In the format provided by the authors and unedited.

Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer

Nikolaos Zacharakis¹, Harshini Chinnasamy¹, Mary Black¹, Hui Xu¹, Yong-Chen Lu¹, Zhili Zheng¹, Anna Pasetto¹, Michelle Langhan¹, Thomas Shelton¹, Todd Prickett¹, Jared Gartner¹, Li Jia¹, Katarzyna Trebska-McGowan², Robert P. Somerville¹, Paul F. Robbins¹, Steven A. Rosenberg^{1*}, Stephanie L. Goff¹ and Steven A. Feldman¹

¹Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. ²Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA. *e-mail: sar@mail.nih.gov

Supplementary Table 1: List of the 71 mutated peptides (62 mutations) screened for recognition by the 4136 TIL.

					Tumor Tumor				
gene	Mutation	cDNA	AA	Mutated pentide sequence	variant	variant	variant key	exon	TMG/
name	type	change	change	Mutated peptide sequence	freq.	freq.	valiant key	exon	PP1
					(RNA)	(exome)			
LMNA	NS SNV	c.T1550G	p.V517G	ASSVTVTRSYRSGGGSGGGSFGDNL	20	7	1:156108466-156108466 T>G	exon11	1
TMEM53	NS SNV	c.C100T	p.R34W	NSPSPGGKEAETWQPVVILLGWGGC	67	46	1:45125929-45125929 G>A	exon2	1
ZNF239	NS SNV	c.C1077A	p.S359R	YKCGECGKGFSQRSNLHIHRCIHTG	18	10	10:44052451-44052451 G>T	exon1	1
ZNF239	NS SNV	c.T1071A	p.S357R	RPYKCGECGKGFRQSSNLHIHRCIH	25	21	10:44052457-44052457 A>T	exon1	1
FAM21C	NS SNV	C.A1562C	p. Y5215		100	86	10:46254776-46254776A>C	exon1/	1
SLC3A2	NS SNV	C.A281C	p.K941		50	38	11:62639124-62639124 A>C	exon3	1
SLC3AZ	IND SINV	C.A188C	p.K031		50	38	11:62639124-62639124 A>C	exon2	1
SLC3AZ		C.A281C	p.K941		15	38	11:62639124-62639124 A>C	exon3	1
		c A/28G	p.A1455		33	20	12:110765611-110765611 ASG	exon/	1
	NIS SNV	c T2509C	n \$837P		20	17	12:49444957-49444957 4 56	exon10	1
PABPC3	NS SNV	c G1271A	p.30371		100	11	13:25671607-25671607 G>A	exon1	1
FL 100385	NS SNV	c A134T	n Y45F	VHNAKTKPREEOENSTERVVSVLTV	52	40	14:106236128-106236128 T>A	exon5	2
LTK	NS SNV	c.G1367A	p.R456H	VRCVGLSLRATPHLILLELMSGGDM	100	70	15:41797669-41797669 C>T	exon12	2
BC108660	NS SNV	c.C9G	p.S3R	MARPSGSSEATGKPR	50	64	16:5289896-5289896 C>G	exon1	2
BC108660	NS SNV	c.C29T	p.A10V	MASPSGSSEVTGKPRGRDGRPR	50	58	16:5289916-5289916 C>T	exon1	2
TUBB3	NS SNV	c.G10A	p.V4I	MDSIRSGAFGHLFRPD	38	69	16:89999935-89999935 G>A	exon3	2
TUBB3	NS SNV	c.G226A	p.V76l	ILVDLEPGTMDSIRSGAFGHLFRPD	38	69	16:89999935-89999935 G>A	exon3	2
