Supplementary Data for: Confirmation of High-Throughput screening data and novel mechanistic insights into VDR-xenobiotic interactions by orthogonal assays

Debabrata Mahapatra¹, Jill A. Franzosa⁵, Kyle Roell², Melaine Agnes Kuenemann², Keith A. Houck⁵, David M. Reif², Denis Fourches², Seth W. Kullman^{3,4}

¹ Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America; ² Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America; ³ Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America, ⁴ Program in Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, United States of America, ⁵National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC.

Supplementary Table S1. Summary of Mammalian 2-hybrid (M2H) data across all compounds. Compounds exhibiting statistically significant recruitment or inhibition of coregulators (RXR)/coactivators (SRC-1) have values expressed as percentages. Note that in addition to most agonists, antagonists do facilitate recruitment (FR) or inhibit recruitment (IR) in the presence or absence of co-transfected coregulators/coactivators. For corepressor (NCoR) recruitment data was expressed as fold induction compared to DMSO. NS indicate non-significant induction/inhibition values for coregulator/coactivator/corepressor recruitment.

Agonists	рМ	SRC-1 + p	oVP16 hVDR	pMRXR + pVP16 hVDR				pMNCoR + pVP16 hVDR				
Co Regulator addition	+RXR		-RXR		+SRC-1		-SRC-1		+RXR		-RXR	
	Outcome	Value	Outcome	Value	Outcome	Value	Outcome	Value	Outcome	Value	Outcome	Value
Vitamin D ₃	FR	100	FR	100	FR	100	FR	100		DMSO		DMSO
Calcipotriol	FR	135.9	FR	142.9	FR	133.2	FR	135.4		NS		NS
Lithocholic acid	FR	102.6	FR	30.1	FR	63.5	FR	29		NS		NS
7-(Dimethylamino)-		NS		NS		NS		NS		NS		NS
4-methylcoumarin												
Disodium 4,4'-bis(2-		NS		NS		NS		NS		NS		NS
sulfostyryl) biphenyl												
4-Aminofolic acid		NS		NS		NS		NS		NS		NS
Ergocalciferol	FR	79.2	FR	97.7	FR	68.6	FR	56.8		NS		NS
Alpha-Terthiophene		NS		NS		NS	FR	3.5		NS		NS
Triamterene	FR	63.7	FR	0.9	FR	3.7	FR	8.4		NS		NS
Novaluron		NS	FR	0.9		NS		NS		NS		NS
2,2'-methylenebis(6-	FR	8.9	FR	7.2		NS	FR	3.1		NS		NS
tert-butyl-4-												
ethylphenol)												
9 Aminoacridine monohydrochloride	FR	9.5	FR	14.4	FR	19.9	FR	12.3	FR	53.1	FR	67.7
2.2'-methylenebis(6-	FR	22.2	FR	8.2	FR	100.7	FR	79.6		NS		NS
tert-butyl-4-				-						_		
, methylphenol)												
4,4'-butylidenebis(6-	FR	0.91	FR	3.6		NS	FR	96.8		NS		NS
tert-butyl-m-cresol												
Tamoxifen citrate	FR	4.6	FR	6.1	FR	19.4	FR	46.6		NS		NS
Methyl 3-amino-5,6-	FR	0.26		NS	FR	4.2	FR	4.4		NS		NS
dichloropyrazine-2-												

carboxylate												
2,7 Naphthalene		NS		NS		NS		NS		NS		NS
disulfonic acid												
Cridanimod		NS		NS		NS		NS		NS		NS
7 methyl benzo (a)		NS		NS	FR	1.5		NS		NS		NS
pyrene												
Benzenesulfonic acid		NS		NS		NS		NS		NS		NS
Falnidamol		NS		NS	FR	3.7	FR	5.3		NS		NS
dihydrochloride												
Lanoconazole		NS		NS	FR	4.3		NS		NS		NS
Antagonists	pMSRC-1NR + pVP16 hVDR			pl	VIRXR + p	VP16 hVDR		pMNCoR + pVP16 hVDR				
Co Regulator	+ RXR		- RXR		+SRC-1		-SRC-1		+ RXR		- RXR	
addition		•										
	Outcome	Value	Outcome	Value	Outcome	Value	Outcome	Value	Outcome	Value	Outcome	Value
Vitamin D ₃	FR	100	FR	100	FR	100	FR	100		DMSO		DMSO
Fluorescein sodium		NS		NS		NS		NS	FR	1.1	FR	1.2
Cadmium chloride	FR	241.9	FR	258	FR	292	FR	175	FR	0.5	FR	1.1
Tributyltin chloride	IR	24.9		NS	IR	16.7	IR	0.5	FR	1.8	FR	2.2
Thiram		NS		NS		NS		NS	FR	1	FR	1.7
Aristolochic acid	IR	47.5	FR	347.5	FR	146.9	FR	402.5	FR	11.4	FR	25.8
Proflavine		NS		NS		NS		NS	FR	0.8	FR	1.3
hydrochloride												
Tazobactam sodium		NS		NS		NS		NS	FR	0.8	FR	1.7
Carfizomib	FR	296		NS	FR	2663.1	FR	1908.1	FR	0.8	FR	1.1
Phenylarsine oxide		NS	IR	45.4		NS	IR	22.8	FR	1.5	FR	1.2
Proscillaridin	IR	25.3		NS	FR	190		NS	FR	1.6	FR	2.8
Chlorambucil		NS		NS		NS		NS	FR	1	FR	0.9
Cadmium acetate	IR	46.7	IR	51.7	FR	165.6		NS	FR	0.5	FR	0.5
dihydrate												
Cadmium reference	IR	0.9	IR	1.3	IR	16	IR	23.7	FR	0.8	FR	0.7
solution												
Dichlone		NS		NS		NS		NS	FR	1	FR	1.1

