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Abstract

Background: The computational prediction of methylation levels at single CpG resolution is promising to explore
the methylation levels of CpGs uncovered by existing array techniques, especially for the 450 K beadchip array data
with huge reserves. General prediction models concentrate on improving the overall prediction accuracy for the
bulk of CpG loci while neglecting whether each locus is precisely predicted. This leads to the limited application of
the prediction results, especially when performing downstream analysis with high precision requirements.

Results: Here we reported PretiMeth, a method for constructing precise prediction models for each single CpG
locus. PretiMeth used a logistic regression algorithm to build a prediction model for each interested locus. Only one
DNA methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted was
applied in the model. We found that PretiMeth outperformed other algorithms in the prediction accuracy, and kept
robust across platforms and cell types. Furthermore, PretiMeth was applied to The Cancer Genome Atlas data
(TCGA), the intensive analysis based on precise prediction results showed that several CpG loci and genes
(differentially methylated between the tumor and normal samples) were worthy for further biological validation.

Conclusion: The precise prediction of single CpG locus is important for both methylation array data expansion and
downstream analysis of prediction results. PretiMeth achieved precise modeling for each CpG locus by using only
one significant feature, which also suggested that our precise prediction models could be probably used for
reference in the probe set design when the DNA methylation beadchip update. PretiMeth is provided as an open
source tool via https://github.com/JxTang-bioinformatics/PretiMeth.

Keywords: DNA methylation, Single-locus modeling, Precise prediction, Logistic regression, TCGA, Differential
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Background

DNA methylation, as an important epigenetic modifica-
tion, plays an important role in maintaining normal cell
function, genetic imprinting, embryonic development
and human tumorigenesis [1-6]. The investigation of
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the methylation landscape of the human genome and
the aberrant methylation pattern resulting in different
diseases is still a hot spot. DNA methylation is com-
monly detected by array or sequencing technique in cell
lines or bulk tissue samples. DNA methylation data from
genome-wide sequencing can provide more comprehen-
sive methylation information, while the high cost of the
current bisulfite sequencing platforms makes it impracti-
cal for the large-scale research [7]. The most common
method for the characterization of DNA methylation in
humans was the Illumina Infinium HumanMethylation
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450 K BeadChip (450 K), which measured methylation at ~
450,000 CpG loci throughout the genome [8]. In recent
years, [llumina updated the 450K array to Illumina Infi-
niumMethylation EPIC BeadChip (EPIC or 850 K), which
provided more methylation information from the distal
regulatory regions (eg, enhancer) and covered the CpG loci
almost twice as much as 450 K array [9]. Till now, it is quite
important to extract the methylation levels of CpG loci un-
covered by the existing methylation array data, especially
for the 450 K array data from precious cancer studies.

In these few years, we and other researchers had pro-
posed some DNA methylation prediction models based
on SVM, random forest, logistic regression and deep
learning [10-17]. A recently proposed random forest
model (RF Zhang) predicted methylation rates for bulk
ensembles of cells [15], which took comprehensive DNA
annotation features into account, including genomic
contexts, and tissue-specific regulatory annotations such
as DNasel hypersensitivity sites, histone modification
marks, and transcription factor binding sites. DeepCpG
was a deep neural network model for predicting the
methylation state of CpG dinucleotides in multiple cells
based on surrounding sequence components and neigh-
bouring methylation information [13]. EAGLING signifi-
cantly expanded the 450 K methylation array based on a
logistic regression method with neighbouring methyla-
tion value and local methylation profiling [10, 18]. Most
of the models performed well and could achieve the pre-
diction accuracy close to 90%. However, these works al-
ways focused on achieving better overall prediction
performance, and could not tell which predicted CpG
loci were accurately predicted and which ones were rela-
tively less accurate. Then it is hard for the biologists to
select candidates for downstream analysis. Therefore,
there is an urgent need to establish precise prediction
models that could tell how accurate the predicted
methylation level is.

Previous studies have indicated that the methylation
level of a CpG locus was correlated with the methylation
levels of its neighbouring CpG loci (indicating possible co-
methylation), and the methylation marks of the upstream
and downstream CpG loci were widely used as important
and informative features for prediction [15, 19-21]. Be-
cause the distances between the correlated CpG loci are
with high degree of variance [22], the neighbouring CpG
loci in fixed flanking length could only provide limited in-
formation. There is no method that investigates the co-
methylated CpG loci without the restriction of flanking
length. And this strategy could improve the prediction ac-
curacy for CpG loci that did not have highly correlated
neighbouring CpG loci or had no surrounding CpG locus
in the defined flanking region.

