus, Eubacterium rectale 

Mucus degradation, 
susceptibility to 

infection, weight loss 
Causative FMT in GF mice 

39 
Mouse Flavonoids Various bacteria 

Accelerated weight 
regain 

Causative (inverse) 
Antibiotics, FMT to GF 

mice, metabolite 
supplementation 

40 
Human 

Grain 
supplementation 

Up: Firmicutes/Bacteroidetes ratio, Blautia, 
Bifidobacterium, Dialister, Eubacterium rectale, 

Roseburia faecis, Roseburia intestinalis 

Reduced plasma IL-6, 
reduced postprandial 

glucose 
Associative   

41 
Mouse 

Low 
carbohydrate 

diet 

Down: Clostridiaceae, Lachnospiraceae, 
Ruminococcaceae, Coprococcus, Roseburia, 

Anaerotruncus 

Reduced polyp 
frequency in CRC 
susceptible mice, 
reduced butyrate 

Associative   

42 
Human 

Low-fat, high 
carbohydrate-

diet, high 
glycemic index-

diet 

Up: Bifidobacterium, Bacteroides 
Weight loss, reduced 
fasting glucose and 

cholesterol 
Associative   

43 
Human Malawian diet Up: Caudovirales order, Inoviridae family Weight loss Causative FMT in GF mice 

44 
Human 

Malawian diet + 
bovine milk 

oligosaccharides 

25 distinct strains derived from Malawian 
microbiota 

Anabolism in infancy Causative 
FMT in GF mice and 

piglets 



45 
Human Malawian diet 

Up: Bilophila wadsworthia, members of 
Desulfovibrio, Clostridium innocuum 

Weight loss Causative FMT in GF mice 

45 
Human 

Malawian diet + 
therapeutic food 

Up: Bifidobacterium, Lactobacillus, Ruminococcus, 
Faecalibacterium prausnitzii, Down: Bacteroidales 

Weight gain Associative   

46 
Mouse 

Malnutrition + 
inulin 

Up: Lactobacillus Ameliorate giardiasis Associative   

47 
Human 

Dietary 
emulsifiers 

Up: Proteobacteria, Enterobacteriaceae, Down: 
Bacteroidaceae 

Elevated fasting 
glucose, LPS, faecal 

Lcn2 levels, shortened 
thickened colons, mild 

splenomegaly, 
increased adiposity 

Causative FMT in GF mice 

48 
Mouse 

Dietary 
emulsifiers 

Down: Bacteroidales, Up: Ruminococcus gnavus; 
Up: Akkermansia muciniphila in IL10 KO mice 

Low-grade 
inflammation and 

adiposity 
Causative FMT in GF mice 

49 Human, 
mouse 

NAS 
Up: Bacteroidales, Bacteroides, Down: Clostridiales, 

Clostridium 

Glucose intolerance, 
elevated acetate and 

propionate 
Causative 

Antibiotics, FMT in GF 
mice, in vitro culture 

50 
Mouse Sucralose Down: Clostridium cluster XIVa 

Increased hepatic 
cholesterol and cholic 
acid, luminal butyrate 

and 
secondary/primary bile 

acids ratio 

Associative   

51 
Mouse Saccharin 

Up: Corynebacterium, Roseburia, Turicibacter, 
Down: Ruminococcus, Adlercreutzia, Dorea 

Elevated hepatic iNOS, 
TNF 

Associative   

52 
Rat 

Aspartame + 
HFD / NC 

(NC) Up: total bacteria, Enterobacteriaceae, 
Clostridium leptum, (HFD) Up: Roseburia spp., 

Down: Firmicutes/Bacteroidetes ratio 

Impaired glucose and 
insulin sensitivity 

Associative   

53 
Rat 

Splenda 
(sucralose-

glucose-
maltodextrin) 

Down: total anaerobes, Bifidobacterium, 
Lactobacillus, Bacteroides, Clostridium 

Weight gain Associative   

54 
Mouse 

Increased 
omega-3 : 

omega-6 fatty 

Up: Proteobacteria, Prevotella, Fusobacterium, 
Clostridium cluster XI, SFB, Down: Bifidobacterium, 
Akkermansia muciniphila, Lactobacillus, Clostridium 