Menadiol		NS		NS		NS	IR	57.2	FR	1.1	FR	0.9
Potassium	IR	30.9		NS	IR	57	IR	14.4	FR	0.7	FR	1.7
dicyanoaurate												
Cadmium dinitrate	FR	168.1	FR	233	FR	270	FR	283	FR	0.5	FR	0.6
Dibutyltin dichloride	IR	37.5	IR	20.2	IR	16.7	IR	3.84	FR	0.9	FR	1
Triphenyltin	IR	30	IR	55.8	IR	1.8	IR	0.5	FR	1.1	FR	1.5
hydroxide												
Ziram	IR	48.3	FR	189	IR	45.1	IR	25.1	FR	0.4	FR	0.9

Supplementary Figure S1. a. 2D predicted binding mode of calcilpotriol using molecular docking, b. 2D predicted binding mode of calcilpotriol using molecular dynamic simulations. Highlighted in red the interaction in common between the molecular docking and the molecular dynamic procedures, highlighted in orange the interaction only detected during the molecular dynamic procedure.

Supplementary Figure S2. a. A 2D predicted binding mode of proflavine hydrochloride using molecular docking, b. A 2D predicted binding mode of proflavine hydrochloride using molecular dynamic simulations. Highlighted in red the interaction in common between the molecular docking and the molecular dynamic procedures, highlighted in orange the interaction only detected during the molecular dynamic procedure.

Supplementary Figure S3. Figure showing the results of cell viability assay in HL-60 cells for a. VDR agonists and b. VDR antagonists. The concentrations of compounds corresponding to cell viability percentages of more than 80 were considered appropriate for testing in in-vitro assays. The viability percentage of treatments was measured against that of DMSO. Cells treated with 0.1% Triton X acted as a negative control while those treated with Vitamin D3 acted as a positive control. Data were measured as SEM (n=3) and plotted with GraphPad prism.

Supplementary Figure S4. Figure showing the results of cell viability assay in HEK293 cells for a. VDR agonists and b. VDR antagonists. The concentrations of compounds corresponding to cell viability percentages of more than 80 were considered appropriate for testing in in-vitro assays. The viability percentage of treatments was measured against that of DMSO. Cells treated with 0.1% Triton X acted as a negative control while those treated with Vitamin D3 acted as a positive control. Data were measured as SEM (n=3) and plotted with GraphPad prism.

Supplementary Figure S5. Figure showing the results of cell viability assay in Cos7 cells for a. VDR agonists and b. VDR antagonists. The concentrations of compounds corresponding to cell viability percentages of more than 80 were considered appropriate for testing in in-vitro assays. The viability percentage of treatments was measured against that of DMSO. Cells treated with 0.1% Triton X acted as a negative control while those treated with Vitamin D3 acted as a positive control. Data were measured as SEM (n=3) and plotted with GraphPad prism.

Log-Concentration

Log-Concentration

n

m

Supplementary Figure S6. Shows transient transactivation dose response curves for all 21 agonists and vitamin D_3 (a-v). The normalization method used is quantile normalization, which uses rankings of the data and averages to adjust the data across distributions. IC50 values were derived from Hill and Gain-Loss models of dose-response curves generated using the TCPL R package

f Proscillaridin 100-75-Fold Induction - CNST - GNLS 50 -- HILL AC50: 0.278 25 -Q. - ō-. 0 0 0---0.176 0.477 0.778 1.079 -0.727 -0.125 -0.426 Log-Concentration

75o 0 - CNST - GNLS 50 ---- HILL AC50: -0.615 0 25 -0 0 0----1.337 -1.046 -0.727 -0.125 0.176 -1.959 -1.638 -0.426

Log-Concentration

Fold Induction

i

0

0.477

0

0.778

_ _ .

1.079

0.176 Log-Concentration

k

25 -

0---

0

-0.727

-0.426

-0.125

n

Supplementary Figure S7. Shows transient transactivation dose response curves for all 19 antagonists (a-s). The normalization method used is quantile normalization, which uses rankings of the data and averages to adjust the data across distributions. IC50 values were derived from Hill and Gain-Loss models of dose-response curves generated using the TCPL R package