In this study, we proposed to predict the methylation
levels of model loci (the target CpG loci to be predicted)
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by using the methylation levels of feature loci (the CpG
loci used for feature selection) and constructed logistic
regression model for each model locus (Fig. 1). We
called the method as PretiMeth (PREcise predicTIon
Models for DNA mETHylation). The EPIC array data
were used for prediction model construction. The CpG
loci covered by EPIC array but not included in 450 K
array were defined as the model loci, the loci covered by
both EPIC and 450 K array were defined as the feature
loci. For each model locus, the methylation values of its
co-methylated CpG locus was finally selected as the pre-
diction feature. The co-methylated locus was defined as
a CpG locus whose methylation value was highly corre-
lated with the target CpG locus among different sam-
ples. Logistic regression was applied to predict the
methylation levels of model loci based solely on their co-
methylated loci. In both of the cross-validation and inde-
pendent data test, PretiMeth demonstrated satistying
performance and outperformed other comparable
methods. Besides, our models could provide the predic-
tion accuracy for each specific CpG locus according to
the RMSE from cross-validation results. To further
utilize and evaluate the prediction results, we divided the
model loci into four categories: Super high accurate,
High accurate, Medium accurate and Low accurate
model loci. For the Super high accurate and High accur-
ate model loci, our proposed models would get very high
prediction performance (r =0.99 and 0.96), and the pre-
diction results were quite consistent with the methyla-
tion levels detected with the EPIC array.

Furthermore, we applied our precise prediction models
(Super high accurate and High accurate models) on 13
cancers from TCGA and obtained the methylation land-
scapes for the tumor and normal samples. To identify
the markers related to pan-cancer, we analyzed the dif-
ferentially methylated loci for each cancer, and three
CpG loci were found to be hypomethylated in at least 12
cancers. One of the CpG loci, chr16:57798350, was lo-
cated in the enhancer region, where DNase I and
H3K27ac were marked and also bound by a variety of
transcription factors (TFs), indicating that it may be a
potential therapeutic target for a variety of cancers. In
the investigation of the differentially methylated genes,
we found 10 genes differentially methylated in at least
10 cancers. The functions of these differentially methyl-
ated loci and genes in the development of cancer would
be worth for further biological validation.

Results

Methylation correlations between model loci and the
candidate feature loci

To compare the methylation similarity between the
model loci and the three candidate feature loci (includ-
ing the nearest neighbouring CpG loci, the CpG loci
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with the most similar flanking sequence, and the co-
methylated CpG loci), we calculated the Pearson correl-
ation coefficients between their methylation values based
on 665 samples form EPIC array to characterize their
methylation correlations.

Previous prediction work using the methylation values
from the nearby CpG loci had shown that the nearby
loci were closely co-methylated, particularly when the
distance was less than 2 kb from each other [15, 19, 20].
Therefore, the correlation results were analysed based
on whether the distance was less than 2 kb or not.

Firstly, we restricted to find the nearest neighbour-
ing loci in the 2kb flanking region of the model loci,
and there were 189,582 model loci meeting the re-
quirement. For this part of model loci, the average
correlations between the model loci and three candi-
date feature loci were 0.5299 (the nearest neighbour-
ing loci), 0.6592 (the loci with the most similar
flanking sequence), and 0.8658 (the co-methylated
loci), respectively (Additional file 2: Figure Sla).

Then, we compared the correlation between all 413,
719 model loci and the three feature loci without the re-
strictions of the 2kb franking range (Additional file 2:
Figure S1b; Fig. 2a). We found that the average correl-
ation between the model loci and the nearest neighbour-
ing loci fell to 0.4651. Between the model loci and the
loci with the most similar flanking sequence, the correl-
ation was significantly reduced and the average correl-
ation decreased from 0.6592 to 0.5016. In contrast, the

correlation with the co-methylated loci remained at a
consistently high level (average of 0.8434), and the cor-
relation index between 300,663 model loci and their cor-
responding co-methylated loci was above 0.8. The
significant co-methylation trend was shown between the
model loci and their co-methylated loci, which indicated
that the methylation values of the co-methylated loci
might be more highly informative for prediction than
the other two types of feature loci.

