Skip to main content
Log in

Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L.

  • Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Induction of high-frequency shoot regeneration using nodal segments containing axillary buds from a 1-yr-old mother plants of Cannabis sativa was achieved on Murashige and Skoog (MS) medium containing 0.05–5.0 μM thidiazuron. The quality and quantity of regenerants were better with thidiazuron (0.5 μM thidiazuron) than with benzyladenine or kinetin. Adding 7.0 μM of gibberellic acid into a medium containing 0.5 μM thidiazuron slightly increased shoot growth. Elongated shoots when transferred to half-strength MS medium supplemented with 500 mg l−1 activated charcoal and 2.5 μM indole-3-butyric acid resulted in 95% rooting. The rooted plants were successfully acclimatized in soil. Following acclimatization, growth performance of 4-mo-old in vitro propagated plants was compared with ex vitro vegetatively grown plants of the same age. The photosynthesis and transpiration characteristics were studied under different light levels (0, 500, 1,000, 1,500, or 2,000 μmol m−2 s−1). An increase in photosynthesis was observed with increase in the light intensity up to 1,500 μmol m−2 s−1 and then decreased subsequently at higher light levels in both types of plants. However, the increase was more pronounced at lower light intensities below 500 μmol m−2 s−1. Stomatal conductance and transpiration increased with light intensity up to highest level (2000 μmol m−2 s−1) tested. Intercellular CO2 concentration (C i) and the ratio of intercellular CO2 concentration to ambient CO2 (C i/C a) decreased with the increase in light intensity in both in vitro as well as ex vitro raised plants. The results show that in vitro propagated and hardened plants were functionally comparable to ex vitro plants of same age in terms of gas and water vapor exchange characteristics, within the limits of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Abrie A. L.; Staden J. V. Micropropagation of the endangered Aloe polyphylla. Plant Growth Regul. 33: 19–23; 2001. doi:10.1023/A:1010725901900.

    Article  CAS  Google Scholar 

  • Bag N.; Chandra S.; Palni L. M. S.; Nandi S. K. Micropropagation of Dev-ringal (Thamnocalamus spathiflorus)—a temperate bamboo, and comparison of in vitro propagated plants and seedlings. Plant Sci. 156: 125–135; 2000. doi:10.1016/S0168-9452(00)00212-0.

    Article  PubMed  CAS  Google Scholar 

  • Bing X.; Ning, L.; Jinfeng T.; Nan G. Rapid tissue culture method of Cannabis sativa for industrial uses. CN 1887043 A 20070103 Patent (p. 9); 2007.

  • Chakraborty D.; Mandal A. K. A.; Datta S. K. Retrieval of new coloured Chrysanthemum through organogenesis from sectorial chimera. Curr. Sci. 789: 1060–1061; 2000.

    Google Scholar 

  • Chandra S.; Dhyani P. P. Diurnal and monthly variation in leaf temperature, water vapour transfer and energy exchange in the leaves of Ficus glomerata during summer. Physiol. Mol. Biol. Plants 3: 135–147; 1997.

    Google Scholar 

  • Encina C. L.; Barcelo-Munoz A.; Herrero-Castano A.; Pliego- Afaro F. In vitro morphogenesis of juvenile Annona cherimola Mill. Bud explants. J. Hortic. Sci. 69: 1053–1059; 1994.

    Google Scholar 

  • Ericksson M. E.; Israelsson M.; Olssono O.; Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat. Biotechnol. 18: 784–788; 2000. doi:10.1038/77355.

    Article  Google Scholar 

  • Feeney M.; Punja Z. K. Tissue culture and agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell. Dev. Biol. Plant 39: 578–585; 2003. doi:10.1079/IVP2003454.

    Article  CAS  Google Scholar 

  • Figueiredo S. F. L.; Albarello N.; Viana V. R. C. Micropropagation of Rollinia mucosa (JACQ.) baill. In Vitro Cell. Dev. Biol. Plant 37: 471–475; 2001. doi:10.1007/s11627-001-0083-1.

    CAS  Google Scholar 

  • Fisse J.; Braut F.; Cosson L.; Paris M. Etude in vitro des capacities organogenetiques de tissues de Cannabis sativa L. Effet de differentes substances de croissance. Planta Med. 15: 217–223; 1981.

    CAS  Google Scholar 

  • Hammond C. T.; Mahlberg P. G. Morphogenesis of capitate glandular hairs of Cannabis sativa (Cannabaceae). Am. J. Bot. 64: 1023–1031; 1977. doi:10.2307/2442258.

    Article  Google Scholar 

  • Hare P. D.; Staden J. V. Inhibitory effect of Thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol. 35: 1121–1125; 1994.

    CAS  Google Scholar 

  • Huetteman C. A.; Preece J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 33: 105–119; 1993. doi:10.1007/BF01983223.

    Article  CAS  Google Scholar 

  • Husain M. K.; Anis M.; Shahzad A. In vitro propagation of Indian Kino (Pterocarpus marsupium Roxb.) using thidiazuron. In Vitro Cell. Dev. Biol. Plant 43: 59–64; 2007. doi:10.1007/s11627-006-9011-8.

