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Abstract

Background: Pancreatic cancer retains a poor prognosis among the gastrointestinal cancers. It affects
230,000 individuals worldwide, has a very high mortality rate, and remains one of the most challenging
malignancies to treat successfully. Treatment with gemcitabine, the most widely used chemotherapeutic
against pancreatic cancer, is not curative and resistance may occur. Combinations of gemcitabine with
other chemotherapeutic drugs or biological agents have resulted in limited improvement.

Methods: In order to improve gemcitabine response in pancreatic cancer cells, we utilized a synthetic
lethal RNAI screen targeting 572 known kinases to identify genes that when silenced would sensitize
pancreatic cancer cells to gemcitabine.

Results: Results from the RNAI screens identified several genes that, when silenced, potentiated the
growth inhibitory effects of gemcitabine in pancreatic cancer cells. The greatest potentiation was shown
by siRNA targeting checkpoint kinase | (CHK1). Validation of the screening results was performed in MIA
PaCa-2 and BxPC3 pancreatic cancer cells by examining the dose response of gemcitabine treatment in
the presence of either CHKI| or CHK2 siRNA. These results showed a three to ten-fold decrease in the
EC,,for CHKI siRNA-treated cells versus control siRNA-treated cells while treatment with CHK2 siRNA
resulted in no change compared to controls. CHKI was further targeted with specific small molecule
inhibitors SB 218078 and PD 407824 in combination with gemcitabine. Results showed that treatment of
MIA PaCa-2 cells with either of the CHKI inhibitors SB 218078 or PD 407824 led to sensitization of the
pancreatic cancer cells to gemcitabine.

Conclusion: These findings demonstrate the effectiveness of synthetic lethal RNAi screening as a tool for
identifying sensitizing targets to chemotherapeutic agents. These results also indicate that CHKI could
serve as a putative therapeutic target for sensitizing pancreatic cancer cells to gemcitabine.
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Background

Pancreatic cancer is one of the most aggressive and lethal
cancers known today, with a 5-year survival of only 4%. In
2008, pancreatic cancer was the fourth-leading cause of
cancer-related deaths [1]. Patients diagnosed with pancre-
atic cancer typically have poor prognosis partly because
the cancer usually causes no symptoms early on, leading
to metastatic disease at the time of diagnosis. The treat-
ment options include chemotherapy, surgery and radia-
tion. The current preferred therapeutic drug to treat
pancreatic cancer is gemcitabine, yet the one-year survival
of pancreatic cancer patients treated with gemcitabine is
only about 18%, representing a significant but modest
advancement in the quality of life [2,3].

Gemcitabine (2', 2'-difluoro 2'-deoxycytidine) is a pyrimi-
dine based nucleoside analogue that replaces the nucleic
acid cytidine during DNA replication thereby arresting
tumor growth since new nucleosides cannot be attached
to the faulty nucleoside resulting in apoptosis [4]. Besides
pancreatic cancer, gemcitabine is also used for the treat-
ment of various other carcinomas including non-small
cell lung cancer [5], ovarian cancer [6] and breast cancer
[7]. Due to the poor prognosis of pancreatic cancer,
improved therapies are desperately needed and it would
be of great benefit to identify agents that sensitize to gem-
citabine. Adding other chemotherapeutic agents to gem-
citabine has not resulted in meaningful improvement in
survival of pancreatic cancer patients. Randomized trials
studying the addition of molecular targeting agents
(cetuximab, bevacizumab, farnesyl transferase inhibitors
and metalloproteinase inhibitors) to gemcitabine com-
pared with gemcitabine alone have been disappointing
(for review see [8]). Therefore, newer strategies need to be
devised to improve current chemotherapeutic treatments.

In order to identify potential sensitizers to gemcitabine,
we employed a functional genomics approach based on
high-throughput RNA interference (HT-RNAi) also
known as loss-of-function screening. HT-RNAi when
combined with drug treatment becomes a platform for
identifying synthetic lethality. The basis of this technology
is RNA interference (RNAI), a robust method of post-tran-
scriptional silencing of genes using double-stranded RNA
(dsRNA) in the form of either siRNA (short interfering
RNA) or shRNA (short hairpin RNA) with sequence
homology driven specificity [9]. Large-scale libraries of
siRNA and shRNA have been used to identify genes
involved in many biological functions [10-17]. As kinases
are becoming important drug targets for the treatment of
cancer, the identification of kinases that act as sensitizing
targets to gemcitabine will facilitate the design and devel-
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opment of better drug combinations for treatment of pan-
creatic cancer.