Besides, we investigated the location distances between
all the model loci and their co-methylated loci, and
found that ~95% of distances were larger than 2 kb,
which indicated that the co-methylated loci not only
exist in the nearby regions of model loci but also could
exist in two distal regions (Fig. 2b). We further evaluated
the profile of the correlation between model loci and
their co-methylated loci based on the different regions
of the genome (Fig. 2c). The model loci and their co-
methylated loci both located in the gene promoter re-
gion showed a higher correlation than other regions (es-
pecially in TSS200 and 1stExon). When investigating the
correlation related to CGI regions, the pair loci both lo-
cated in the CpG island region showed a higher
correlation.

Model construction

To establish separate prediction models for each CpG
locus, we used the methylation values of the three candi-
date feature loci as the prediction features. Due to the
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Fig. 2 Correlation analysis between different CpG loci. a The distribution of correlation coefficients for model loci and their co-methylated loci.
The solid red line represents the cumulative distribution function (CDF) and the blue histogram represents the probability density function (PDF)
of the Pearson correlation coefficient. b The methylation profile between two pairs of model loci and their co-methylated loci. One pair of loci
are located in adjacent sequence positions from each other: cg03996001 (chr12:58131766) and cg22507723 (chr12:58131768); Another pair of loci
are located at remote sequence positions from each other: cg18141193 (chr16:2610285) and cg06661057 (chr16:2689908). ¢ The correlation
coefficient matrix between model loci and their co-methylated loci located indifferent genomic regions

high computational cost of algorithms like random for-
est and deep learning etc., only the Ordinary Least
Squares (OLS) and Logistic Regression (LR) algorithms
were considered to construct models. The 5-fold cross-
validation results on training data were compared based
on the different feature combinations and regression
models (Fig. 3a).

For the model choice, the prediction results were quite
comparable based on Fig. 3a. The performance of LR
model was slightly better than the OLS model, and the
output value of the logistic regression method was more
in line with the definition of methylation level. There-
fore, the logistic regression model was finally selected
for model construction.

For feature selection, we found that the contribution
of the co-methylated loci was significantly higher than
the other two types of features, which was consistent
with the conclusions of our correlation analysis. Al-
though the performance of the model could increase
slightly when the three features were all applied. How-
ever, only the fewer model loci could be predicted when
more features were used, due to the missing values
existed in the 450K array data. In each regression
model, as long as one independent variable (the methy-
lation level of a feature locus), the dependent variable
(the methylation level of a model locus) could not be
calculated. Taking one 450 K array data used for predic-
tion as an example, the number of predictable model

loci was about 280,000 when only one feature was ap-
plied for prediction, and the number of predictable
model loci was reduced by more than 40,000 when two
features were applied, while the number was reduced to
200,000 when three features were applied (Fig. 3b).
Therefore, considering the balance between the accur-
acy and practicality of the prediction method, we only
used the feature of the co-methylated loci to develop
PretiMeth based on logistic regression algorithm.

Performance evaluation

After the model construction of PretiMeth, the perform-
ance was evaluated in cross-validation, independent test-
ing and cross-platform evaluation.

1) Cross-validation performance and model
categorization

The cross-validation performance of each single CpG
locus model was evaluated on 665 EPIC samples. For
each model, the model performance was evaluated by 5-
fold cross-validation on 665 samples. The evaluation
metrics include root mean square error (RMSE) and
mean absolute error (MAE). We calculated RMSE and
MAE in 5-fold cross-validation for all models (Fig. 4a).
The average values of them were 0.1054 and 0.0766, re-
spectively. The model shows good prediction perform-
ance in cross-validation, which proves that our single-
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Fig. 3 The impact of different features and algorithms for constructing prediction models. a Comparison of predicted performance based on 5-
fold cross-validation using different feature combinations and algorithms. b The number of predictable model loci using different combination of
candidate features. (M: the co-methylated loci; N: the nearest neighbouring loci; S: the loci with the most similar flanking sequence)
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locus modeling strategy is effective (Additional file 2:
Figure S2).

The advantage of our single-locus modeling compared
with the previous general models is that our precision
model could tell how accurate the predicted methylation
levels of the CpG loci were, which means one can know
which CpG locus is accurately predicted and which is
relatively unreliable. Therefore, we used the RMSE of
the cross-validation results to assess the accuracy of the
predictions for each single-locus model. But there are
actually no fixed restrictions on the division of the
models, the division of the models mainly lies in the
user’s personalized judgment on the accuracy of the
model and the task requirements. And we recorded eight
performance indicators (Pearson correlation coefficient,
RMSE, MAE, SP, SE, MCC, ACC, and AUC) from cross-
validation for users’ reference. Here, based on RMSE,
the models were divided into four categories as Super
high accurate model (RMSE<0.05), High accurate
model (0.05<RMSE <0.1), Medium accurate model
(0.1 <RMSE < 0.15) and Low accurate model (RMSE >
0.15). Each category contains 32,833, 145,645, 187,843
and 47,398 CpG loci, respectively (Fig. 4b).

