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Abstract
Background  The purpose of this paper was to systematically evaluate the application value of artificial intelligence in 
predicting mortality among COVID-19 patients.

Methods  The PubMed, Embase, Web of Science, CNKI, Wanfang, China Biomedical Literature, and VIP databases were 
systematically searched from inception to October 2022 to identify studies that evaluated the predictive effects of 
artificial intelligence on mortality among COVID-19 patients. The retrieved literature was screened according to the 
inclusion and exclusion criteria. The quality of the included studies was assessed using the QUADAS-2 tools. Statistical 
analysis of the included studies was performed using Review Manager 5.3, Stata 16.0, and Meta-DiSc 1.4 statistical 
software. This meta-analysis was registered in PROSPERO (CRD42022315158).

Findings  Of 2193 studies, 23 studies involving a total of 25 AI models met the inclusion criteria. Among them, 18 
studies explicitly mentioned training and test sets, and 5 studies did not explicitly mention grouping. In the training 
set, the pooled sensitivity was 0.93 [0.87, 0.96], the pooled specificity was 0.94 [0.87, 0.97], and the area under the ROC 
curve was 0.98 [0.96, 0.99]. In the validation set, the pooled sensitivity was 0.84 [0.78, 0.88], the pooled specificity was 
0.89 [0.85, 0.92], and the area under the ROC curve was 0.93 [1.00, 0.00]. In the subgroup analysis, the areas under 
the summary receiver operating characteristic (SROC) curves of the artificial intelligence models KNN, SVM, ANN, 
RF and XGBoost were 0.98, 0.98, 0.94, 0.92, and 0.91, respectively. The Deeks funnel plot indicated that there was no 
significant publication bias in this study (P > 0.05).
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Introduction
The ongoing COVID-19 pandemic poses enormous 
challenges to global public health, health care systems, 
and economies. As of December 21, 2022, 649  million 
people have been diagnosed with COVID-19, and more 
than 6  million related deaths have occurred worldwide 
[1]. Although COVID-19 mortality rates have been sig-
nificantly reduced as vaccination rates have increased 
and several treatments have been proposed for COVID-
19, the progress of the disease has been rapid due to the 
high complexity of its characteristics. For patients with 
underlying diseases or those who cannot be treated in a 
timely manner, the disease tends to progress faster, and 
the mortality rate is higher [2, 3]. Therefore, effective and 
accurate outcome predictions and effective and person-
alized patient management are increasingly important. 
However, there is still a lack of tools for predicting the 
risk of death in COVID-19 patients.

Artificial intelligence (AI) is a fusion technology devel-
oped based on computer science, cybernetics, informa-
tion theory, and other disciplines. It can be used in health 
care applications such as disease diagnosis, prognostic 
judgement, image analysis, and big data collection. With 
the rapid development of AI technology, AI algorithms 
are gradually being applied in various medical fields, such 
as (1) disease diagnosis, (2) patient morbidity or mortal-
ity risk assessment, (3) disease outbreak prediction and 
surveillance, and (4) health policy and planning [4, 5].

Several studies have shown that AI has high diagnos-
tic value for the early identification of high-risk patients 
with COVID-19, improving patient prognosis and help-
ing rapid clinical prescreening and triage [6–9]. However, 
evidence-based medical studies for predicting mortality 
among COVID-19 patients are currently unavailable. In 
this study, a meta-analysis on AI prediction of mortality 
in COVID-19 patients was conducted to guide the early 
clinical identification of groups with high mortality risk.

Methods
The present meta-analysis was conducted and reported 
in accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses Statement (PRISMA) 
guidelines [10]. For further details (Supplementary Mate-
rial 1 and 2), this meta-analysis has been registered in 
PROSPERO (CRD42022315158).