LRRC37A2	NS SNV	c.A1286C	p.H429P	GTISENTNYNHPPEADSAGTAFNLG	33	12	17:44626773-44626773 A>C	exon3	2
РСТР	NS SNV	c.T7G	p.S3A	MDADYRKQWDQYVKE	35	36	17:53844777-53844777 T>G	exon2	2
PCTP	NS SNV	c.T223G	p.S75A	CSPTLLADIYMDADYRKQWDQYVKE	35	36	17:53844777-53844777 T>G	exon2	2
ZNF506	NS SNV	c.G998T	p.R3331	AFNRSSNLTKHKIIHTGDVPYKCDE	17	17	19:19905698-19905698 C>A	exon4	2
ZNF93	NS SNV	c.G1139C	p.W380S	HYKCEECGKAFISSSVLTRHKRVHT	25	7	19:20044903-20044903 G>C	exon4	2
ZNF486	NS SNV	c.T1100A	p.M367K	CGKAFTRSSHLTKHKIIHTGEKPYK	20	7	19:20308619-20308619 T>A	exon4	2
ZNF708	NS SNV	c.A678C	p.K226N	KPYKCEECGKAFNQSSNLTNHKKIH	20	13	19:21476898-21476898 T>G	exon4	3
ZNF43	NS SNV	c.T2011A	p.C671S	HKKIHTGEQPYKSEECGKAFNYSSH	10	6	19:21990633-21990633 A>T	exon3	3
ZNF43	NS SNV	c.T1814A	p.1605K	AFKWSSTLTKHKKIHTGEKPYKCEE	11	8	19:21990830-21990830 A>T	exon3	3
ZNF43	NS SNV	c.T1582C	p.F528L	LTTHKKIHTGEKLYKCEECGKAFTQ	20	13	19:21991062-21991062 A>G	exon3	3
ZNF479	NS SNV	c.A1043G	p.N348S	KPYKCEECGKAFSVSSTLTQHKRIH	33	19	19:23406004-23406004 T>C	exon4	3
ZNF681	NS SNV	c.G1512T	p.Q504H	PYQCEECGKAFNHSSHLTRHKRIHT	67	12	19:23926633-23926633 C>A	exon3	3
ZNF180	NS SNV	c.G1033T	p.A345S	CGKSFSWSSHLVSHQRTHTGEKPYE	11	6	19:44981590-44981590 C>A	exon4	3
ZNF880	NS SNV	c.C1216A	p.Q406K	CLTNHHRMHTGEKPYKCNECGR	17	11	19:52888049-52888049 C>A	exon4	3
ZNF880	NS SNV	c.C1216A	p.Q406K	CLTNHHRMHTGEKPYKCNECGKAFR	17	11	19:52888049-52888049 C>A	exon4	3
ZNF880	NS SNV	c.A1217G	p.Q406R	CLTNHHRMHTGERPYKCNECGR	17	11	19:52888050-52888050 A>G	exon4	3
ZNF880	NS SNV	c.A1217G	p.Q406R	CLTNHHRMHTGERPYKCNECGKAFR	17	11	19:52888050-52888050 A>G	exon4	3
ZNF83	NS SNV	c.C475A	p.H159N	KPYKCNECGKVFNNMSHLAQHRRIH	11	8	19:53117343-53117343 G>T	exon4	3
ZNF600	NS SNV	c.T1615A	p.S539T	KCNECSKTFSQRTYLHCHRRLHSGE	20	11	19:53269394-53269394 A>T	exon1	4
ZNF761	NS SNV	c.T697A	p.C233S	CGKTFSQTSSLTSHRRLHTGEKPYK	17	7	19:53958620-53958620 T>A	exon5	4
ZNF761	NS SNV	c.A1361C	p.Y454S		15	8	19:53959284-53959284 A>C	exon5	4
ZNF813	NS SNV	c.G21/A	p.V/3I	RPLVRRHPLHAIIDFILERNLSSVM	33	y o	19:53994523-53994523 G>A	exon1	4
ZNF813	NS SNV	c.G103/A	p.R346H	KTFSQTSSLTCHHRLHTGEKPFKCN	33	y O	19:53994523-53994523 G>A	exon4	4
ZNF551	NS SINV	c.11629A	p.5543R	YECSECGRSFSQRASLIQHQRVHIG	25	9	19:58199356-58199356 T>A	exon3	4
ZINF814	INS SINV	C.11094A	p.v.365D		1/	- 11	19:58385004-58385004 A>1	exon3	4
		C.A13841	p.5462C		50	8 42	19:58945427-58945427 TPA	exon3	4