2) Prediction performance on independent data

To further verify the performance of our proposed
precision models, we applied these models on other 139
independent test samples and got the average values of
the performance indicators. For all the four categories of
models, the overall average performances were with
small RMSE (0.0989 +0.0375) and MAE (0.0694 +
0.0244), while high Pearson correlation coefficient
(0.9309 + 0.0375), SP (0.8711+0.0697), SE (0.9489 +
0.0445), MCC (0.8263 + 0.1002), ACC (0.9283 + 0.0478)
and AUC (0.9697 + 0.0320), which demonstrated the sat-
isfying performance of our models (Table 1).

Moreover, three other independent test sets (two
tumor samples and one normal sample) from the NCBI
GEO database, were used to compare PretiMeth with
EAGLING [10, 18] and Impute knn [23]. The compari-
son results were listed in Additional file 2: Table S1. Pre-
tiMeth demonstrated more accurate prediction results
on the three independent test sets than the two models.

Then we observed the performance of the four cat-
egories of models on the 139 independent testing sets.
The box-plot results were shown in Fig. 5. One could
see that the Super high accurate and High accurate
models achieved extremely high prediction accuracy,
while the Medium accurate models also achieved high
accuracy (ACC=0.9) to the other general prediction
models in the state of art. It is worth noting that for the
Super high accurate model, the correlation coefficient
between the predicted methylation value and the methy-
lation values derived with EPIC array reached 0.99
( RMSE = 0.03).

3) Prediction performance across platforms

The Super high accurate and High accurate models of
PretiMeth maintained high prediction performance
across platforms. To verify the expansion ability of the
model from 450 K array to EPIC array, we applied our
models to predict the methylation levels of the model
loci (measured by EPIC array) by the methylation levels
of the co-methylated loci (measured by 450K array).
The average prediction results were shown in Table 2,
and the scatter plot comparing the predicted methyla-
tion values with the methylation values detected by EPIC
data were shown in Fig. 6 (Additional file 2: Figure S3).
The previous studies have evaluated the potential of a
joint analysis of 450 K data and EPIC data [24, 25]. And
the stable high prediction performance of the Super high
accurate and High accurate model indicates that they
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Table 1 The performance of methylation prediction based on
different categories of prediction models

Model R RMSE MAE SE  SP  MCC ACC AUC
All 093 010 007 095 087 083 093 097
Super high accurate 099 003 002 099 099 099 099 099
High accurate 096 007 005 098 093 092 097 098
Medium accurate 088 0.11 008 093 082 076 090 095
Low accurate 079 015 011 086 080 066 085 090

can be applied to expand the existing 450 K data and
support the joint analysis.

Furthermore, we applied our Super high accurate and
High accurate models to WGBS data, using the methyla-
tion values of the co-methylated loci to predict the
methylation levels of the model loci (the methylation
values were both measured by WGBS). We found that
the Super high accurate and High accurate models
achieved accuracies of 95% and 94% on different samples
(Additional file 2: Table S2), which also indicated the
potential of applying our model to the expansion from
450 K array to the WGBS-scale data.

Application to the TCGA data

Here, we retrieved Illumina 450 K array data for 13 can-
cers in the TCGA database, including 667 normal sam-
ples and 5275 tumor samples. For each 450 K data, we
applied our PretiMeth model to predict the methylation
levels of the model loci. On average, we obtained about
297,738 model loci based on the 450K data for each
cancer, and 132,391 of them belonged to the Super high
accurate and High accurate models (Additional file 2:
Table S3). We performed differential methylation ana-
lysis and summarized significant DMLs (mean difference
of DNA methylation >0.1 and q<0.05) on the predic-
tion results. To take advantage of PretiMeth (indicating
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the prediction accuracy of each single CpG locus), only
the CpG loci predicted based on the Super high accurate
and High accurate models were applied for DML ana-
lysis to ensure the reliability of the analysis.