Literature search strategy and screening
The PubMed, Embase, CNKI, Wanfang, China Bio-
medical Literature Database, VIP, and Web of Science 
electronic databases were searched from inception to 
October 2022. Searches were performed by a combina-
tion of subject headings and keywords. The search terms 
included “Artificial Intelligence”, “Machine Intelligence”, 
“Machine learning”, “AI”, “deep learning”, “random forest”, 
“Mortality”, “diagnosis”, “SARS-CoV-2”, and “Covid-19”. 
Two independent researchers (XY and LHX) screened 
the articles according to the inclusion criteria and per-
formed preliminary screening by reading the titles and 
abstracts. If a title or abstract could not be judged, the 
full text was examined to determine whether the article 
met the inclusion criteria. Disagreements between the 
researchers were resolved by consulting a third senior 
expert. For specific retrieval strategies, see Supplemen-
tary Material 3.

Inclusion and exclusion criteria
The inclusion criteria were as follows: (1) the study had 
to be in English and peer-reviewed; (2) the results of 
machine learning algorithms and predictions of mortal-
ity in COVID-19 patients were provided; (3) the data had 
to be complete with information on sample size, sensi-
tivity values, and specificity values; (4) the total number 
of patients with COVID-19 was provided; (5) the study 
subjects were patients who were confirmed positive for 
COVID-19 by reverse transcription-polymerase chain 
reaction (RT–PCR), and there was no age limit; (6) the 
machine learning models and predictors used in the 
predictions were clearly described; and (7) a clear over-
view of the sources of the datasets used in the study was 
provided.

The exclusion criteria were as follows: (1) documents 
for which true positive values, false-positive values, true 
negative values, and false-negative values could not be 
obtained directly or indirectly; (2) reviews, conference 
reports, case studies, and animal experiments; and (3) 
duplicate publications.

Data extraction and literature quality assessment
Two researchers independently extracted the following 
data from the included literature: author, publication 
year, study population, study type, number of training 
sets and validation set (if there was no clear grouping in 
the text, we used the total sample for analysis). In addi-
tion, the number of deaths and survivors in the validation 

Interpretation  Artificial intelligence models have high accuracy in predicting mortality among COVID-19 patients 
and have high prognostic value. Among them, the KNN, SVM, ANN, RF, XGBoost, and other models have the highest 
levels of accuracy.

Keywords  Artificial intelligence, COVID-19, Mortality, meta-analysis
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set were counted. For the studies for which a fourfold 
table could not be constructed, we calculated the num-
ber of deaths and survivors through the sample mortality 
rate. Regarding the machine learning models, each model 
included indicators, study locations, true-positive values, 
false-positive values, false-negative values, true-negative 
values, sensitivity values, and specificity values (for stud-
ies where there were multiple AI models in the validation 
set, we primarily analysed the model with the best overall 
performance). The QUADAS-2 tool was used to evaluate 
the quality of the included literature and the possibility of 
bias, and inconsistencies were resolved through by con-
sulting a third investigator [11].

Statistical analysis
Statistical analysis was performed using RevMan 5.3 
for Mac, Stata 16.0 for Mac, and Meta-DiSc software. 
Threshold effect heterogeneity analysis was performed 
using Meta-DiSc 1.4 software, and the magnitude of het-
erogeneity was assessed by the I2 statistic. If the effect 
sizes of the studies were homogeneous, the fixed effects 
model was used; if there was heterogeneity, the random 
effects model was used. If there was obvious heterogene-
ity among the studies, the source of heterogeneity was 
further judged by sensitivity analysis, threshold effect, 
and nonthreshold effect analyses. The Sen merge, Spe 
merge, PLR merge, NLR merge, and DOR merge and 
their 95% confidence intervals (95% CI) were calcu-
lated separately by Stata 16.0 for Mac, the SROC curve 
was drawn, and the AUC was calculated. The Deeks test 
was used to evaluate the publication bias of the included 

studies. If P < 0.05, the included studies were considered 
to have publication bias.

Results
Literature search results and characteristics of the included 
studies
A total of 2193 studies were retrieved from the databases, 
and 0 studies were identified via manual search. After 
importing the studies into EndNote literature manage-
ment software to check for duplicate studies, reading the 
abstracts and excluding relevant literature according to 
the exclusion criteria, 23 studies were finally included. 
The specific literature screening process and results are 
shown in Fig. 1. Table 1 shows the detailed characteristics 
of the 23 studies, which were conducted across a total of 
12 countries and regions. Twenty-five AI models were 
used. There were 14 multicentre studies and 9 single-
centre studies. Twenty-two studies were retrospective, 
and one study was cross-sectional. Fifteen studies distin-
guished between training and validation sets, and 5 stud-
ies did not explicitly mention grouping.