In this study, our goal was to develop and implement a
robust synthetic lethal assay in order to identify genes that
potentiate the response to gemcitabine in pancreatic can-
cer cells. Using a kinase siRNA library, we identified sev-
eral candidate genes and functionally validated one gene,
CHK]1, as a sensitizing target using gene specific siRNA in
combination with gemcitabine treatment. Furthermore,
specific inhibitors of CHK1 were confirmed to have syner-
gistic response with gemcitabine treatment in pancreatic
cancer cells.

Materials and methods

Cell culture

The human pancreatic cancer cell lines MIA PaCa-2 and
BxPC3 were obtained from the American Type Culture
Collection (Manassas, VA). The MIA PaCa-2 cell line was
established by Yunis, et al. in 1975 from tumor tissue of
the pancreas obtained from a 65-year-old Caucasian male
[18]. The established cell line reportedly has a doubling
time of about 40 hours and a colony-forming efficiency in
soft agar of approximately 19%. BXxPC3 cells were derived
from a 61-year-old female with a primary adenocarci-
noma of the pancreas. BxPC-3 cells produce mucin and
form tumors, which are moderately to poorly differenti-
ated, in nude mice similar to the primary adenocarci-
noma. Cells were grown in Dulbecco's modified Eagle
medium (DMEM) or RPMI-1640 respectively, supple-
mented with 10% FBS, 2 mM L-glutamine, 100 IU/ml
penicillin G, and 100 pg/ml streptomycin and B. All
media reagents were obtained from Invitrogen (Carlsbad,
California, USA). The cell lines were routinely maintained
at 37°C in a humidified 5% CO, atmosphere.

Reagents

Gemcitabine chlorohydrate (Eli Lilly; Indianapolis, Indi-
ana, USA) was obtained from the Mayo Clinic Pharmacy
(Scottsdale, Arizona, USA) and stock solutions of 100 mM
were prepared by dissolving gemcitabine in serum free
DMEM. Aliquots of gemcitabine were stored at -20°C
until use. The CHK1 inhibitors PD 407824 and SB
218078 were obtained from Tocris (Ellisville, Missouri,
USA) and EMD Biosciences (Madison, Wisconsin, USA),
respectively and 10 mM stock solutions were prepared in
DMSO. Short interfering RNAi targeting CHK1 or CHK2
and a non-silencing control were obtained from Qiagen
(Valencia, California, USA). The siRNA target sequences
were as follows: CHK1-A, AAGAAAGAGATCTGTATCAAT;

CHK1-B, TTGGAATAACTCCACGGGATA; CHK1-C,
AACTGAAGAAGCAGTCGCAAGT; CHK1-D, CCCG-
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CACAGGTCITTCCITAT;, CHK2-A, ACGCCGTCCITT-
GAATAACAA; CHK2-B, AGGACTGTCTTATAAAGATTA;
CHK2-C, CAGGATGGATITGCCAATCIT; and CHK2-D,
CTCCGTGGTTTGAACACGAAA. The sequences used in
HT-RNAIi screening were the A and B sequences for both
CHK1 and CHK2.

