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postoperative serum 
metabolites of patients on a 
low carbohydrate ketogenic 
diet after pancreatectomy 
for pancreatobiliary cancer: a 
nontargeted metabolomics pilot 
study
chang Moo Kang1, BoKyeong Yun2, Minju Kim2, Mina Song2, Yeon-hee Kim2, Sung Hwan Lee  3, 
Hosun Lee4, Song Mi Lee4 & Seung-Min Lee  2*

A ketogenic diet is a potential adjuvant cancer therapy that limits glucose availability to tumours 
while fuelling normal tissues with ketone bodies. We examined the effect of a low carbohydrate 
ketogenic diet (LCKD) (80% kcal from fat, ketogenic ratio 1.75:1, w/w) compared to a general 
hospital diet (GD) on serum metabolic profiles in patients (n = 18, ≥ 19 years old) who underwent 
pancreatectomy for pancreatobiliary cancer. Serum samples collected preoperatively (week 0) and 
after the dietary intervention (week 2) were analysed with a nontargeted metabolomics approach 
using liquid chromatography–tandem mass spectrometry. Serum β-hydroxybutyrate and total ketone 
levels significantly increased after 2 weeks of LCKD compared to GD (p < 0.05). Principal component 
analysis score plots and orthogonal partial least squares discriminant analysis also showed significant 
differences between groups at week 2, with strong validation. In all, 240 metabolites differed between 
LCKD and GD. Pathways including glycerophospholipid and sphingolipid metabolisms were significantly 
enriched in the LCKD samples. LCKD decreased C22:1-ceramide levels, which are reported to be high 
in pancreatic cancer, while increasing lysophosphatidylcholine (18:2), uric acid, citrulline, and inosine 
levels, which are generally low in pancreatic cancer. Postoperative LCKD might beneficially modulate 
pancreatic cancer-related metabolites in patients with pancreatobiliary cancer.

Pancreatic cancer causes severe morbidity and has a high mortality rate because its early stage diagnosis is difficult 
and it presents a high risk of metastasis1. The 5-year survival rate (from 2004 to 2010) of patients diagnosed with 
pancreatic cancer in the United States was only 7%2. While only 15–20% of patients with pancreatic cancer are eli-
gible for tumour resection, early detection can increase the 5-year survival rate to ≥ 50%3. Surgical treatment for 
pancreatic cancer commonly leads to malnutrition, which may result in poor surgical outcomes and an increased 
toxicity of chemo-/radiation therapy; therefore, postoperative nutritional support in patients with pancreatic 
cancer is important to improve prognosis4. Cancer-related malnutrition has been associated with a low quality of 
life, poor muscle function, increased length of hospital stay, high mortality, and surgical complications5. La Torre 
et al. reported that after surgical tumour resection, 88% of patients with pancreatic cancer had a medium-high 
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risk of malnutrition6. These patients had significantly longer recovery times and increased morbidity rates when 
compared to patients who were at a low risk of malnutrition6.

A ketogenic diet has recently been investigated as an adjuvant cancer treatment7. Allen et al. defined the oral 
caloric composition of a ketogenic diet as 90% fat, 8% protein, and 2% carbohydrate7. A ketogenic diet is recog-
nized as an effective dietary intervention for neurological diseases, including epilepsy and Alzheimer’s disease, 
increasing the levels of ketone bodies such as β-hydroxybutyrate, a major ketone body in blood8. The low carbo-
hydrate and high fat composition of a ketogenic diet can limit glucose utilization in cancer cells7. Following keto-
sis, the levels of the gluconeogenic substrates lactate, pyruvate, and alanine decreased in the blood of cachectic 
cancer patients while free fatty acids and ketone bodies were increased; thus, ketosis may reduce glucose supply 
to the tumour while nourishing the patient with alternative energy sources9. Shukla et al. reported that the ketone 
bodies β-hydroxybutyrate and acetoacetate were associated with inhibited cell growth, reduced glucose uptake, 
and decreased glutamine and glutamate levels in pancreatic cancer cells; these ketone bodies were also associated 
with decreased measures of cachexia in patients10. In mice with pancreatic cancer, a ketogenic diet (81% kcal 
from fat) reduced blood glucose levels, increased ketone levels in the blood and tumour, reduced tumour growth, 
and alleviated cachexia (45% increase in muscle weight, 20% increase in body weight) in comparison to a control 
diet10. Schroeder et al. found that 2–5 days of a ketogenic diet in patients with head and neck cancer decreased 
lactate levels in the tumour, showing that lactate can substitute glucose as an energy source for tumour cells11. 
Fearon et al. demonstrated that in patients with gastric cancer, lung cancer, or ovarian cancer, a ketogenic diet 
(44 kcal/kg/day: 70% of energy from medium-chain triglycerides (MCT)) increased body weight by up to 2 kg 
after 7 days, with no gastrointestinal side effects, whereas a normal diet (55% kcal from carbohydrates and 31% 
kcal from fat) did not result in any body weight change after 6 days9. Breitkreutz et al. reported that among mod-
erately malnourished patients undergoing chemotherapy for colorectal or gastric cancer, an 8-week fat-enriched 
liquid diet (66% kcal from fat) in addition to normal meals significantly increased body weight and fat-free mass 
compared to a normal diet12. Therefore, a ketogenic diet has a potential therapeutic effect on cancer and may 
improve the postoperative nutritional status of patients with cancer who are at risk of malnutrition.