Literature quality evaluation
According to the QUADAS-2 tool, the overall risk of 
bias in patient selection was unclear in 2 studies. All of 
the risks of bias in the index test and the reference stan-
dard test were low. All 23 studies had an unclear risk of 
bias for the flow and timing domains. In terms of over-
all concerns regarding applicability, only two studies had 
an unclear risk of bias in patient selection. The remain-
ing concerns regarding applicability presented low risks 
(Supplementary Material 4).

Results of the meta-analysis
Validation set (best model pooling)
In the validation set, the best predictive model of the 
23 studies assessed the performance of AI in predict-
ing mortality in COVID-19 patients. The overall pooled 
AUROC was 0.92 [1.00, 0.00]. Additionally, the sensitiv-
ity, specificity, PLR, NLR, and diagnostic odds ratio were 
0.82 [0.69, 0.91], 0.89 [0.79, 0.95], 7.57 [4.06, 14.09], 0.20 
[0.11, 0.35], and 38.33 [18.23, 80.59], respectively (Figs. 2, 
3, 4 and 5).

Validation set (all model pooling)
In the validation set, a total of 25 models from 23 stud-
ies evaluated the performance of AI in predicting mor-
tality in COVID-19 patients [12–34]. The overall pooled 
AUROC was 0.93 [1.00, 0.00]. Additionally, the sensitiv-
ity, specificity, PLR, NLR, and diagnostic odds ratio were 
0.84 [0.78, 0.88], 0.89 [0.85, 0.92], 7.37 [5.38, 10.1], 0.18 
[0.13, 0.25], and 40.15 [23.79, 67.74], respectively (Sup-
plementary material 5; Figure S1-S4).

Fig. 1  Literature screening flowchart
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Training set
In the training set, a total of 14 models from 5 studies 
evaluated the performance of AI in predicting mortality 
in COVID-19 patients. The overall pooled AUROC was 
0.98 [0.96, 0.99]. Additionally, the sensitivity, specific-
ity, PLR, NLR, and diagnostic odds ratio were 0.93 [0.87, 
0.96], 0.94 [0.87, 0.97], 15.08 [6.89, 33.01], 0.07 [0.04, 
0.14], and 202.41 [49.05, 835.20], respectively (Supple-
mentary material 5; Figure S5-S8).

Subgroup Analysis results
(1)	In the subgroup analysis of each AI model, we found 

that the areas under the summary receiver operating 
characteristic (SROC) curves of KNN, SVM, ANN, 
RF, XGBoost, LR, DNN, GBM, and DT were 0.98, 
0.98, 0.94 0.92, 0.91, 0.86, 0.83, 0.50, and 0.50, 
respectively. Subgroup analysis was not possible due 
to the small number of studies that included other 
models. (Table 2)

(2)	In the subgroup analysis of mortality, the areas 
under the summary receiver operating characteristic 

(SROC) curve of 0-10%, 10-20%, and > 20% were 
0.96, 0.80, and 0.95, respectively. (Table 2)

(3)	In the subgroup analysis of the study centres, 
the areas under the summary receiver operating 
characteristic (SROC) curves of the multicentre and 
single-centre studies were 0.93 and 0.88, respectively. 
(Table 2)

(4)	In the regional subgroup analysis, the area under the 
summary receiver operating characteristic (SROC) 
curve for Asian and non-Asian regions was 0.94 and 
0.84, respectively. (Table 2)

(5)	In subgroup analyses with in-hospital mortality as 
the outcome measure, the overall pooled AUROC 
was 0.85. Additionally, the sensitivity, specificity, 
PLR, NLR, and diagnostic odds ratio were 0.76 [0.75, 
0.78], 0.85 [0.85, 0.86], 4.14 [3.28, 5.24], 0.33 [0.26, 
0.40], and 14.50 [10.28, 20.45], respectively. (Table 2)

Heterogeneity analysis
The results of the heterogeneity test found significant 
heterogeneity among the studies; a random effects model 
was used for meta-analysis. Spearman’s correlation 

Fig. 2  Forest plot of the pooled sensitivity and specificity

 



Page 8 of 14Xin et al. BMC Medical Informatics and Decision Making          (2023) 23:155 

coefficient for log sensitivity and log specificity was 0.054 
(p = 0.81), suggesting no threshold effect. After exclud-
ing the threshold effect heterogeneity, we conducted a 
sensitivity analysis. After removing each study in turn, 
the results showed no significant difference between the 
combined effect size and the total combined effect after 
removing a single study, indicating that the results were 
stable and reliable (Supplementary material 5. Figure S9).