		c T2652C	p.112195		20	45	2:114333107-114333107 A2G	ex0114	4
		c C2836G	p.L12165		20	33	2.75079140-75079140 720	exon/6	4
ANKRD30C		c G2828A	p.11340D		1/	33	2.90557434-90557434 G/C	exon/6	4
RRRP1	NS SNV	c T1415G	n V472G	KKAEGAONOGKKGEGAONOGKKAEG	13	57	20.17639738-17639738 450	exon1	5
OPA1	NS SNV	c.C1063G	p.1355V	PETISLNVKGPGVORMVIVDIPGVI	67	36	3:193361192-193361192 (>G	exon11	5
FYCO1	NS SNV	c.A4483C	p.S1495R	HLTVDRPVIYDGRDFL	100	38	3:45963271-45963271 T>G	exon18	5
MST1	NS SNV	c.G323A	p.R108H	PWTQHSPHTRLRHSGRCDLFOKKDY	33	12	3:49725021-49725021 C>T	exon3	5
MST1	NS SNV	c.G55A	p.V19I	HGLNTRPTRGCGILGAVTSSRRKPK	33	12	3:49725021-49725021 C>T	exon3	5
MST1	NS SNV	c.G281A	p.R94H	PWTQHSPHTRLRHSGRCDLFQKKGT	33	12	3:49725021-49725021 C>T	exon3	5
MST1	NS SNV	c.A310T	p.T104S	CQLLPWTQHSPHSRLRRSGRCDLFQ	33	16	3:49725034-49725034 T>A	exon3	5
MST1	NS SNV	c.C38G	p.P13R	MVANCCHGLNTRRTRGCGVLGAVTS	25	15	3:49725038-49725038 G>C	exon3	5
NIPBL	NS SNV	c.T1794A	p.D598E	GESRPETPKQKSEGHPETPKQKGDG	13	6	5:36985439-36985439 T>A	exon6	5
GPBP1	NS SNV	c.A353G	p.H118R	SSIFHAGKSQGLRENNIPDNETGRK	41	36	5:56527069-56527069 A>G	exon4	5
HLA-DRB1	NS SNV	c.A320T	p.Y107F	DILEQARAAVDTFCRHNYGVVESFT	17	13	6:32551936-32551936 T>A	exon2	5
HLA-DRB1	NS SNV	c.T319G	p.Y107D	DILEQARAAVDTDCRHNYGVVESFT	17	14	6:32551937-32551937 A>C	exon2	5
HLA-DQA2	NS SNV	c.A143T	p.Y48F	VNFYQSHGPSGQFTHEFDGDEEFYV	57	19	6:32712996-32712996 A>T	exon2	6
HLA-DQA2	NS SNV	c.C208A	p.Q70K	FYVDLETKETVWKLPMFSKFISFDP	33	11	6:32713061-32713061 C>A	exon2	6
CADPS2	NS SNV	c.G3797A	p.R1266H	TLNSKTYDTVHRHLTVEEATASVSE	45	42	7:121960313-121960313 C>T	exon30	6
STK17A	NS SNV	c.G298C	p.D100H	AAKFMRKRRKGQHCRMEIIHEIAVL	17	38	7:43635591-43635591 G>C	exon2	6
STK17A	NS SNV	c.G387C	p.E129D	DNPWVINLHEVYDTASEMILVLEYA	50	36	7:43635680-43635680 G>C	exon2	6
ZNF12	NS SNV	c.C1185A	p.F395L	GEKPYECYICGKLFSQMSYLTIHHR	13	5	7:6730902-6730902 G>T	exon5	6
CTSB	NS SNV	c.G475C	p.D159H	GYNSYSVSNSEKHIMAEIYKNGPVE	49	37	8:11704642-11704642 C>G	exon6	6
PHF20L1	NS SNV	c.A260T	p.E87V	ERKWFKVPSKKEVTSTCIATPDVEK	14	11	8:133816206-133816206 A>T	exon4	6
ZC3H3	NS SNV	c.G2563A	p.A855T	TPSSAALTAAAVTAPPHCPGGSASP	60	52	8:144522463-144522463 C>T	exon11	6
KIAA0368	NS SNV	c.C565T	p.R189C	MPYGYVLNESQSCQNSSSAQGSSSN	47	20	9:114199363-114199363 G>A	exon7	6
KIAA0368	NS SNV	c.C557T	p.S186F	VLLMPYGYVLNEFQSRQNSSSAQGS	39	20	9:114199371-114199371 G>A	exon7	6