Metabolomics is a powerful tool used to identify metabolic changes in the body and to analyse full sets of 
metabolites in cells, tissues, and organisms13. Previous metabolomic analyses have suggested that several blood 
metabolites are markers for pancreatic cancer. Bathe et al. detected increased levels of glutamate, acetone, and 
β-hydroxybutyrate using 1H and 2D nuclear magnetic resonance (NMR) spectroscopy14. A metabolomics study 
using gas chromatography time-of-flight mass spectrometry, liquid chromatography-electrospray ionisation mass 
spectrometry, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed altered levels of 
amino acids, fatty acids, bile acids, and lipids such as lysophosphatidylcholine (lysoPC) (18:2), phosphatidyl-
choline (PC) (34:2), and phosphatidylethanolamine (PE) (26:0) associated with pancreatic cancer15. In addition, 
gas chromatography-mass spectrometry (GC-MS) detected changes in metabolites of patients with pancreatic 
cancer, such as increases in lactate and asparagine levels and decreases in urea and saturated fatty acid levels16, 
as well as reduced serum 1,5-anhydro-D-glucitol and amino acids, including valine, lysine, and tyrosine17. A 
metabolomics study using flow-injection Fourier transform ion cyclotron resonance mass spectrometry detected 
changes in serum glycerophospholipids (GPL) in pancreatic cancer patients18. Metabolomics can be used to eval-
uate the effects of a dietary intervention on metabolic profiles of living organisms19, and metabolic profiles after 
dietary intervention have been investigated in patients and in mouse models of cancer20. One metabolomics study 
compared the effects of 6 weeks of a whole grain rye and rye bran-rich diet with a refined white wheat diet in 17 
patients with prostate cancer20. However, to the best our knowledge, there are no metabolomics studies on the 
impact of a ketogenic diet in patients who have undergone pancreatectomy for pancreatobiliary cancer.

The purpose of this pilot study was to examine the postoperative effects of a low-carbohydrate ketogenic diet 
(LCKD) on the serum metabolic profiles in patients who underwent pancreatectomy for pancreatobiliary cancer, 
compared to a general hospital diet (GD).

Materials and Methods
Study subjects. This study was approved by and carried out in accordance with the guidelines and regula-
tions of the Severance Hospital Institutional Review Board (Assignment number: 4-2016-0799) in Seoul, Korea. 
All subjects provided informed consent. Adult patients (≥ 19 years old) with pancreatobiliary cancer (i.e. pancre-
atic cancer, duodenal cancer, distal bile duct cancer, or ampullary cancer) who underwent pancreaticoduodenec-
tomy or distal pancreatectomy were enrolled at a pancreatic surgery clinic between November 2016 and May 
2017. We excluded patients who were pregnant, illiterate, from a foreign country, or who had severe diabetic com-
plications, hyperlipidaemia with cardiovascular complications, or renal insufficiency with a normal glomerular 
filtration rate < 90%. After screening 47 patients for eligibility, 30 patients voluntarily enrolled and were randomly 
assigned to receive GD or LCKD. One patient in the GD group was excluded due to postoperative complications, 
while 11 patients in the LCKD group were excluded due to postoperative complications (n = 4), refusal to con-
sume the diet (n = 5), loss of data (n = 1), and outlying data (n = 1). A total of 18 participants were included in 
the final analysis (see Supplementary Fig. S1). Body weight and Patient-Generated Subjective Global Assessment 
(PG-SGA) scores were recorded throughout the study period with the help of a professionally trained dietitian.

Dietary intervention. Once patients resumed a full liquid oral diet after surgery, they were provided either 
a GD (n = 9) or an LCKD (n = 9). Both diets were equal in energy content (1500 kcal/d) and were provided for 
6 or 7 days during the 2-week hospitalization period before chemoradiotherapy was started. The full liquid and 
soft GD provided 55–65%, 7–20%, and 15–30% of energy from carbohydrate (C), protein (P), and fat (F), respec-
tively. The full liquid and soft LCKD provided 4%, 16%, and 80% of energy from C, P and F, respectively, targeting 
a ketogenic ratio of 1.75:1 (F:C + P w/w). Diet initiation differed according to the type of surgery. Patients who 
underwent a pylorus-preserving pancreaticoduodenectomy were provided a clear liquid diet for 5 days and GD 
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or LCKD from postoperative day (POD) 5. Patients who underwent a distal-pancreatectomy were provided a 
clear liquid diet until POD 1–3, GD or full liquid LCKD until POD 4, and soft diet until discharge. The protocol 
was adjusted depending on the patients’ conditions; for example, one GD patient received sips of water from POD 
9 for 5 days and resumed oral GD until discharge. Dietary intake was measured through a daily 24-hour recall 
assisted by a professionally trained dietitian.