Synthetic lethal RNAi screening

High-Throughput RNAi (HT-RNAi) was performed using
the validated kinase siRNA library version 1.0 obtained
from Qiagen. This library includes siRNA to 572 kinases
with 2 siRNA per gene that have all been validated by
quantitative real time PCR (qRT-PCR) to silence mRNA
up to 75%. Stock siRNA was diluted in siRNA buffer (Qia-
gen) and 9.3 ng of siRNA was printed onto white Corning
384-well plates (Fisher Scientific; Pittsburgh, PA). HT-
RNAi was done by reverse transfection of cells. Briefly,
diluted siLentFect reagent (BioRad, Hercules, CA) in Opti-
MEM (Invitrogen) was added to the wells and allowed to
complex with siRNA for 30 min at room temperature.
MIA PaCa-2 cells were resuspended in growth media with-
out antibiotics at a final concentration of 1000 cells/well.
Plates were incubated at 37°C with 5% CO,. After 24
hours, either vehicle (serum free media) or gemcitabine
was added to the wells and plates were further incubated
for 72 hours. The final siRNA concentration is 13 nM.
Total cell number was determined by the addition of Cell
Titer Glo (Promega, Madison, Wisconsin, USA) and rela-
tive luminescence units (RLU) were measured using an
EnVision plate reader (Perkin-Elmer, Wellesley, Massa-
chusetts, USA). Raw RLU data was used to calculate viabil-
ity relative to the control wells. Log, ratios of viability
from siRNA and gemcitabine treated wells versus siRNA
and vehicle treated wells were computed. Hits were iden-
tified as having log, ratios that are 1.65 standard devia-
tions (SD) below the mean ratio level. This cutoff was
chosen due to the relatively small size and focused nature
of the screen.

Validation of gene silencing

To demonstrate the silencing efficiency of the siRNA tar-
geting CHK1 or CHK2, MIA PaCa-2 were transfected with
16 nM of siRNA targeting CHK1 or CHK2 or non-silenc-
ing siRNA in 6-well plates by reverse transfection as
described above. The experiment was run in duplicate and
cells were incubated at 37°C for 48 hours prior to RNA
extraction or 72 hours prior to preparation of protein
lysates for Western Blotting.

Quantitative real time PCR

RNA extraction was done using Qiagen RNAeasy kit (Qia-
gen) and cDNA was prepared using iScript cDNA synthe-
sis kit (BioRad Laboratories, CA) [19]. Quantitative real-
time PCR using TagMan assays (Applied Biosystems) was
performed to verify gene silencing of CHK1/CHK2
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(Hs00967502_m1 and Hs01007290_m1, respectively).
The relative quantification was done using the Ct values,
determined for triplicate reactions for test and reference
samples for each target and for the internal control gene
[GAPDH; (Hs99999905_m1)]. Relative expression levels
were calculated as 2-2ACt, where AACt = ACt (target sam-
ple) - ACt (reference sample) [19].

Western blot analysis

Cells were treated with siRNA for 72 hours and cell lysates
were prepared as described previously [20]. Protein con-
centration was determined by BCA assay (Pierce; Rock-
ford, Illinois, USA) and lysates were resolved by SDS-
PAGE on 4-12% resolving gel. Proteins were transferred
onto PVDF (polyvinylidene fluoride) membranes (Invit-
rogen) and CHK1 protein was identified using a mouse-
anti-CHK1 monoclonal antibody (Santa Cruz Biotechnol-
ogy; Santa Cruz, California, USA) and an HRP-conjugated
goat anti-mouse secondary antibody (Jackson Immu-
noResearch Laboratories, Inc; West Grove, Pennsylvania,
USA). Bound antibodies were detected using SuperSignal
West Femto (Pierce) and imaged using an Alphalnnotech
Imager.

Functional validation for gemcitabine sensitization

For siRNA and gemcitabine studies, cells were transfected
with siRNA plated in 384-well plates similar to screening
conditions. Twenty-four hours later, the cells were treated
with varying doses of gemcitabine in quadruplicate wells
for each siRNA plus gemcitabine condition. Cell viability
was determined 72 hours after drug addition using Cell
Titer Glo. For CHK1 inhibitor studies, cells were treated
with either SB 218078 or PD 407824 in 384-well plates
for twenty-four hours prior to gemcitabine treatment. Cell
viability was determined 72 hours after gemcitabine addi-
tion using Cell Titer Glo. Viability was calculated by divid-
ing the average of the RLU values for the drug treated wells
by the average of the RLU values for vehicle treated wells.
The IC;, values were determined using GraphPad Prism
(GraphPad Software, San Diego, California, USA) and val-
ues were shown as calculated ICs, +/- 95% confidence
interval.