Publication bias detection
The results of the Deeks test showed that p = 0.67 
(p > 0.05), indicating no publication bias in the included 
literature (Fig. 6).

Discussion
COVID-19 continues to spread, and global epidemic 
prevention work has basically brought about the stage 
of “normalization”. However, as new strains continue 
to emerge, the death toll from COVID-19 continues to 
climb, putting enormous pressure on the global health 
care system. At present, the MEWS [35], APACHE 
[36], Simplified Acute Physiology Score (SAPS II) [37], 

Sepsis-related Organ Failure Assessment (SOFA) [38], 
and Rapid SOFA Score [39] are often used clinically as 
tools to estimate the death rate of COVID-19, but these 
scales fail to provide accurate and reliable predictions 
of mortality in patients with COVID-19 and have lim-
ited specificity and sensitivity. Therefore, finding predic-
tive tools with higher diagnostic accuracy is crucial for 
improving the prognosis of patients with COVID-19.

The advent of AI has generated rapid progress in the 
diagnosis and prognosis of COVID-19. AI has gradu-
ally attracted the attention of clinicians with its large, 
advanced algorithms in image recognition, data analysis, 
decision assistance, and other aspects [40, 41]. There-
fore, in this study, we conducted the first meta-analysis 
of algorithm performance in AI prediction of COVID-19 
patient mortality.

In the literature included in this meta-analysis, the 
dataset used by the AI model was divided into a training 
set and a validation set. The sensitivity of the training set 
was 0.93 [0.87, 0.96], the specificity was 0.94 [0.87, 0.97], 
and the AUC was 0.98 [0.96, 0.99]. The sensitivity of the 
validation set was 0.84 [0.78, 0.88], the specificity was 

Fig. 3  Forest plot of the pooled diagnostic odds ratio
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0.89 [0.85, 0.92], and the AUC was 0.93 [1.00, 0.00]. Com-
pared with the training set, the diagnostic performance 
of the validation set was slightly reduced, but the differ-
ence was not obvious, and the AUC value was still high. 
This indicates that AI predicts the mortality of patients 
with high accuracy, and the results are repeatable and 
reliable.

A subgroup analysis was performed according to differ-
ent AI models from the studies we included. The results 
show that among the various models, KNN, SVM, and 
ANN performed the best, and their AUCs were 0.98, 
0.98, and 0.94, respectively. This seems to contradict the 
general pattern in machine learning: XGBoost tends to 
perform better than the KNN and SVM models under 
the same conditions. By analysing the experimental pro-
cess of comparative literature, we explain this phenome-
non from two perspectives. First, from the perspective of 
data characteristics, the input data in the above research 
are all low-dimensional (the maximum number of fea-
tures is 48). SVM and KNN are suitable for dealing with 
such problems. In contrast, XGBOOST is better suited to 
handle more complex relationships between data features 

and targets, and overfitting problems can occur in the 
case of fewer features. Second, the difference in data 
quality affects the model performance. The original data 
used by SVM and KNN do not have the problem of miss-
ing data, while the original data of other models do have 
the problem of missing data, and the processing methods 
are too simple, such as simple mean and median replace-
ment. As a result, the latter prediction is less than satis-
factory. For example, in Prathamesh Parchure’s study, the 
proportion of missing data ranges from 53.5 to 89.0%, 
and more than 60% of missing data will make it difficult 
for any data interpolation method to obtain satisfactory 
results [42]. An C et al. and Sun L et al. also proposed 
that the SVM algorithm has high sensitivity and speci-
ficity for predicting the mortality of COVID-19 patients 
with high accuracy and stability [43, 44].