Sample collection. Blood samples were collected under fasting conditions 3 times in total: the day before 
surgery (week 0), the day of discharge (week 2), and at the first outpatient visit (week 4). Blood samples were 
centrifuged at 2,500 rpm for 15 min. The supernatant serum was transferred to a clean tube and stored at −80 °C 
until analysis.

Quantitative analysis of ketone bodies, insulin, glucose, and tnf-α in blood. The amount of 
β-hydroxybutyrate (CAS No. 150-83-4, Sigma-Aldrich, USA) in serum was measured by LC-MS/MS using an 
Ultimate 3000 UHPLC and Q-Extractive Orbitrap Plus (Thermo Fisher Scientific, USA). Standard concentra-
tions ranged from 0.625 to 50 μg/mL. To measure the total ketone (acetoacetate + β-hydroxybutyrate) concen-
tration, the ketone body assay kit (Sigma-Aldrich, USA) was used according to the manufacturer’s instructions. 
Absorbance was measured at 340 nm using a Tecan GENios multi-functional plate reader (Infinite®F500, 
TecanGrödig, Austria). Serum insulin levels were measured using an electrochemiluminescence immunoassay 
with an Insulin Reagent kit (Roche, Germany) and an immunoassay analyser (Roche, Japan). Insulin sensitivity 
was 0.20 μU/mL. Serum glucose was determined using an enzymatic method (Asan Diagnostics, Korea) accord-
ing to the manufacturer’s instructions. Serum tumour necrosis factor-α (TNF-α) levels were measured using 
enzyme-linked immunosorbent assay CyMAX human TNF-α (AbFrontier, Korea) according to the manufac-
turer’s instructions. The absorbance was measured at 450 nm on a microplate reader (Infinite® 200 PRO, Tecan 
Trading AG, Switzerland).

Standard sample preparation for LC-MS/MS analysis. Acetaminophen, sulfadimethoxine, terfena-
dine, and reserpine (Sigma-Aldrich, Canada) were mixed at the same volume ratio to 10 mg/L in 70% acetonitrile 
(acetonitrile:methanol = 7:3 v/v) and used as internal standards (IS). Pooled serum samples from all patients 
were used as quality control (QC) samples. Next, 100 μL of each serum sample was mixed with 800 μL of a sol-
vent (methanol:acetone = 7:3 v/v) and 50 μL of IS. After centrifugation, the clear supernatant was lyophilised in a 
freeze-dryer for 18 hours at −84 °C, and then received 100 μL of 10% methanol. Finally, 90 μL of the sample was 
collected and 5 μL of each sample was used in the LC-MS/MS analysis.

LC-MS/MS analysis. An Ultimate 3000 UHPLC and Q-Extractive Orbitrap Plus was used for the analysis. 
The column (2.1 × 150 mm) was packed with C18 stationary 1.7 μm-sized resin. The column oven was maintained 
at 50 °C. Mobile phase A used 0.1% formic acid in water and mobile phase B used 0.1% formic acid in methanol. 
The total flow rate was 0.4 mL/min and the elution gradient (A/B, v/v) was changed from 100/0 to 0/100 for 
15 min, maintained at 0/100 for 4 min, and then changed back to 100/0 for 2 min. The full scan/dd-MS2 conditions 
were as follows: FTMS, ESI-positive mode with a mass resolution of 70,000; full scan range: 80–1000 m/z; dd-MS2 
(Top 10) resolution of 17,500 with collision energy of 30; flow rate of nitrogen sheath gas and auxiliary gas: 40 
(arbitrary units) and 10 (arbitrary units); spray voltage: 3.5 kV; capillary temperature: 320 °C; S- lensRF level: 50; 
auxiliary gas heater temperature: 300 °C. QC samples were injected into every tenth sample to check data quality 
and reliability.

Data processing and metabolite identification. The raw LC-MS data files (.raw) were imported to the 
XCMS online platform (https://xcmsonline.scripps.edu/) for nonlinear alignment of the data in the time domain 
and for extraction of the peak intensities21. The parameter settings were a 10 sec band width, 15 ppm tolerance for 
database search, and default values for values not shown. The extracted data included retention time, m/z, and ion 
intensity. The exact masses of differential ions were verified in online databases, including HMDB (www.hmdb.ca)  
and MycompoundID (www.mycompoundid.org). The masses and intensities of the query masses were compared 
with those in the database using a fit score ≥ 0.9. MetaboAnalyst 4.0 (www.metaboanalyst.ca/) was used to con-
duct hierarchical cluster analysis and draw heat maps to verify the classification ability of the metabolites. Pearson 
correlation analysis was performed using the same tool. MetaboAnalyst 4.0 is an open access online tool that 
supports statistical analysis, visualization, and interpretation of metabolomics data22.