NS SNV: non-synonymous single nucleotide variant. ¹Tandem minigene (TMG) and peptide pool (PP) designation for each mutated peptide

Supplementary Table 2: Phenotypic characterization of the 24 TIL fragments.

TIL fragment ¹	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
CD3+CD4+ (%)	11	21	10	20	21	14	21	22	22	18	15	39
CD3+CD8+ (%)	11	19	42	5	22	13	10	13	13	11	13	19
CD56+CD3- (%)	73	56	41	71	53	70	64	57	62	67	69	38
TIL fragment	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23	F24
CD3+CD4+ (%)	9	23	16	13	19	19	15	10	31	33	30	40
CD3+CD8+ (%)	8	7	13	7	10	9	17	14	10	17	11	10
CD56+CD3- (%)	79	68	69	75	67	70	64	75	57	47	56	47

¹ All cells were gated on lymphocytes/single/live/

Supplementary Table 3: Eight TCR clonotypes recognize neoantigens SLC3A2 and KIAA0368 in patient 4136.

Label (TCR-)ª	CDR3 Sequence	TRBV	CDR3 Sequence	TRAV	Neoantigen recognized
Α	CASSASTGRNQPQHF	TRBV4-1	CVVSAAQAGTALIF	TRAV10	SLC3A2
В	CASSLGADNEQFF	TRBV7-6	CAVRSTGTASKLTF	TRAV20	
С	CASSLARRQYGYTF	TRBV7-9	CAMSAGANTGNQFYF	TRAV12-3	SLC3A2
D	CASSSQGFYNIQYF	TRBV7-9	CILRAPSGNTPLVF	TRAV26-2	SLC3A2
E			CAVTASGGSYIPTF	TRAV8-1	
F	CASSPOSPSSIEQIF	IKBA18	CVVSPSGGSYIPTF	TRAV10	SLC3A2
G		TRBV19	CVPGGGGYQKVTF	TRAV2	
н	CASSIKINTSINQPUTE		CALSDPQIKAAGNKLTF	TRAV9-2	SLC3A2
I	CASSEPGWETQYF	TRBV25-1	CVVNIGSDMRF	TRAV12-1	
К ^ь			CAVAPSQAGTALIF	TRAV2	SLC3A2
K1 ^b	CASSLRTGQNTEAFF	TRBV19	CAVIRLGAAGNKLTF	TRAV8-6	
К2 ^с			CAFMKRTNRDDKIIF	TRAV38-1	
Lp			CAFMKRTNRDDKIIF	TRAV38-1	SLC3A2
L1 ^c	CASSGGTPYNSPLHF	TRBV5-1	CAVIRLGAAGNKLTF	TRAV8-6	
L2 ^c]		CAVAPSQAGTALIF	TRAV2	
R ^b	CASRPWTGANEKLFF	TRBV06-05	CAVGTSYDKVIF	TRAV21-01	KIAA0368

^a A total of 16 TCR pairs were synthesized, expressed and tested for recognition of the neoantigens SLC3A2 and KIAA0368. These TCR pairs were identified by high-frequency-TRBV-based sort and 4-1BB+ enrichment (see Supplementary Fig. 1) and/or single cell sequencing of reactive (4-1BB^{hi}) T cells.

^b TCR K, K1, L and R were suggested by both high-frequency-TRBV-based sort/4-1BB+ enrichment (see Supplementary Fig. 1) and single cell sequencing approaches

^c TCR K2, L1 and L2 were suggested only by the high-frequency-TRBV-based sort/4-1BB+ enrichment approach.

Supplementary Table 4: Three TCR clonotypes recognize neoantigens CADPS2 and CTSB in patient 4136.

Label (TCR-) ^a	CDR3 Sequence	TRBV	CDR3 Sequence	TRAV	Neoantigen recognized
J	CASSLDREDEQYF	TRBV28	ILRDVGNYQLI	TRAV26-2	CADPS2
Μ	CASTPQVNYGYTF	TRBV28	CVVFTGGGNKLTF	TRAV12-1	CTSB
N	CASRGSQGENYGYTF	TRBV28	CAVSEKGGSEKLVF	TRAV8-6	
0	CASTLQANYGYTF	TRBV28	CVVFGGNNARLMF	TRAV12-1	CTSB
Р		TRBV28	CAMRERGTGNQFYF	TRAV14	
Q	CASRPPLDIVIGITE		CAVSGEETSGSRLTF	TRAV41	

^a A total of 6 TCR pairs were synthesized, expressed and tested for recognition of the neoantigens CADPS2 and CTSB. These TCR pairs were suggested by single cell PCR (TCR J) or single cell sequencing of the reactive (4-1BB+) T cells

Supplementary Table 5: Shared HLA alleles between 4136 and other patients.