In our results, most of these DMLs were located in
non-promoter regions (gene body, 3'UTR, and inter-
genic region; Fig. 7a) and non-CGI regions (shore, shelf,
and open sea; Fig. 7b) in each cancer. This also reflected
the coverage of the EPIC array design, which provided
more methylation information of loci in the remote
regulatory region [9, 26]. Intriguingly, we found that
three methylation probes were identified as DMLs in all
13 cancers, including chr3:167293827, chr5:2276656,
and chr16:57798350. Among them, chr3:167293827 was
located in the intergenic region and chr5:2276656 was
located in the body region of WDR49, which were both
hypomethylated in all 13 cancers (Additional file 2: Fig-
ure S4). The probe chr16:57798350 located in the body
region of KIFC3 was significantly hypomethylated in 12
cancers except for prostate adenocarcinoma (Fig. 7c).

Previous work had shown that KIFC3 could play
important roles in HCC invasion and metastasis [27],
and increased KIFC3 expression levels had been asso-
ciated with docetaxel- and paclitaxel-resistant breast
cancer cells [28]. Therefore, we curiously observed
the region including chrl6:57798350 in the UCSC
genome browser [29] and found that the region is marked
by DNase I and an active enhancer marker H3K27ac
(Additional file 2: Figure S5a). Also, we checked the chro-
matin status region of the roadmap in the WashU Epige-
nome Browser [30] (Additional file 2: Figure S5b), and
found that they were annotated as Genic enhancers, En-
hancers and Strong transcription in different normal cells
or tissues. And more than 10 TFs were bound to this en-
hancer region (Additional file 2: Figure S5a). Some of the
TFs have been reported to play key roles in the process of
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Fig. 5 The performance of four categories of models in independent test sets, including Super high, High, Medium and Low accurate models
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Table 2 The prediction performance in the cross-chip evaluation

Cell line Model R RMSE MAE SE SP MCC ACC AUC

IMR90 Super high accurate 0.99 0.03 0.02 0.99 0.99 0.99 0.99 0.99
High accurate 0.96 0.08 0.05 0.99 091 0.92 0.98 0.99
Medium accurate 0.80 0.16 0.12 0.88 0.75 0.64 0.83 0.90
Low accurate 0.61 0.21 0.16 0.70 0.74 045 0.72 0.79

NA12878 Super high accurate 0.99 0.04 0.02 0.99 0.99 0.99 0.99 0.99
High accurate 0.93 0.11 0.08 0.98 0.81 0.82 0.93 097
Medium accurate 0.82 0.17 0.13 0.88 0.80 067 0.83 092
Low accurate 0.71 0.20 0.16 0.74 0.84 0.56 0.81 0.87

cancers [31-36]. As the methylation changes of an enhan-
cer region can be owing to gain or loss of some transcrip-
tion factor bindings (TFs) [37-39], we suspected that this
enhancer region may be a potential therapeutic target for
a variety of cancers.

Moreover, we downloaded two independent datasets
of prostate cancer and breast cancer from the GEO data-
base to evaluate whether the locus chr16:57798350 was
also differentially methylated. In the differential methyla-
tion analysis based on the experimental data, the locus
chr16:57798350 showed hypomethylation in breast can-
cer (Ap=0.1134, P=0.0235) and hypermethylation in
prostate cancer (AB= —0.0903, P=7.5639 "), which
were consistent with our above results based on precise
prediction data (Fig. 7d).

To explore the DMGs for each cancer, there were 10
genes simultaneously differentially methylated in at least
10 cancers, and we defined them as pan-cancer differen-
tially methylated genes (Additional file 2: Table S4). Six
of these genes have been reported to be associated with
cancers, including LOC284933 [40], BODI1L2 [41],
MIR7515 [42-44], ZNF729 and ZNF479 [45-47], and
MKL1 [48-52]. Among them, the LOC284933 gene was
found to be differentially methylated in 12 cancers.
LOC284933 is an RNA Gene and affiliated with the
ncRNA class. Until now, there were few reports on the
role of LOC284933 in cancers and only one study re-
ported the loss of 22q13.31-13.32 region including
LOC284933 was significantly associated with the pres-
ence of ovarian family history [40]. The other four genes,
ie. LINC01246, MIR7515HG, LOC100506384, and
MKL1, there was still no obvious evidence about their
relationship with any cancers. Therefore, further study
about the abnormal methylation of these genes are re-
quired to decipher their potential roles in the develop-
ment of cancers.