pathway analysis. MetaboAnalyst 4.0 was used to conduct a pathway analysis, taking the concentrations 
of the identified metabolites into account with multivariate variable importance in the projection (VIP) value 
> 1.0 and p < 0.005. Metabolome view plots were generated to allow identification and analysis of the signifi-
cantly impacted pathways23. Pathways were defined as significantly enriched using cut-offs of p < 0.05 for the 
adjusted false discovery rate (FDR-adjusted) and > 0.1 for the pathway impact score. The KEGG Pathway data-
base (https://www.kegg.jp/kegg/pathway.html) and SMPDB (http://smpdb.ca/) were used to search the super-
pathway and pathway comprising each individual metabolite. In the case metabolites were involved in multiple 
metabolic pathways, the most exposed pathway was indicated.

Statistical analysis. Univariate nonparametric Mann–Whitney U tests were run for all metabolites, and 
multivariate principal component analysis (PCA) and orthogonal partial least squares discriminant analysis 
(OPLS-DA) were performed for all groups using SIMCA version 14.1 (Umetrics Inc., Sweden)24–26. Metabolic 
peak intensities were log transformed and scaled using Pareto scaling27 prior to multivariate analysis using 
SIMCA 14.1 (Umetrics, Inc., Sweden)28. Log transformation was used to normalize right-skewed distribution 
of metabolite intensity values29. Pareto scaling adjusted for the relative importance of large values27. Robustness 
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and validity of the results were assessed with parameters R2X, R2Y, and Q2Y, as well as with a cross-validated 
analysis of variance (CV-ANOVA). The metabolites were filtered as univariate statistical p-value < 0.0530 
and VIP value > 1.0. Information about the patient’s medical and anthropometry measures was expressed as 
mean ± standard deviation (SD).

Results
patient characteristics, nutritional intake, and blood biochemistry. The general characteristics of 
participants are summarized in Table 1. Average age, male to female ratio, histological cancer type, and surgical 
operation type were not significantly different between the groups. The timeline of the study is shown in Fig. 1a. 
The average postoperative days were not different between GD (17.2 ± 11.8 days) and LCKD (13.4 ± 5.5 days) 
groups. There was no difference between GD and LCKD groups in the cumulative total caloric intake during the 
hospitalization period (Fig. 1b). However, the cumulative caloric intake of dietary fat was significantly different 
between the two groups (Fig. 1c). Body weight was not significantly different between GD and LCKD groups 
during the study period (Fig. 1d). The PG-SGA score indicated that patients were in a poorer nutrition state after 
surgery, but this was alleviated at week 4 in both groups, and there were no significant differences between groups 
(Fig. 1e). At week 2, the LCKD group showed significantly higher ketone levels than the GD group, showing that 
LCKD induced ketone body production (Fig. 1f,g). At week 4, there were no significant differences in ketone 
levels compared with the baselines either within each group or between the groups (Fig. 1f,g). Serum insulin, 
glucose, and TNF-α levels were not different between the GD and LCKD groups during the perioperative period 
(Fig. 1h–j). Changes in blood chemistry, including blood levels of creatinine, pre-albumin, cholesterol, high-den-
sity lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, lipoprotein, transferrin, CEA, and 
CA19-9, were not significant between the groups during the study period (see Supplementary Table S1).

Non-targeted metabolomics analysis by LC-MS/MS. A total of 11,657 ionized compounds in the ESI+ 
mode were detected using LC-MS/MS. While QC samples were closely clustered (Fig. 2a), results for the GD 
and LCKD were clearly separated at week 2 in two-dimensional PCA score plot analysis (Fig. 2b). OPLS-DA 
score plot analysis at each time point (weeks 0, 2, and 4) indicated that baseline profiles between the groups were 
not different (Table 2). A good classification model was detected only between GD and LCKD groups at week 2 
(Table 2 and Fig. 2c). A statistical validation of the OPLS-DA model was performed using 500 permutation tests 
(Fig. 2d). A heat map of the total peaks retrieved from XCMS is presented in Fig. 2e. These results suggested that 
a differential metabolite profile between GD and LCKD groups was detected only at week 2.

GD (n = 9) LCKD (n = 9) p-value

Age(year) 66.3 ± 9.8 58.3 ± 7.6 0.072

Sex(n(%))

Male 6(66.7) 5(55.6) 1.000

Female 3(33.3) 4(44.4)

Histological type

Pancreatic ca. 2 3

(head/body/tail) (1/0/1) (1/2/0)