#	Patient ID ^a		HLA-class I		HLA-class II			
1	4136	A*24:02:01 A*29:02:01	B*35:01:01 B*57:01:01	C*04:01:01 C*06:02:01	DRB1*04:01:01 DRB1*07:01:01	DQB1*03:02:01 DQB1*03:03:02	DPB1*04:01:01	
2	4035				DRB1*07:01:01		DPB1*04:01:01	
3	3926			C*06:02:01	DRB1*07:01:01			
4	3784				DRB1*07:01:01		DPB1*04:02:01	
5	1612				DRB1*04:01	DQB1*03:01	not known	
6	1088				DRB1*04:01	DQB1*03:01	DPB1*04:01	
7	3737				DRB1*04:05	DQB1*03:01	DPB1*04:01	
8	4180		B*35:01	C*04:01	DRB1*04:01:01	DQB1*03:01:01	DPB1*04:02:01	
9	4131	A*24:02:01						
10	4051	A*24					DPB1*04:01:01	
11	4125	A*24	B*57	C*06		DQB1*03	DPB1*04	

^a Antigen presenting cells (B cells) from ten allogeneic donors were used in the HLA-mismatched experiments for determination of the SLC3A2 and CTSB HLA-restriction.

Supplementary Fig. 1

Supplementary Fig. 1: Identification of neoantigen-reactive TCR clonotypes based on FACS sort of higher frequency TRBV families and 4-1BB+ enrichment. a. The two highest frequency families, TRBV19 and TRBV28, were sorted by FACS from the fragment F12, following evaluation of the fragment's TCR repertoire by flow cytometry. After screening to determine which population recognizes the mutSLC3A2, TRBV19 enriched T cells were stimulated with mutSLC3A2 and 4-1BB+ cells were subjected to TCR targeted high throughput sequencing, revealing an oligoclonal population of reactive cells. **b.** A predominant TRBV6-5, -6,-9+ T cell population was sorted from the fragment F13, following evaluation of the T cell repertoire of the fragment. Following recognition of the mutKIAA0368 by the sorted cells, 4-1BB+ T cells were sorted and high throughput sequencing was performed, revealing a nearly monoclonal population of reactive cells. **c.** Synthesis, expression and screening of the candidate TCR pairs demonstrated the recognition of the mutSLC3A2 neoantigen by two TCR pairs and the KIAA0368 neoantigen by one TCR pair.

Supplementary Fig. 2

Supplementary Fig. 2: SLC3A2-reactive TCRs confer mutation-specific recognition. a. Titration of the mutated(mut) and wild-type(wt) SLC3A2 peptide demonstrated specific recognition of the mutSLC3A2 by the seven identified SLC3A2 reactive TCRs, with no recognition of the wtSLC3A2. All cells were gated on lymphocytes/single/live/CD3+ cells. b. Recognition of mutSLC3A2 by mutation-specific TCR pairs was blocked by anti-HLA-class II and anti-HLA-DR blocking antibodies. TCR transduced T cells were co-cultured overnight with APCs pulsed with mutSLC3A2 or irrelevant peptide (CTSB) in the presence or absence of the indicated HLA blocking antibodies. Positive controls for the function of each antibody were performed (data not shown). c. SLC3A2 reactive TCR recognizes the mutated epitope (DPPALASTNAEVT) only when presented by APCs (B cells) expressing the HLA-DRB1*07:01:01 molecule. In parentheses, the DRB1 alleles of each donor are shown (See Supplementary Table 5 for a complete list of shared HLA molecules). Data representative for one of the seven SLC3A2 reactive TCR, is shown. All seven TCRs demonstrated similar results. d. Transfection of HEK-CIITA cells with the HLA-DRB1*07:01:01 encoding plasmid confers presentation and recognition of the mutated SLC3A2 by the seven SLC3A2 reactive TCRs. e. A series of truncated peptides, derived from the 25AA-long mutated SLC3A2 peptide were screened for recognition by SLC3A2-reactive TCRs. The epitope core sequence was determined and **f**. additional screens with the candidate minimal epitopes were performed. The minimal epitope is likely contained within the core sequence DPPALASTNAEVT among all seven SLC3A2 reactive TCRs. Data shown in e are from three independent experiments and those in **f** are from two independent experiments. Values are means and error bars represent \pm s.e.m.. >: Too numerous to count; mutSLC3A2: LLASSDPPALASTNAEVT, wtSLC3A2: LLASSDPPALASKNAEVT.