Discussion

Here, a method named PretiMeth was proposed to esti-
mate the DNA methylation levels at single CpG reso-
lution. PretiMeth was based on a logistic regression

algorithm to achieve single locus modeling. Importantly,
PretiMeth picked up on potential co-methylated loci by
calculating the methylation correlation between distant
CpGs to improve the prediction performance. The per-
formances of cross-validation and independent testing
on the EPIC array data indicated that PretiMeth could
achieve high accuracy. In the cross-platform perform-
ance evaluation, the Super high accurate and High ac-
curate models performed quite well on both array and
WGBS data. Furthermore, we applied our PretiMeth to
The Cancer Genome Atlas data and expanded the exist-
ing 450 K array data of 13 cancers. The intensive results
of differential methylation analysis on pan-cancer dem-
onstrated that our method could offer reliable expanded
methylation information for downstream analysis in a
cost-effective manner. Overall, our results validated that
PretiMeth not only achieved performance comparable to
other previous models (ACC >90%) based on only one
significant feature, but also had the capability to indicate
the estimation accuracy for each CpG locus.

The previous studies on methylation prediction have
shown that the inclusion of CGIs, genomic location,
DNase I hypersensitization sites, and histone modifica-
tions can produce accurate prediction results [15, 53-56].
However, in practical applications, obtaining the corre-
sponding necessary information is usually not feasible. In
our algorithm, it could slightly improve the prediction
performance by adding the methylation marks of neigh-
bouring flanking CpG loci and the CpG loci with the most
similar flanking sequence component. However, the more
features were applied, the less CpG loci could be pre-
dicted. Therefore, PretiMeth was constructed based on
only one prediction feature about the co-methylated locus.
This not only simplified the model construction but also
improved prediction for CpG loci that did not have highly
correlated neighbouring CpG loci or had no surrounding
CpG locus in the defined flanking region.

The prediction accuracy information for each CpG
locus provides the chance to select more reliable results
for relevant bioanalysis. When applying our model to
TCGA data, we only focused on the CpG loci derived
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from the Super high accurate and High accurate models
to implement the differential methylation analysis be-
tween the tumor and normal samples. The pan-cancer
analysis based on the most precise prediction methyla-
tion data showed that the locus Chr6:57798350 was dif-
ferentially methylated in 12 cancers. This highlight locus
was located in the enhancer region, which was marked
with DNase I and H3K27ac. This region was also bound
by many TFs that have been reported to be associated

with a variety of cancers. Moreover, the abnormal
methylation of this locus was also confirmed in other
two experimental data, which confirmed the reliability of
precise prediction results and further suggested that it
might be a potential therapeutic target for cancers.

Based on our PretiMeth model, we could accurately
predict the methylation level of some EPIC-covered loci
by using the methylation level of 450 K-covered loci.
Therefore, it would be quite meaningful to investigate
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which CpG loci could be accurately predicted based
on the 450K array or EPIC array, and then there is
no need to add them on the array chip. Therefore,
our PretiMeth can be probably used for reference in
the probe set design when the DNA methylation
beadchip updates.

An important question of interest is whether Preti-
Meth could be applied to the whole-genome expansion.
In this study, we developed our precise models on EPIC
array data. And achieved good prediction performance
for the EPIC newly covered CpG loci based on the CpG
loci covered by both 450K and EPIC. In theory, the
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strategy could generalize to whole-genome prediction.
For example, we can divide the whole-genome CpG loci
into two parts: the CpG loci covered by EPIC array are
represented as feature loci, and the remaining CpG loci
are represented as model loci. Before the implementa-
tion, the consistency between the arrays and the WGBS
data and the limited available datasets should be ana-
lyzed systematically first, and it would be our work in
the next step.

Conclusions

In this study, we reported PretiMeth, a method for con-
structing precise prediction models for each single CpG
locus, based on only one significant methylation mark.
PretiMeth used a single-locus modeling strategy and
could provide the evaluation of the prediction accuracy
for each single CpG locus, which would facilitate the
candidate selection for the following biological applica-
tions. Meanwhile, our findings supported the idea that
the methylation value of the co-methylated locus is very
important for the methylation prediction work.

Methods

Sample collection

To establish the precise prediction models at CpG site
resolution, we collected the available EPIC array data
from the NCBI GEO database. Among them, the methy-
lation landscapes of 804 samples measured by EPIC (406
from tumors and 398 from non-tumors) were used for
model construction (665 samples for cross-validation
and the remaining 139 samples for independent testing).
Moreover, there were 3 additional samples measured by
EPIC that were used to the comparison of the prediction
performance between PretiMeth and the other two
methods. For evaluating the cross-platform prediction
performance, there were 7 samples (measured by both
450 K and EPIC arrays) for cross-chip evaluation and an-
other 2 samples for evaluating the prediction perform-
ance on WGBS data. Overall, 816 samples were used
during the model construction and the testing of model
performance, covering more than 30 cell lines or tissue
types (Additional file 1).