Label-free impedance measurement of cell growth

The principle of impedance measurement for monitoring
cellular proliferation has been previously described by
Solly et al. [21]. Briefly, siRNA was introduced into MIA
PaCa-2 cells by reverse transfection of 4,000 cells/well
using siLentFect in triplicate wells of an ACEA 96x E-Plate
(ACEA Biosciences; San Diego, California, USA). Gemcit-
abine was added at a final concentration of 10 nM at 24
hours after transfection of the cells. The attachment,
spreading and proliferation of cells were continually
monitored every 60 minutes up to 150 hours, and
changes in impedance were acquired with the real time
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cell electronic sensing (RT-CES) system (ACEA Bio-
sciences). Cell growth was determined by plotting cell
index measurements versus time.

Results

Synthetic lethal screening for modulators of gemcitabine
response

In order to identify genes that modulate the response of
pancreatic cancer cells to gemcitabine treatment, we per-
formed synthetic lethal screening using high throughput
RNAi. A robust HT-RNAi assay was developed that
allowed for high efficiency siRNA transfection of MIA
PaCa-2 pancreatic cells by cationic lipids in 384-well
plates. Before the actual HT-RNAI screening, a transfection
optimization was performed using a panel of commer-
cially available transfection reagents and siLentfect was
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chosen as it showed the optimal transfection efficiency
(Data not shown). We performed a drug dose response
experiment with varying concentrations of gemcitabine
and chose 5 and 10 nM final concentrations, as we
obtained EC,,_;, doses at these treatment concentrations
(see Additional file 1; Supplemental figure 1).

The HT-RNAi screen involved transfecting MIA PaCa-2
pancreatic cancer cells with validated siRNA library target-
ing 572 kinases followed by treatment at 24 hours with
either vehicle or low concentration (5 or 10 nM) gemcit-
abine and with further incubation for an additional 72
hours. Cell viability was assessed using a luminescence-
based cell number assay and the data was analyzed as
described in Materials and Methods. Two independent
HT-RNAI screens were conducted using 5 and 10 nM gem-
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HT-RNAI kinase screening for identification of sensitizers to gemcitabine. HT-RNAi screens were performed on
MIA PaCa-2 cells transfected with a siRNA library targeting 572 kinases followed by treatment with either vehicle or 5 nM or
10 nM gemcitabine. Cell viability was assessed and normalized to control wells. (A) Scatterplot of the log, values of cell viability
for gemcitabine plus siRNA treated cells versus vehicle plus siRNA treated cells showed CHKI as a significant hit. (B) Plot of
log, ratios of gemcitabine/vehicle for each siRNA treated with either 5 nM or 10 nM gemcitabine. (C) Empirical Probability
Distribution of log, ratios of gemcitabine/vehicle (5 nM and 10 nM). Hit areas are highlighted in red. (D) Venn diagram of gene
hits from both the 5 nM (highlighted in pink) and 10 nM (highlighted in yellow) gemcitabine synthetic lethal RNAi screen.
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citabine (Figure 1). The raw cell viability data was normal-
ized to untreated wells within each assay plate. Synthetic
lethal RNAi screening results are shown as a scatterplot of
the log, values of normalized cell viability for siRNA plus
gemcitabine treated cells versus siRNA plus vehicle treated
cells (Figure 1A). Results identified CHK1 as a significant
hit. Log, viability ratios of individual siRNA for the kinase
siRNA screen were calculated (see Additional file 2).

Further visualization of the screening data included dot
plots of log, viability ratios of (siRNA + gemcitabine)/
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(siRNA + vehicle) for both the 5 nM and 10 nM concen-
trations (Figure 2B) and Empirical Probability Distribu-
tion of the log, ratios for the 5 nM and 10 nM
concentrations (Figure 1C). Both analyses showed that
CHK1 siRNA highly potentiated gemcitabine response.
Significant siRNA hits from both the screens are shown in
the Venn diagram (Figure 1D). The results idenified 25
siRNA that potentiated the effect of 5 nM gemcitabine and
62 siRNA that were potentiators at 10 nM gemcitabine. Of
interest was the finding that 20 siRNA were common on
both lists. These overlapping hits included both siRNA
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Validation of gene silencing by CHKI siRNA. MIA PaCa-2 cells were transfected with either CHK1 or control siRNA
and allowed to grow for 48—72 hrs. (A) Total RNA from the siRNA treated MIA PaCa-2 cells was isolated at 48 hrs and ana-
lyzed by qRT-PCR for CHKI expression. CHK| expression for each siRNA treatment was compared to untreated cells.
GAPDH was used as an internal control for all the samples and fold change was calculated by normalizing all the data to
GAPDH expression. (B) Lysates from CHK| siRNA treated MIA PaCa-2 cells were prepared at 72 hrs post transfection and
analyzed by western blot for expression of CHK| protein using an anti-CHKI antibody. (C) CHKI siRNA treated cells
showed decreased growth of MIA PaCa-2 cells at 72 hours after siRNA transfection when compared to no siRNA treatment
or non-silencing siRNA treatment. Cell images were taken at 20% magnification.
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targeting CHK1 as well as both siRNA targeting ATR. Sev-
eral other interesting candidate genes were also identified
such as CAMK1, STK6, PANK2 and EPHBI, all of which
have been previously reported as being involved in cancer
(Figure 1D) [22-25].