Supplementary Fig. 3: A KIAA0368-reactive TCR confers mutation-specific recognition.

a. mutKIAA0368 peptide is specifically recognized by the KIAA0368-reactive TCR. TRBV6-5,-6,-9 sorted TIL cells demonstrate specific recognition against the TMG6 which encodes the mutated KIAA0368, but not the wild type peptide. All cells were gated on lymphocytes/single/live/CD3+ cells. **b.** Transfection of COS-7 cells with the autologous HLA-A*24:02 and HLA-B*35:01 molecules, demonstrated that the recognition of the minimal epitope, 25mer peptide or TMG6 by TRBV6-5, 6-6, 6-9+ sorted TIL is restricted by the HLA class I molecule HLA-B*35:01, as shown by upregulation of 4-1BB. **c.** High levels of IFN-γ secretion by TCR R transduced T cells was observed only when the mutated KIAA0368 epitope was presented by HLA-B*35:01 transfected COS-7 cells and not other putative autologous HLA-class I molecules. **d.** APCs pulsed with the putative HLA-B*35 epitopes PYGYVLNEF (9mer) and MPYGYVLNEF (10mer), as predicted by the epitope prediction algorithm netMHCpan 3.0, were screened. The 10mer was found to be the minimal epitope.

Supplementary Fig. 4

TCR M

TCR O

TCR K

OKT3 M(28/12-1) O(28/12-1)

Supplementary Fig. 4: Mutation-reactive TCRs isolated from post-treatment peripheral blood confer specific reactivity to mutated CADPS2 and mutated CTSB. a. Titration of the 25mer mutated CADPS2 peptide demonstrated a specific recognition of the mutated and not the wild-type peptide by the TCR J mutCADPS2-reactive TCR. b. Transfection of COS-7 cells with autologous HLA-class I molecules demonstrated that mutCADPS2 is recognized in a HLA-C*04:01-restricted manner. c. mutCADPS2-reactive T cells showed recognition of both the predicted HLA-C minimal epitopes KTYDTVHRHL(10mer) and TYDTVHRHL(9mer) (prediction algorithm netMHCpan 3.0), after peptide pulsing onto autologous APCs. Data shown are from 3 independent experiments. Values are means and error bars represent \pm s.e.m.. Further testing with the indicated shorter minimal epitopes for recognition by the CADPS2 specific TCR recapitulates the 9mer epitope TYDTVHRHL as the minimal epitope of the neoantigen CADPS2. d. Titration of the 25mer mutated CTSB peptide demonstrated a specific recognition of the mutCTSB by the TCR M and O. e. Recognition of mutCTSB by the mutation-specific TCR M and O was blocked by anti-HLA-class II and anti-HLA-DR blocking antibodies. TCR transduced T cells were co-cultured overnight with APCs pulsed with mutCTSB or irrelevant peptide (SLC3A2) in the presence or not of the indicated HLA blocking antibodies f. CTSB reactive TCR recognizes the mutated epitope only when presented by APCs (B cells) expressing the HLA-DRB1*07:01:01 molecule. In parentheses, the DRB1 alleles of each donor are shown. (See Supplementary Table 5 for a complete list of shared HLA molecules). g. Truncated peptides derived from the 25mer mutCTSB were used to determine the minimal epitope core sequence, which is contained within the 15AA long peptide GYNSYSVSNSEKHIM. h. Transfection of HEK-CIITA cells with the HLA-DRB1*07:01:01 encoding plasmid confers presentation and recognition of the mutated CTSB peptide by the mutCTSB-specific TCR M and O. >: Too numerous to count; mutCADPS2: TLNSKTYDTVHRHLTVEEATASVSE, wtCADPS2: TLNSKTYDTVHRRLTVEEATASVSE, mutCTSB: GYNSYSVSNSEKHIMAEIYKNGPVE, wtCTSB: GYNSYSVSNSEKDIMAEIYKNGPVE. All cells in the FACS data are gated on lymphocytes/single/live/CD3+ cells.