For the model application, the 450 K array data of the
TCGA database were downloaded. The cancers with at
least 10 normal samples were selected in our study. Fi-
nally, 13 cancers with a total of 667 normal samples and
5275 cancer samples remained (Additional file 2: Table
S5). And another two independent datasets of prostate
cancer and breast cancer were used to validate the high-
light DML results (Additional file 1).

Both EPIC and 450 K array data were quantile normal-
ized before the following analysis.
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Prediction model

CpG locus division

For building single-locus prediction models, the EPIC
array data were applied, the CpG loci covered by EPIC
but not included in 450 K array were defined as model
loci, the loci covered by both EPIC and 450 K array were
defined as feature loci. Totally, there were 413,719
model loci and 450,137 feature loci.

Features for prediction

Three kinds of candidate features were used for model
construction: the methylation value of the nearest neigh-
bouring CpG locus, the methylation value of the co-
methylated CpG locus, and the methylation value of the
CpG locus with the most similar flanking sequence. The
definitions of three kinds of feature loci were:

e the nearest neighbouring CpG locus: the feature loci
located closest to the model loci on the same
chromosome.

e the co-methylated CpG locus: the feature loci
sharing the most similar methylation pattern with
model loci in the EPIC samples.

o the CpG locus with the most similar flanking
sequence: the feature loci sharing the most similar
flanking sequence-component pattern with model
loci.

To characterize the co-methylation pattern between
CpG loci across samples, we constructed a multidimen-
sional vector for each locus to measure the co-
methylation pattern between CpGs across samples: B¢,
= {ﬁll, ﬁf, s 87 }s Bcpa: denotes the vector of the methy-
lation value of the i-th locus in all n samples and /:o’f,k
=1,2,...,n represents the methylation value of the i-th
locus in the k-th samples.

To characterize the sequence composition pattern
across CpGs, we extracted 340 sequence features in the
range of 200 bp flanking range of the i-th locus, includ-
ing all 1- to 4-mers occurrence frequencies: Seqc,g; = {
OCE "™, OCEE", OCE ", OCEE"™} . For example,
the 1-mers occurrence frequencies: OCICng’S = {num(A)
JASCY " pum(T) JASCY"""  num(C) JASC"""  num
(G)/ASCI-mers Lo ASCH T = num(A) + num(T) +
num(C) + num(G), num(N) represents the number of oc-
currence of base N, N represents any nucleotide, i.e. A/
G/T/C.

The methylation similarity PearsonMeth; and the se-
quence similarity PearsonSeq; were measured by the
Pearson correlation coefficient between model loci and
feature loci:
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COV(ﬁCpGi? /))CpGj)

PearsonMeth;; =
OBcrei " PBeps;

) /))CpGi ¢/3CpG j
cov(Seq CpGi» Seq CpG j)

PearsonSeq;; =
Y US@QCpGi ’ USEqCpG/

s SeqcpcizSedcyc)

where cov represents the covariance operation and o
represents the standard deviation operation.

After calculating the correlation coefficient between
the model loci and the feature loci, we select two specific
feature loci for each model loci, which shared the high-
est methylation pattern correlation coefficient and se-
quence composition pattern correlation coefficient
respectively:

(CpGi, CpGp) : PearsonMeth,,
PearsonMeth;

= max
j: 7]

j=12,

max PearsonSeq;
j=12,....m 4

(CPGD CPGq) : PearsonSeq;, =

where CpG; represents the i-th model loci, CpG,, repre-
sents the co-methylated loci p for CpG;, and CpG, rep-
resents the loci q with the most similar flanking
sequence for CpG,.

Finally, the co-methylated CpG locus, the CpG locus
with the most similar flanking sequence, and the nearest
neighbouring CpG locus will be used as three methyla-
tion marks for analysing in this study. The three types of
features are defined only based on the training samples.