In addition, these AI models predict mortality based on 
all or part of the clinical characteristics, including demo-
graphics (e.g., age, sex, ethnicity), comorbidities (e.g., dia-
betes, heart disease), symptoms (e.g., cough, fever), vital 
signs (e.g., heart rate, oxygen saturation), laboratory tests 
(e.g., blood glucose, creatinine, haemoglobin), imaging 

Fig. 4  Forest plot of the pooled positive LR and negative LR
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measures (e.g., X-ray), and disease treatment and clini-
cal course (e.g., artificial ventilation, length of hospital 
stay, medications). Algorithms with high AUC values 
use more predictors. We found that the most commonly 
adopted predictors of mortality were age, C-reactive 
protein, and comorbidities. Previously published clini-
cal studies have shown that age, C-reactive protein, and 
comorbidities play important roles in predicting mortal-
ity in patients with COVID-19 [43, 45–47].

A previous study by Escobar GJ et al. showed that 
race was not associated with mortality after COVID-19 
infection [48]. We divided the included studies into two 
groups, Asian and non-Asian, for subgroup analysis and 
found that the AUC value of the Asian group was 0.94, 
and the AUC value of the non-Asian group was 0.84. The 
AI model performed better in the diagnosis of the Asian 
group. This suggests that when our AI model is extended 
to people in different regions, the stability of predic-
tion may change to a certain extent due to differences 
in local medical care levels and new disease prevention 
and control measures. This suggests that when the model 
is popularized and applied, it should be adjusted and 

calibrated according to changes in factors such as regions 
to improve the accuracy of the diagnosis of the target 
population.

To further explore the heterogeneity of the studies, we 
used sensitivity analysis to remove each study one by one, 
and the results did not change significantly. There was no 
significant difference between the combined effect size 
and the total combined effect size after removing a single 
study with large heterogeneity. The results are stable and 
reliable.

AI prediction of the mortality of COVID-19 patients 
can help clinicians make decisions on the length of hos-
pital stay and whether to upgrade according to the risk 
stratification of predicted patient mortality. In the con-
text of the COVID-19 pandemic, especially in the case 
of ventilator shortages, it can help medical resource 
management teams allocate resources and optimize 
patient management [13, 28]. At present, pathology 
and radiotherapy guidelines for patients with COVID-
19 need to be supplemented. AI model prediction of 
mortality in COVID-19 patients can help pathologists 
and radiologists more accurately interpret pathological 

Fig. 5  SROC of AI for the diagnosis of COVID-19 patient mortality
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imaging results to aid diagnosis and treatment. COVID-
19 patients who receive AI to accurately predict mortality 
can also decide whether to discharge or receive palliative 
care according to the level of their own prediction results 
to make more appropriate decisions [16].

Our research also has certain limitations. First, the 
number of studies we included is relatively limited. Due 
to the lack of relevant articles on AI models based on 
imaging features, we did not include them in the analy-
sis. We hope that more studies will be conducted in the 
future with the ability to develop and validate models 
with imaging features. Second, there were as many as 25 
AI models in our included articles, which we believe may 
be a major source of heterogeneity. In our included stud-
ies, the baseline variables (e.g., demographic characteris-
tics, vital signs, comorbidities, laboratory tests) included 
in each model differed to some extent, which may also 
be a source of some of the heterogeneity (Supplementary 
material 6). In addition, the use of “English” as the sole 
language for searches leads to potential bias due to the 
large number of studies in other languages involved in 
COVID-19 studies. Finally, and most importantly, none 
of our included studies addressed the vaccination status 
of the included population, which has a strong impact on 
mortality in COVID-19 patients. It is hoped that future 
studies will include vaccines as a parameter in AI models 
to improve their application value in COVID-19 patients.

Conclusion
Compared with traditional COVID-19 mortality predic-
tion tools, the AI model has higher accuracy in predict-
ing the mortality of COVID-19 patients, better predictive 
performance, and higher prognostic value. Among them, 
KNN, SVM, RF, ANN, XGBoost, and other models have 
higher accuracy.