Metabolic 
endotoxemia 

Causative (inverse) 
Antibiotics, co-hosing 

experiments 



acids ratio clusters IV and XIVa, Enterococcus faecium 

55 
Mouse Saturated fat Up: Bacteroides, Turicibacter, Bilophila 

Weight gain, increased 
fasting insulin and 

glucose levels, insulin 
resistance 

Causative 
KO models, FMT in GF 

mice, pathway inhibitor 

56 
Mouse Palmitate Down: Prevotellaceae, S24-7 EAE, decrease in SCFA Causative 

FMT in GF mice, 
metabolite 

supplementation 

57 
Human Saturated fat Up: Anaerotruncus, Desulfovibrio and Coprobacillus Frailty in elderly Associative   

57 
Mouse Saturated fat Up: Bilophila wadsworthia 

Genetically-induced 
colitis 

Associative   

58 
Mouse Linoleic acid Up: Bacteroides/Prevotella, Akkermansia 

Elevated stomach 
leptin protein, 

elevated stomach gene 
expression 

Associative   

59 Human, 
mouse 

L-carnitine Various bacteria Atherosclerosis Causative 
Antibiotics, metabolite 

supplementation 

60 
Mouse TMAO, choline Up: Allobaculum, Down: SFB, Lachnospiraceae 

Platelet 
hyperreactivity, 

enhanced thrombosis 
Causative FMT in GF mice 

61 
Human 

Choline levels 
manipulation 

Down: Gammaproteobacteria  Increase in liver fat Asociative   

62 
Mouse 

Low-
nitrite/nitrate 

diet 

Up: Actinobacteria, Bifidobacteriales, Down: 
Betaproteobacteria, Burkholderiales, Bacillales 

(among others) 
Metabolic syndrome Associative   

63 
Mouse 

Vitamin D-
deficient diet 

Up: Bacteroidetes 
Severity of infectious 

and chemically-
induced colitis 

Associative   

64 
Human 

Vitamin D-
deficient diet 

Up: Prevotella, Down: Haemophilus, Veillonella Increased LPS Associative   

65 
Mouse 

Vitamin D-
deficient diet 

Up: Bacteroidetes, Firmicutes, Actinobacteria, 
Gammaproteobacteria 

Severity of infectious 
colitis 

Associative   



66 
Mouse 

Selenium-
deficient diet 

Coxsackievirus B3 Myocarditis Associative   

67 
Mouse Heme Up: Akkermansia muciniphila 

Differential expression 
of oncogenes, tumor 

suppressors, epithelial 
proliferation 

Causative Antibiotics 

68 
Mouse Iron sulfate 

Up: Bifidobacterium, Succinivibrio, Turicibacter, 
Clostridium, Down: Desulfovibrio, Bacteroides 

Terminal ileitis Associative   

69 
Mouse Elemental diet Nippostrongylus brasiliensis, Giardia muris 

Exacerbted infection, 
mucosal damage 

Associative   

70 
Mouse 

Acesulfame-
potassium 

Up: Bacteroides, Anaerostipes and Sutterella 

Weight gain, increase 
in LPS synthesis genes, 
increase pyruvic acid, 

cholic acid in feces 

Associative   

71 
Human 

Long-stay care 
diet 

Various bacteria Frailty in elderly Associative   

72 
Human 

Vegetable/fruit 
juice restricted 

diet 

Up: Bacteroidetes, Cyanobacteria, Down: 
Firmicutes, Proteobacteria 

Reduced body weight, 
increased plasma and 

urine nitric oxide 
Associative   

73 
Rat Pterostilbene Down: Firmicutes, Up: Akkermansia, Odoribacter 

Reduced weight gain, 
adipocity, insulin 

resistance and 
cholesterol 

Associative   

74 
Human 

Synbiotic 
(FOS/inulin mix, 
Bifidobacterium 

longum) 

Up: Bifidobacterium longum 

Reduced 
sigmoidoscopy score, 
reduced inflammatory 

markers, reduced 
beta-defensins 

Associative   

75 
Human 

Barley-kernel 
bread 

Up: Prevotella copri 
Improved postprandial 

glucose metabolism 
Causative 

GF colonized with 
causative agent 

76 
Human 

Personally-
tailored diet 

Up: Roseburia inulinivorans, Eubacterium eligens, 
Bacteroides vulgatus, Alistipes puterdinis, Down: 

Anaerostipes 

Improved glycemic 
response 

Associative   
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