Validation of gene silencing by CHKI siRNA

To demonstrate the silencing efficiency of the siRNA tar-
geting CHK1 or CHK2, MIA PaCa-2 cells were transfected
with four CHK1 or CHK2 siRNA targeting different
sequences or non-silencing siRNA. The experiment was
run in duplicate and cells were incubated at 37°C for 48
hours prior to RNA extraction or 72 hours prior to the
preparation of protein lysates. Expression analysis using
qRT-PCR clearly showed that CHK1 (Figure 2A) and
CHK?2 (see Additional file 1; Supplemental figure 2) genes
were silenced by all the four siRNA used, respectively. For
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all the qRT-PCR experiments, GAPDH was used as the
internal control. In addition, cell lysates were analyzed by
western blot using an anti-CHK1 antibody (Figure 2B)
and images of the siRNA treated cells were captured (Fig-
ure 2C). Results show that all four CHK1 siRNA were able
to reduce the CHK1 mRNA and protein levels compared
to non-silencing control siRNA. The Western blots were
also probed with anti-Tubulin antibodies to demonstrate
equal protein loading (Figure 2B). MIA PaCa-2 cells
treated with CHK1 siRNA showed decreased growth com-
pared to non-silencing siRNA treated cells and no siRNA
control (Figure 2C).

Gene silencing of CHKI potentiates the response to
gemcitabine

In order to validate the synthetic lethal screening result
indicating CHK1 as a sensitizing target for improving
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Validation of CHKI as a sensitizing target to gemcitabine in pancreatic cancer cells. MIA PaCa-2 and BxPC3 pan-
creatic cancer cells were transfected with either CHK |, CHK2 or non-silencing siRNA. After 24 hours, cells were treated with
varying concentrations of gemcitabine and incubated for an additional 72 hours. Cell number was assessed and data was nor-
malized to siRNA plus vehicle control and plotted. Silencing of CHK | showed potentiation of gemcitabine response in (A) MIA
PaCa-2 and (C) BxPC3 cells as seen by the shift in the dose response curves. Silencing of CHK?2 did not affect the response to
gemcitabine in either (B) MIA PaCa-2 cells or (D) BxPC3 cells. Data is representative of three independent experiments.
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gemcitabine response, we generated drug dose response
curves of MIA PaCa-2 cells treated with gemcitabine in the
presence of CHK1, CHK2 and non-silencing siRNA (Fig-
ure 3). Interestingly, silencing of CHK1 potentiates the
anti-proliferative effect of gemcitabine as seen by the shift
in the dose response curves. The IC;, of CHK1 siRNA A
and B plus gemcitabine treatment were 1.05 +/- 0.19 nM
and 1.35 +/- 0.15 nM, respectively compared to an ICs,
value of 15.8 +/- 1.2 nM for non-silencing control siRNA.
Similar effects were seen with the CHK1 C & D sequences
(data not shown). Furthermore, we used CHK2 siRNA A &
B for comparison showing minimal change in ICy, values
(Figure 3B). Similar effects were seen with the CHK2 C &
D sequences (data not shown). We next validated the sen-
sitization results in another human pancreatic cancer cell
line, BxPC3. Drug response IC, values in BxPC3 cells
showed similar decrease from 6.9 +/- 2.4 nM for non-
silencing to 2.8 +/- 0.4 nM and 2.4 +/- 0.6 nM for CHK1-
A and CHK1-B siRNA respectively (Figure 3C). This effect
was notably absent in the CHK2 siRNA-treated cells (Fig-
ure 3B and 3D).