Ampulla of Vater cancer 2 1 0.741

Common bile duct 5 3

Duodenal cancer 0 1

NET 0 1

Surgical operation

PPPD 7 8 1.000

DP 2 1

BMI (kg/m2) 22.2 ± 2.7 24.0 ± 2.2 0.149

Weight (kg) 56.3 ± 7.3 63.1 ± 10.1 0.117

CEA 2.13 ± 1.23 1.95 ± 0.63 0.693

CA19-9 150.6 ± 306.5 31.8 ± 33.9 0.265

Hospitalization period 17.4 ± 11.8 11.3 ± 2.1 0.161

Total oral diet period (day) 11.9 ± 10.5 7.5 ± 4.3 0.146

Percentage of energy intake to EER (kcal/kcal %)*
from total caloric intake (%) 87.5 ± 16.6 89.8 ± 22.4 0.807

from meal (%) 31.9 ± 12.5 44.8 ± 18.4 0.101

from PN 57.0 ± 21.1 45.9 ± 8.5 0.197

Table 1. General characteristics of GD and LCKD groups. Values are mean ± standard deviation. p-values were 
derived from independent Student’s t-tests at baseline. The statistical differences between GD and LCKD groups 
for histological type were obtained using Fisher’s exact test after crossover analysis. NET, neuroendocrine 
tumour; PPPD, pylorus-preserving pancreaticoduodenectomy; DP, distal pancreatectomy; BMI, body 
mass index; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; EER, estimated energy 
requirement; PN, parenteral nutrition.
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Differential metabolites between GD and LCKD. A slight upregulation in β-hydroxybutyrate was 
detected by targeted quantitative analysis with LCKD at week 2 compared to GD (p = 0.05) (Fig. 3a). To compare 
the metabolomics data of GD and LCKD at week 2, cut-off values of OPLS-DA VIP score > 1.0 and p < 0.05 
were used, resulting in the detection of 588 differential peaks. C22:1-ceramide, a previously reported pancreatic 
cancer-specific metabolite31, was significantly downregulated while lysoPC(18:2)15,18, uric acid16, citrulline32, and 
inosine15 were significantly upregulated in the LCKD group at week 2 (Fig. 3b). After excluding drugs (n = 20), 
xenobiotics (n = 82), a fit score < 0.9 (n = 99), and significantly different metabolites at baseline (n = 147), a total 
of 240 metabolites were included in further correlation analyses (see Supplementary Table S2).

pathway analysis. For metabolic pathway analysis, we chose a more stringent cut-off value of VIP score > 1.0 
and p < 0.005, resulting in 65 differential metabolites for analysis (Fig. 3c, also see Supplementary Table S3). A 
total of 8 pathways were found to be significantly enriched, including sphingolipid (FDR-adjusted = 0.003, path-
way impact = 0.337) and GPL (FDR-adjusted = 0.005, pathway impact = 0.375) metabolic pathways (Fig. 3c, also 
see Supplementary Table S3). In addition, carbohydrate-related metabolic pathways were also found among 8 
differential metabolites (VIP > 1.0, p < 0.05), including glucose-1-phosphate (G1P) and 2-isopropylmalic acid 
(Fig. 3d).

correlation analysis. We conducted a correlation analysis for metabolite changes between weeks 0 and 2 
with LCKD-induced changes in β-hydroxybutyrate levels (see Supplementary Table S4). Significant positive and 
negative correlations were detected in in 63 and 7 metabolites, respectively (see Supplementary Table S4). The top 
11 upregulated and 3 downregulated metabolites are presented in Fig. 3e. To further investigate the significance 
of our LCKD in postoperative patients with pancreatic cancer, metabolites found in both pathway and correlation 
analyses were selected. Among these metabolites, those with literature-based importance were summarized as 
box plots in Fig. 3f.

Figure 1. Nutritional changes and blood profiles in GD and LCKD groups during the study period. (a) 
Timeline of the study, (b) cumulative total dietary caloric intake, and (c) cumulative total dietary fat intake 
(kcal) are shown. There were no differences in (d) body weight (kg) via the Mann-Whitney U test. The PG-SGA 
score is a nutrition assessment tool that identifies malnutrition in hospitalized patients. Higher scores indicate 
poorer nutritional statuses. Statistical differences in (e) PG-SGA score, serum (f) β-hydroxybutyrate, (g) total 
ketone bodies, (h) insulin, (i) glucose, and (j) TNF-α levels were analysed between time periods (general linear 
model) and between groups (Kruskal Wallis). *p < 0.05; **p < 0.01. Different lowercase letters (a, b) over 
bars represent significant within group differences (Dunnett T3). Mean ± S.E. PG-SGA, Patient-Generated 
Subjective Global Assessment; TNF-α, tumour necrosis factor-α.
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Discussion
The data demonstrated that our LCKD was ketogenic and induced metabolic alterations in postoperative patients 
with pancreatobiliary (periampullary and distal pancreatic) cancer who underwent pancreatectomy. A ketogenic 
diet is generally high in fat, at a ketogenic ratio of 3:1 to 4:1, F:C + P (w/w)7. A low glycaemic index treatment 
and a modified Atkins diet with a 1:1 ketogenic ratio are also used in the Johns Hopkins protocol, which induces 
ketosis by restricting carbohydrates to 10–20 g/day while not restricting protein, fluid, or energy33. Our LCKD 
targeted a ketogenic ratio of 1.75:1 and a nutritional composition of 15.95 g (4% kcal), 60.00 g (16% kcal), and 
132.91 g (80% kcal) of C, P, and F, respectively. To prevent body protein loss, a minimum of 20~25 kcal/kg and 