Besides, we observed the similarities between the
model loci and feature loci distributed in different func-
tional regions. Based on the UCSC annotation, the loci
were classified into TSS200, TSS1500, 5’'UTR, 1st Exon,
Body and 3'UTR. Related to this last classification, cat-
egories included TSS200 represents the region between
0 and 200 bases upstream from the transcriptional start
site (TSS); TSS1500 represents the region between 200
and 1500 bases upstream from the transcriptional start
site (TSS); 5’UTR included the region between the TSS
and the start site (ATG); CpGs within the first exon of a
gene were considered as 1st Exon category; CpGs down-
stream the first exon including intronic regions until the
stop codon, were classified as gene body; CpGs located
downstream the stop codon until the poly A signal were
considered as 3’'UTR; and CpGs that were not classified
in any of the previous categories were annotated as
intergenic. When multiple genes or TSS were associated
with a CpG locus, category prioritization was applied
following a 5'-prime to 3'-prime criteria (TSS200 >
TSS1500 > 5UTR > 1st Exon > Body >3'UTR > Inter-
genic). Additional criteria included the location of the
CpG loci relative to the CpG island (open sea, island,
shore, shelf) [9].
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Regression prediction model

The logistic regression algorithm and the ordinary least
squares algorithm were respectively developed to predict
the methylation levels of model loci using the methyla-
tion levels of feature loci in training data. Six hundred
sixty-five samples from the 804 samples (measured by
EPIC array) were used to implement a 5-fold cross-
validation strategy to construct the prediction model,
and the remaining 139 samples were used as independ-
ent testing set for model performance evaluation.

Let variable fc,g; represents the methylation level of
the nearest neighbouring loci 1, Bc,g; represents the
methylation level of the i-th model loci, ScyGm repre-
sents the methylation level of the matched co-
methylated loci m, and Sy, represents the methylation
level of the matched loci n with most similar sequence.

For the i-th model loci, we first constructed an inde-
pendent logistic regression model to predict its specific
methylation levels in samples:

1
Bepai = E(X) = P(X<x) = 1T ool
Where u represents the position parameter, y >0 rep-
resents shape parameter and x = { Bc,66 BcpGms Bcpen)-
The methylation level predicted by the logistic regres-
sion model for the i-th model locus in the k-th sample
is:

P
i 1+ exp(w; - xk + b;)
= sigmoid(w,« cxK 4 b,»)

Where x* = { ﬁ/épGl, /)”éme, /)’]épGn}, /)’IEPG* represents
the experimental methylation levels of the matched par-
ticular loci in the k-th sample for CpGi, (w,, b)) is the fit-
ting parameter of the logistic regression model for CpGi,
and the region of Sf(LR) represents a number in [0,1]
which defines the probability of that CpGi being
methylated.

Then we constructed an independent ordinary least
squares model to compare with the logistic regression
model. The methylation level predicted by the ordinary
least squares model for the i-th model locus in the k-th
sample is:

B(OLS) = a; - &k + ¢

Where (a;, c;) is the fitting parameter of the ordinary
least squares model for CpGi and we limited the region
of BX(OLS) to a number in [0,1] which defines the prob-
ability of that CpGi being methylated.
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The evaluation of prediction performance

To evaluate and compare the predictive performance of
models, we used evaluation metrics include Pearson cor-
relation  coefficient (R), Root-Mean-Square-Error
(RMSE), Mean-Absolute-Error (MAE), Sensitivity (SP),
Specificity (SE), Matthew’s correlation coefficient
(MCC), Accuracy (ACC) and AUC (Area Under ROC
Curve). The calculation formulas for these indicators are
as follows:

RMSE(Y,Y?) =

n
MAE(Y,Y°) = %Z]Y—YO]
i=1

where Y represents the predicted value of the methyla-
tion level and Y° represents the detected value with array
or WGBS technique.

For calculating SP, SE, MCC, and ACC, we defined the
methylation status as + 1 if the methylation value is lar-
ger than 0.5, and the methylation status as -1
otherwise.

TP T
SE = SP = N
TP + FN TN + FP
TP+ TN
A =
cc TP + FN + TN + FP
MCC — TP«TN-FP+FN

V/(IN + EN)*(IN + FP)x(TP + EN)x(TP + FP)

Here, TN, TP, FN and FP represented the number of
true-negatives, true-positives, false-negatives and false-
positives, respectively.

The identification of DML and DMG
A Welch’s t-test was used to find differentially methyl-
ated loci (DMLs) between the tumor and normal sam-
ples. For normal and cancer samples in each cancer, the
limma package in R was used to reduce the batch effects
for normal samples and cancer samples respectively. The
P-values were subjected to Benjamini-Hochberg correc-
tion for multiple hypothesis testing to calculate g-value.
To define a DML, two conditions were required:1) q
values were less than 0.05; 2) the differences in average
[ values were larger than 0.1. Genes whose promoter re-
gions included DML were defined as differentially meth-
ylated genes (DMGs). A promoter region of a gene is
defined as a collection of TSS200 (0—200 bps upstream
the TSS), TSS1500 (200—1500 bps upstream the TSS),
5’UTR, and 1st Exon regions.
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