Real-time kinetic analysis of gemcitabine sensitization in
pancreatic cells

We next examined the effect of CHK1 siRNA and gemcit-
abine treatment on pancreatic cancer cells using label-free
impedance growth assays (Figure 4). The impedance anal-
ysis showed that treatment of MIA PaCa-2 cells with non-
silencing siRNA plus 10 nM gemcitabine showed slight
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decrease in cell number compared to non-silencing siRNA
plus vehicle treatment (Figure 4A). Treatment of MIA
PaCa-2 cells with CHK1-A siRNA and 10 nM gemcitabine
showed a very potent reduction in cell growth compared
to CHK1-A siRNA plus vehicle treatment (Figure 4B). Sim-
ilar results were seen with other CHK1 siRNA (Data not
shown). These results further demonstrate the potentia-
tion of gemcitabine activity by CHK1 silencing.

CHAKI inhibitors sensitize pancreatic cancer cells to
gemcitabine

To confirm CHK1 as a sensitizing target for gemcitabine,
we treated MIA PaCa-2 pancreatic cancer cells with CHK1
inhibitors SB 218078 and PD 407824 (Figure 5A &5B).
MIA PaCa-2 cells treated with 5 uM SB 218078 followed
by varying concentrations of gemcitabine resulted in a
shift of the dose response curve and decreased the IC;, val-
ues from 22.5 +/- 2.0 nM for vehicle treatment to 8.8 +/-
0.6 nM for SB 218078 treatment (Figure 5A). Similarly,
MIA PaCa-2 cells treated with 375 nM PD 407824 and
gemcitabine resulted in a shift of the dose response curve
and a decrease of the IC;, values from 17.5 +/- 1.8 nM for
vehicle treatment to 5.0 +/- 0.4 nM for PD 407824 treat-
ment (Figure 5B).

Discussion

In this study, we utilized a synthetic lethal screen based on
high throughput RNAI to identify functionally relevant
genes that could potentiate the response of pancreatic
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Kinetic analysis of CHKI siRNA induced sensitization of gemcitabine response. MIA PaCa-2 cells were transfected
with either CHKI siRNA or non-silencing siRNA and at 24 hours post transfection, cells were treated with either vehicle or
10 nM gemcitabine. Growth was assessed by impedance measurements at |-hour intervals and cell index was plotted as a func-
tion of time. (A) Treatment of cells with non-silencing siRNA and either vehicle or gemcitabine showed a slight decrease in cell
growth by gemcitabine. (B) Pretreatment with CHK siRNA caused a pronounced decrease in cell growth in the gemcitabine
treated cells compared to the vehicle treated cells. Data is representative of three independent experiments.
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cancer cells to gemcitabine, the standard agent in pancre-
atic cancer chemotherapy. Literature review shows that
combination therapies involving gemcitabine and other
agents, such as axitinib, cisplatin, and fluorouracil are cur-
rently being studied [26-28]. Our approach to identifying
combination partners for gemcitabine involves the appli-
cation of a HT-RNAi functional genomics platform.
Kinases are often considered to be prime drug targets
because they are involved in numerous cellular pathways
and are often deregulated in cancer cells. Therefore, we
utilized a kinome-based HT-RNAi screening methodology
to identify genes that sensitize pancreatic cancer cells to
the cytotoxic effects of gemcitabine. The siRNA library
used targets 572 kinases with two validated sequences per
gene. Screening results identified at least 18 genes as
potential sensitizing targets for two different concentra-
tions of gemcitabine (Figure 1D). Several of these gene
targets such as STK6 [29,30] and ATR [31] have previously
been studied as therapeutic targets in pancreatic cancer.
Another target, CAMK1 has been identified as being anti-
apoptotic, and a report by Franklin et al. suggested that
ROI-generating treatments trigger the activation of the cal-
cium/calmodulin-dependent  kinases (CaM-kinases),
which in turn have a role in preventing apoptosis [32].
ATR, CHK1 and PKMYT1 are involved in DNA damage
and G2/M cell cycle checkpoint, which clearly justifies
them as good sensitizers of gemcitabine therapy
[31,33,34]. Notably, the CHK1 kinase emerged as one of
the most significant targets for gemcitabine sensitization
and was followed up for further studies. Validation of
gene silencing was performed by qRT-PCR and western
blot analysis using four siRNA sequences targeting CHK1,
two of which were used in the HT-RNAI screen (Figure
2A-B). Furthermore, treatment of MIA PaCa-2 cells with
CHKT1 siRNA resulted in decreased cell proliferation when
compared to non-silencing control (Figure 2C), which is
consistent with previous observations that silencing of
CHK1 results in increased S and G2/M arrest [35]. Prelim-
inary analysis of CHK1 siRNA in our studies also showed
S and G2/M arrest (data not shown). It is worth noting
that we performed HT-RNAI screening in one pancreatic
cancer cell line and this might reflect the biological behav-
ior of clinical pancreatic cancer only to a limited degree.
Further validation of our results will need to be done in
other pancreatic cancer cell lines.