Figure 2. PCA score plot, OPLS-DA three-dimensional score plots and validation plot for the metabolic 
profiling results between GD and LCKD (week 2). PCA score plots compared (a) sample and QC and (b) GD 
and LCKD groups at week 2. (c) OPLS-DA score plot (three latent variables, p = 0.024, R2Y = 0.964, Q2 = 0.555) 
and (d) the 500-permutation plot validated GD versus LCKD in the ESI+ mode. All permuted R2 and Q2 
values on the left were lower than the point on the right and the Q2 regression line had a negative intercept. 
(R2 = 0.933959, Q2 = −0.174472). (e) The total peak intensities between GD and LCKD at week 2 are visualized 
with a hierarchical cluster analysis heat map. OPLS-DA, orthogonal partial least squares discriminant analysis; 
PCA, principal component analysis; QC, quality control.

Group

OPLS-DA

p-valuebComponentsa Q2 R2 Q2/R2

GD-LCKD

Week 0–0 5 0.470 0.943 0.50 0.055

Week 2–2 1 0.555 0.964 0.58 0.024

Week 4–4 3 0.608 0.938 0.65 0.057

GD-GD

Week 0–2 6 0.554 0.998 0.60 0.129

Week 0–4 5 0.470 1.000 0.47 0.181

Week 2–4 3 0.569 0.999 0.57 0.174

LCKD-LCKD

Week 0–2 6 0.780 1.000 0.78 0.120

Week 0–4 — — — — —

Week 2–4 7 0.649 1.000 0.65 0.525

Table 2. OPLS-DA parameters and permutation test for distinguishing GD and LCKD groups. aThe number 
of components based on Q2 indicates the best classifier of OPLS-DA using a 7-fold cross-validation method. 
bp-value was determined by CV-ANOVA of OPLS-DA in SIMCA 14.1. p < 0.05 was considered significant. CV-
ANOVA, cross-validated analysis of variance; OPLS-DA, orthogonal partial least squares discriminant analysis; 
Q2, predictive capability; R2, goodness of fit. OPLS-DA not performed was shown as “—”.

https://doi.org/10.1038/s41598-019-53287-y


7Scientific RepoRtS |         (2019) 9:16820  | https://doi.org/10.1038/s41598-019-53287-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

1.0 g of protein per kg was provided, based on the European Society for Clinical Nutrition and Metabolism 
(ESPEN) guidelines34.

LCKD noticeably increased the serum levels of total ketones and β-hydroxybutyrate, suggesting that the keto-
genic process was enhanced. In our metabolomics analysis, β-hydroxybutyrate was detected and significantly 
upregulated by LCKD, but the change was offset at week 4. This supports the ketogenic effect of LCKD. Clinical 
cancer studies using ketone-producing diets have shown that ketosis may decrease lactate levels in tumour tis-
sues, reduce tumour-associated markers, and improve body weight in cachectic cancer patients and mice9,10. 
The anticancer effects of ketone bodies have received attention due to their ineffectiveness as an energy source 
for cancer cells with altered mitochondrial function35. β-hydroxybutyrate supplementation reduced prolif-
eration in metastatic cancer cells and decreased progression and also increased survival in mice35. Recently, a 
β-hydroxybutyrate-induced reduction of the mTOR oncogenic signalling pathway including c-Myc and its tar-
get genes has been reported in pancreatic cancer cells36. A β-hydroxybutyrate treatment of pancreatic cancer 