    CAS  Google Scholar 

  • Lata H.; Andrade Z.; Schaneberg B.; Bedir E.; Khan I.; Moraes R. M. Arbuscular mycorrhizal inoculation enhances survival rates and growth of micropropagated plantlets of Echinacea pallida. Planta Med. 69: 679–682; 2003. doi:10.1055/s-2003-41124.

    Article  PubMed  CAS  Google Scholar 

  • Lata H.; Bedir E.; Hosick A.; Ganzera M.; Khan I.; Moraes R. M. In vitro plant regeneration from leaf-derived callus in Black cohosh (Cimicifuga racemosa). Planta Med. 68: 912–915; 2002. doi:10.1055/s-2002-34933.

    Article  PubMed  CAS  Google Scholar 

  • Loh W. H. T.; Hartsel S. C.; Robertson W. Tissue culture of Cannabis sativa L. and in vitro biotransformation of phenolics. Z. Pflanzenphsiol 111: 395–400; 1983.

    CAS  Google Scholar 

  • Mandolino G.; Ranalli P. Advances in biotechnological approaches for hemp breeding and industry. In: Ranalli P. (ed) Advances in hemp research. Haworth, New York, pp 185–208; 1999.

    Google Scholar 

  • Magioli C.; Rocha A. P. M.; de Oliveira D. E.; Mansur E. Efficient shoot organogenesis of eggplant (Solanum melongena L.) induced by thidiazuron. Plant Cell Rep. 17: 661–663; 1998. doi:10.1007/s002990050461.

    Article  CAS  Google Scholar 

  • Mechoulam R.; Ben-Shabat A. From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of Cannabis. Nat. Prod. Rep. 16: 131–143; 1999. doi:10.1039/a703973e.

    Article  PubMed  CAS  Google Scholar 

  • Meijer E. P. M.; van dr Kamp H. J.; van Eeuwijk F. A. Characterisation of Cannabis accessions with regard to cannabinoid content in relation plant characters. Euphytica 62: 187–200; 1992. doi:10.1007/BF00041753.

    Article  Google Scholar 

  • Mohamed-Yasseen Y. Influence of agar and activated charcoal on uptake of gibberellin and plant morphogenesis in vitro. In Vitro Cell. Dev. Biol. Plant 372: 204–205; 2001. doi:10.1007/s11627-001-0035-9.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Purohit V. K.; Tamta T.; Chandra S.; Vyas P.; Palni L. M. S.; Nandi S. K. In vitro multiplication of Quercus leucotrichophora and Q. glauca: important Himalayan oaks. Plant Cell Tissue Organ Cult. 69: 121–133; 2002. doi:10.1023/A:1015296713243.

    Article  CAS  Google Scholar 

  • Quimby M. Botany of Cannabis sativa. In: Mateos-Gomez JL (ed) Archivos de investigacion medica. El Instituto Mexicano del Seguro Social; 1974.

  • Richez-Dumanois C.; Braut-Boucher F.; Cosson L.; Paris M. Multiplication vegetative in vitro du chanvre (Cannabis sativa L.) application a la conservation des clones selectionnes. Agronomie 6: 487–495; 1986. doi:10.1051/agro:19860510.

    Article  Google Scholar 

  • Sekioka T. A.; Tanaka J. S. Differentiation in callus culture of cucumber (Cucumis sativa l). Hort. Sci. 16: 451; 1981(Abstr. 386).

    Google Scholar 

  • Sirikantaramas S.; Taura F.; Tanaka Y.; Ishikawa Y.; Morimoto S.; Shoyama Y. Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol. 469: 1578–1582; 2005. doi:10.1093/pcp/pci166.

    Article  PubMed  CAS  Google Scholar 

  • Slusarkiewicz-Jarzina A.; Ponitka A.; Kaczmarek Z. Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol. Crac. Ser. Bot. 472: 145–151; 2005.

    Google Scholar 

  • Stoutjesdijk P. H.; Barkman J. J. Microclimate, vegetation and fauna. Opulus, Sweden; 1992.

    Google Scholar 

  • Thomas T. D. Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonay explants of mulberry. Biol. Plant. 46: 529–533; 2003. doi:10.1023/A:1024807426591.

    Article  CAS  Google Scholar 

  • Thomas T. D.; Puthur J. T. Thidiazuron induced high frequency shoot organogenesis in callus from Kigelia pinnata L. Bot. Bull. Acad. Sin. 45: 307–313; 2004.

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by National Institute of Drug Abuse (NIDA), contract no. N01DA-0-7707 and United States Department of Agriculture Agricultural Research Service Specific Cooperative Agreement No. 58-6408-6-067. Constructive comments provided by unknown referees and the associate editor on an earlier version of the manuscript were most helpful; we record appreciation for the same.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Lata.

Additional information

Editor: M. Nakano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lata, H., Chandra, S., Khan, I. et al. Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L.. In Vitro Cell.Dev.Biol.-Plant 45, 12–19 (2009). https://doi.org/10.1007/s11627-008-9167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9167-5

Keywords

Navigation