CHK1 is a protein kinase that plays a key role in the DNA
damage checkpoint signal transduction pathway (Figure
6) [33,36]. In mammalian cells, CHK1 is activated in
response to chemotherapeutic agents that disrupt or block
DNA replication such as hydroxyurea, pemetrexed, and
gemcitabine, as well as ionizing and ultraviolet radiation
[37-40]. Activation of CHK1 in dividing cells normally
induces an arrest in the cell cycle to allow for DNA repair
and completion of replication prior to mitosis. It is postu-

http://www.translational-medicine.com/content/7/1/43

lated that inhibition of CHK1 results in the release of cells
from checkpoint arrest, allowing progression into mitosis
with unreplicated or damaged DNA, which can ultimately
cause apoptosis [41,42]. This results in increased sensiti-
zation of cells to DNA damaging agents such as gemcitab-
ine. Here we utilize CHK1 inhibitors as a means to
abrogate cell cycle arrest and prevent DNA repair follow-
ing treatment with gemcitabine. A recent study by Parsels
et al. has shown that PD-321852 inhibited CHK1 in MIA
PaCa-2 cells as evidenced by stabilization of Cdc25A and
a synergistic loss of CHK1 protein was observed in combi-
nation with gemcitabine [43]. In these cells, the results fit
the prevailing model: inhibition of CHK1 led to abroga-
tion of gemcitabine-induced Cdc25A degradation, prema-
ture mitotic entry, and sensitization to gemcitabine.
Therefore, in MIA PaCa-2 cells, CHK1 is involved in desta-
bilization of Cdc25A, via phosphorylation by CHK1 at
multiple sites, which in turn results in inactivation of cyc-
lin-dependent kinase 1 complexes and G2 arrest and/or
inactivation of cyclin-dependent kinase 2 complexes and
intra-S-phase arrest [43].

In order to validate the functional association of CHK1
silencing with gemcitabine treatment, we treated pancre-

A 1201
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£ 0 uM SB218078
S oo o 5uM SB218078
R 404
201
0 p T - :
-10 -9 - ;7 o
Gemcitabine (log[M])
B 120
100 &
©° 8o
‘E 0 nM PD407824
8 60 o 375nM PD407824
2 40
20
0
-10 -9 -8 -7 8
Gemcitabine (log[M])
Figure 5

CHKI inhibitors potentiate gemcitabine response.
Treatment of MIA PaCa-2 cells with the CHKI inhibitors
(A) SB 218078 or (B) PD 407824 in combination with vary-
ing concentrations of gemcitabine resulted in a shift of the
dose response curves suggesting potentiation of the gemcit-
abine response. Cell number was assessed and data was nor-
malized to vehicle control and plotted. Data is representative
of three independent experiments.
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Figure 6