Figure 3. Metabolomic analysis of 240 metabolites enriched in LCKD compared to GD. All figures except 
Fig. 3a represent data at week 2 compared with baseline. (a) Changes in serum β-hydroxybutyrate levels 
using LC-MS/MS quantitative analysis between baseline and week 2 or 4 are compared in a box plot form. 
(b) Box plots of significantly altered pancreatic cancer-specific biomarkers. Peaks were normalized using 
log transformation and Pareto scaling. (c) An overview of pathway analysis using 65 metabolites (VIP > 1.0, 
p < 0.005) is shown. A total of 33 metabolic pathways were detected by MetaboAnalyst. Significant metabolic 
pathways (FDR-adjusted < 0.05, pathway impact > 0.1) are labelled in bold and carbohydrate-related pathways 
are labelled in plain text. (d) An overview of carbohydrate-related metabolic pathways among 240 detected 
metabolites (p < 0.05). Among the 65 metabolites (VIP > 1.0, p < 0.005) hit in the 3 pathways, those upregulated 
and downregulated by LCKD are marked with red and blue arrows, respectively. (e) Correlation analysis 
between the 240 metabolites and β-hydroxybutyrate changes (Pattern Hunter, Pearson). Red and blue colours 
indicate a positive and negative correlation, respectively. (f) Box plots of the 4 significant metabolites found 
in both pathway and correlation analyses. LysoPC, lysophosphatidylcholine; PC, phosphatidylcholine; LPA, 
lysophosphatidic acid; α-G6P, α-D-Glucose-6P; G1P, Glucose-1-phosphate; PEP, 2-phosphoenolpyruvate; 5A6-
5′PRbAU, S-Amino-6-(5′phosphoribitylamino)uracil; GGMSC, Gamma-glutamyl-Se-methylselenocysteine; 
CerP, ceramide phosphate; GalCer, Galabiosylceramide; NAGly, N-Arachidonoyl glycine.
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cells also reduced motility by affecting epithelial-mesenchymal transition markers, and inhibited inflammatory 
cytokines36. In addition, β-hydroxybutyrate has been reported to suppress oxidative stress by increasing oxidative 
stress resistance factors (FOXO3A and MT2) as a part of the inhibitory actions of class I histone deacetylases37. 
Our LCKD study was the first trial to investigate the effects of a postoperative ketogenic diet in patients with pan-
creatobiliary cancer who underwent pancreatectomy. Although the 7-day application of LCKD did not prevent 
body weight loss when compared to the GD, there were significant alterations in serum metabolites, including 
those associated with pancreatic cancer. This lack of effect of LCKD on body weight might have been due to an 
insufficient duration of the diet. Previous studies indicated that ketogenic diets lasting 7 days or 8 weeks limited 
body weight loss in cancer patients that experienced weight loss7,11. A well-designed prospective study on the 
long-term use of a postoperative ketogenic diet in patients with pancreatic cancer is warranted to evaluate the 
potential role of a ketogenic diet on nutritional statuses perioperatively and in the long-term.

Significant alterations in serum metabolites by LCKD were observed postoperatively in patients with pancre-
atobiliary cancer. Among significantly altered metabolites, 48.8%, 27.5%, 10.8%, 8.8%, and 2.9% were involved 
in the metabolism of lipids, amino acids, nucleotides, cofactors and vitamins, and carbohydrates, respectively. 
Our pathway analysis suggested that changes might have occurred in the metabolic pathways for sphingolipids, 
tryptophan, ascorbate and aldarate, GPL, thiamine, cysteine and methionine, retinol, and starch and sucrose.

Sphingolipids participate as bioactive lipids within cancer cell signal transduction networks to regulate tumour 
growth, proliferation, migration, and metastasis38. LCKD appeared to lower serum levels of C22:1-ceramide, 
C18-ceramide phosphate, galabiosylceramides, and glucosylceramides in comparison to GD. Previously, sig-
nificant elevations of specific individual ceramides, which are metabolites of the sphingolipid pathway, were 
reported in the blood of cancer patients18,31,39,40. Serum C24:6-ceramide18 and serum exosome C22:1-ceramide31 
levels were upregulated in pancreatic cancer. C18-ceramide phosphate is a type of ceramide 1-phosphate (C1P) 
classified as a sphingolipid. C1P is a key regulator in human pancreatic cancer cell migration and invasion41. 
Galabiosylceramide (d18:1/18:1) was reported to be upregulated in ovarian cancer42. In our study, galabiosylcer-
amide (d18:1/24:0) and galabiosylceramide (d18:1/24:1) levels were found to be lowered by the LCKD. Several 
glucosylceramides were closely linked to anticancer drug resistance43,44. Unlike the GD, LCKD might elicit 
changes in blood ceramide levels against the pancreatic cancer-associated dysregulation of blood metabolites.

GPLs, including PC, PE, PS, phosphatidylinositol, plasmalogen ethanolamine, and plasmalogen choline play 
structural roles in the lipid bilayers of cell membranes45. The GPL metabolic pathway has been associated with 
pancreatic cancers46. PC(16:0/22:6) was downregulated in the serum of patients with pancreatic cancer18 but was 
elevated by our LCKD. PC(14:0/P-18:0), which was upregulated in breast cancer47,48, colon cancer, oesophageal 
cancer, and stomach cancer tissues48, was lowered by LCKD. Longnecker et al. showed that dietary choline sup-
plementation in rats alleviated pancreatic cancer lesions compared with a choline-free diet49. In our study, LCKD 
increased serum levels of lysoPC(18:2). Reports on lysoPC(18:2) levels in patients with pancreatic cancer are 
inconsistent, showing reduced serum lysoPC(18:2)13,18 and increased plasma lysoPC(18:2)15. Moreover, when 
GPL is degraded, various bioactive lipid mediators are produced, such as phosphatidic acid and lysophosphatidic 
acid (LPA)50. Plasma LPA was elevated in patients with ovarian cancer51, but LPA 18:2 was significantly downreg-
ulated in human colon cancer tissues compared with non-cancerous tissues52. Our LCKD increased LPA 18:2 in 
patients with pancreatic cancer. Partial reversion of the behaviour of GPL metabolites such as PC(16:0/22:6) and 
PC(14:0/P-18:0) by LCKD might suggest that LCKD induced some changes in GPL metabolism against pancre-
atobiliary cancer.