Schematic of the role of CHKI and ATR in sensitization to gemcitabine. Genes identified as synergistic to gemcitab-
ine in the RNAI kinase screens are shown in red. Gemcitabine induced DNA damage results in the phosphorylation and activa-
tion of serine/threonine-protein kinase CHK| by ATR. The activated CHKI then phosphorylates Cdc25A, leading to cell cycle
arrest in G2/M. This rapid response via CHK — Cdc25A pathways additionally is followed by the p53-mediated maintenance of
G1/S arrest. Tumor suppressor p53 plays a key role in the G2/M checkpoint arrest as well. In the maintenance stage, ATR
phosphorylates Ser|5 of p53 directly and Ser20 through activation of CHK . Phosphorylated p53 activates its target genes,
including cyclin-dependent kinase inhibitor | A (p21), which binds to cyclin-dependent kinase 2 (Cdk2) and cyclin-dependent
kinase 4 (Cdk4). Map was constructed with MapEditor (GeneGO).
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atic cancer cells with CHK1 siRNA followed by treatment
with gemcitabine. Results indicate that CHK1 silencing
shifted the EC, of gemcitabine approximately ten-fold in
MIA PaCa-2 cells (Figure 3A) and approximately three-
fold in BxPC3 cells (Figure 3C). This effect was notably
absent in the CHK2 siRNA-treated cells (Figure 3B and
3D). The CHK1/CHK2 proteins potentiate separate signal
transduction pathways, both of which play a role in cell
cycle arrest in response to DNA damage [33]. However,
our data suggest that CHK1 is essential for maintaining
gemcitabine-induced S-phase arrest whereas CHK2 is not.
This is in accordance with previously published data
[39,40].

Loss-of-function screening using siRNA libraries has pre-
viously been used to identify genes that modulate gemcit-
abine activity in cervical and pancreatic cancer cell lines
[12,44]. Using a screen of pooled siRNA targeting ~20,000
genes, Bartz et al. identified CHK1 as one of several genes
that shifted the IC5, of gemcitabine treatment greater than
two-fold in Hela cervical cancer cells [12]. Using pancre-
atic cancer cell lines, Giroux et al. screened an siRNA
library targeting kinases and found that CHK1 silencing
increased apoptosis by 2.1 fold [44]. Interestingly, six of
our top eighteen significant genes were also identified by
Giroux et al. as significant "hits." These genes include ATR,
DGKA, KDR, RIPK1, CHK1 and MAPKAP1. Our screen
not only identified CHK1 as a gemcitabine sensitizer, but
also showed that CHK1 siRNA had the highest degree of
potentiation of gemcitabine activity.

CHK1 targeting has recently become a focus for pharma-
ceutical companies [41,45]. CBP501, a G2 checkpoint
abrogator with activity against CHK1 is currently undergo-
ing clinical development [46]. Other CHKI1 inhibitors
undergoing clinical development include XL844 [47],
AZD7762 [48], and 5,10-dihydro-dibenzo [b, e] [1,
4]diazepin-11-one [49]. In the past, nonselective CHK1
inhibitors like UCN-01 and 17-AAG have been well toler-
ated in Phase I clinical trials [50-52]. The data presented
here suggests that administering these CHK1 inhibitors in
combination with gemcitabine would be more effective in
treating pancreatic cancer patients than gemcitabine
alone. Moreover, in vivo experiments demonstrating that
inhibitors of CHK1 can increase the anti-tumor activity of
gemcitabine have already been conducted in colorectal
[53] and pancreatic cancer xenografts [47].

Conclusion

This study utilized a synthetic lethal RNAi screen targeting
572 different kinases to identify sensitizing targets to gem-
citabine in pancreatic cancer cells. The RNAi screening
identified several genes as potential sensitizing targets, but
showed that CHK1 had the best sensitizing activity. We

http://www.translational-medicine.com/content/7/1/43

demonstrated potentiation of gemcitabine activity by
showing a shift in the dose response curve of gemcitabine
by CHK1 siRNA. In addition, we functionally-validated
the combination of gemcitabine and CHK1 inhibitors as
a potential treatment for pancreatic cancer patients. The
preclinical finding of inhibition of CHK1 as a sensitizing
target for gemcitabine is currently being tested in clinical
trials. Collectively, the data presented here clearly show
that synthetic lethal, high throughput RNAi screening is a
powerful and robust platform for screening hundreds or
thousands of genes for the identification of novel interact-
ing targets that can enhance the activity of existing chem-
otherapeutic agents. This high throughput RNAI screening
platform would provide an expedited method for deter-
mining effective combination therapies.
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