A low carbohydrate and high fat diet is known to reduce glucose and ATP supplies for pancreatic cancer cells, 
inhibiting their growth and proliferation10. Alternatively, ketogenesis may occur with liver glycogen depletion 
and fatty acid oxidation53. We searched for LCKD-induced changes in metabolites of the glucose metabolism. 
An upregulation of G1P was detected in the LCKD group, which might suggest glycogen degradation by the 
ketogenic diet-induced elevation in ketone bodies. G1P, derived from glycogen through glycogen phosphoryl-
ase, plays an important role in glycolysis, pentose synthesis, ATP generation, and fatty acid synthesis54. Another 
metabolite, 2-isopropylmalic acid, an intermediate of pyruvate metabolism synthesized from acetyl-CoA, was 
increased by LCKD, although it is downregulated in colon cancer-initiating cells55.

Vitamins and amino acid metabolites were also regulated by LCKD. Adenosine, inosine, L-tryptophan, 
1-methylhistidine, and creatinine levels were lowered with LCKD. Serum adenosine was upregulated in pan-
creatic cancer patients18. Inosine, detected by GC- and LC-MS-based metabolomic analyses, was upregulated 
in plasma samples from patients with pancreatic ductal adenocarcinoma15. Serum tryptophan was upregulated 
in a pancreatic cancer mouse xenograft and 1-methylhistidine was upregulated in murine pancreatic tumour 
tissue46. In patients with pancreatic cancer, the serum creatinine level was found to be elevated using 1H NMR 
spectroscopy metabolomic profiling56 but was found to be decreased when analysed by GC-MS17. However, reti-
noic acid, N-arachidonoyl glycine, gamma-glutamyl-Se-methylselenocysteine, citicoline, uric acid, and citrul-
line levels were elevated with LCKD. The increased level of retinoic acid was associated with cell cycle arrest 
and a synergistic effect on apoptosis when combined with chemotherapeutic treatment in pancreatic cancer 
cells57. N-Arachidonoyl glycine exhibited anti-inflammatory effects in rat ear oedema and peritonitis models58. 
Gamma-glutamyl-Se-methylselenocysteine, an organic selenium compound, showed an anti-cancer effect in a 
rat model of colon cancer59. A protective effect of citicoline on colitis has been reported in rats, related to its 
contribution to anti-inflammatory and antioxidant mechanisms60. Uric acid was downregulated in patients with 
pancreatic cancer compared with healthy participants16. Citrulline was decreased in patients with pancreatic can-
cer in an LC-MS-based plasma profiling study32. Overall, LCKD might partially provide beneficial effects against 
pancreatic cancer.

Animal studies have shown increased survival rates with a ketogenic versus non-ketogenic diet; however, few 
human clinical studies have investigated this61. Anti-cancer effects of ketogenic diets were evidenced in animal 
studies by a clear reduction in tumour mass61. A ketogenic diet (C:P:F = 0.76%:8.36%:78.8%) reduced tumour 
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growth and improved survival compared to a standard chow diet (composition unknown) in glioma cancer 
cell-implanted mice (median survival days: ketogenic diet = 25 days, standard diet = 19 days)62. A ketogenic diet 
supplemented with omega-3 fatty acids and MCTs (C:P:F = 0.2%:13.0%:35.5%) delayed tumour formation in 
human gastric cancer cell-implanted mice compared with a standard diet (C:P:F = 36.4%:23.8%:7.0%) (g/100 g 
diet)63. LCKD might provide anti-cancer effects by reducing the proliferation of any residual postoperative cancer 
cells. Based on the present study, a prospective randomized clinical trial evaluating the impact of LCKD on sur-
vival in patients with pancreatobiliary cancers is necessary.

Although the present study was a phase I prospective clinical trial demonstrating the safety and feasibility of 
the postoperative use of an LCKD and its effects on the metabolomics of patients with pancreatobiliary cancer, 
there are several limitations to this study. First, the study population is small due to the high exclusion and with-
drawal rates. The measurement of ketone bodies might have provided more insight if more frequent and using 
other sources (e.g. urinary). The present metabolomic analysis was highly validated by the OPLS-DA model, 
suggesting that our results show significant differences between GD and LCKD. As a novel metabolomics study 
on the application of a post-surgery dietary intervention in patients with cancer, our results may provide useful 
data for further research.

In summary, our study successfully demonstrated that LCKD with 80% kcal from fat induced moderate keto-
sis by increasing postoperative serum total ketones and β-hydroxybutyrate in patients with cancer. In addition, 
an LCKD might revert some pancreatic cancer metabolite biomarkers, such as C22:1-ceramide, lysoPC (18:2), 
uric acid, citrulline, and inosine, and might also affect the metabolism of carbohydrates, amino acids, and vita-
mins. The LCKD used in our study might provide potential benefits to patients with pancreatobiliary cancer who 
undergo pancreatectomy. Further studies are mandatory to ascertain the effects of the serum metabolite changes 
induced by LCKD.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information File.
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