Table 2  Subgroup analyses of the performance of artificial intelligence in the diagnosis mortality in covid-19 patients
Subgroup Study Sensitivity Specificity PLR NLR DOR AUC
All combined 23 0.82(0.69, 0.91) 0.89(0.79, 0.95) 7.60(4.1, 14.1) 0.20(0.11, 0.35) 38.00(18, 81) 0.92

Model
RF 12 0.78(0.75–0.80) 0.81(0.80–0.82) 5.00(3.41–7.33) 0.21(0.12–0.37) 31.59(13.06–76.40) 0.92

XGBoost 5 0.83(0.79–0.86) 0.87(0.86–0.89) 6.02(3.75–9.65) 0.24(0.14–0.41) 29.82(22.72–39.16) 0.91

LR 6 0.80(0.77–0.84) 0.85(0.84–0.85) 4.32(1.74–10.74) 0.31(0.25–0.38) 12.94(3.52–47.51) 0.86

SVM 4 0.94(0.91–0.97) 0.90(0.88–0.91) 9.48(1.64–57.74) 0.11(0.02–0.47) 90.33(9.84–828.9) 0.98

ANN 4 0.91(0.88–0.94) 0.88(0.88–0.89) 4.85(1.31–17.96) 0.14(0.07–0.26) 43.49(16.88-112.07) 0.94

DNN 3 0.70(0.57–0.82) 0.85(0.81–0.88) 4.12(3.07–5.52) 0.37(0.25–0.55) 11.56(6.11–21.86) 0.83

KNN 3 0.91(0.89–0.93) 0.96(0.95–0.97) 24.63(5.49-110.58) 0.12(0.02–0.85) 231.65(15.92-3369.65) 0.98

GBM 2 0.83(0.76–0.88) 0.72(0.69–0.75) 2.86(2.25–3.65) 0.24(0.17–0.34) 11.98(7.7-18.65) 0.50

DT 2 0.89(0.84–0.92) 0.95(0.94–0.97) 13.17(1.38-125.62) 0.12(0-61.10) 112.39(0.4-31797.54) 0.50

Mortality
0–10% 5 0.67(0.31–0.90) 0.97(0.90–0.99) 19.60(11-34.9) 0.34(0.13–0.91) 58.00(35–95) 0.96

10–20% 8 0.72(0.69–0.75) 0.73(0.72–0.74) 3.62(2.76–4.75) 0.41(0.32–0.53) 8.61(6.46–11.47) 0.80

> 20% 10 0.90(0.85–0.94) 0.87(0.80–0.92) 7.10(4.4–11.3) 0.11(0.07–0.19) 63.00(26–151) 0.95

Center
multicenter 14 0.87(0.86–0.88) 0.89(0.88–0.89) 7.54(5.35–10.62) 0.18(0.12–0.26) 52.58(27.35–101.10) 0.93

monocentric 9 0.77(0.75–0.79) 0.87(0.87–0.88) 4.60(3.18–6.64) 0.33(0.25–0.43) 14.85(9.30–23.70) 0.88

People
Asia 10 0.87(0.86–0.88) 0.95(0.95–0.95) 9.59(5.92–15.55) 0.20(0.13–0.31) 56.94(28.76-112.74) 0.94

Non Asia 13 0.52(0.51–0.54) 0.64(0.63–0.65) 3.09(2.08–4.59) 0.26(0.14–0.48) 12.30(3.83–39.45) 0.84

Outcome
In-hospital mortality 17 0.76(0.75–0.78) 0.85(0.85–0.86) 4.14(3.28–5.24) 0.33(0.26–0.40) 14.50(10.28–20.45) 0.85
Note: LR: logistic regression; SVM: support vector machine; RF: random forest; KNN: K Nearest Neighbors; GBM: Gradient boosting machine; SVM: Support Vector 
Machine; DNN: Deep Neural Network ; ANN: artificial neural network; XGBoost: eXtreme Gradient Boosting;
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Abbreviations
LR	� logistic regression
SVM	� support vector machine
RF	� random forest
KNN	� K Nearest Neighbors
GBM	� Gradient boosting machine
Cat boost	� categorical boosting
RPART	� Recursive Partitioning and Regression Trees
SVM	� Support Vector Machine
DNN	� Deep Neural Network
ANN	� artificial neural network
XGBoost	� eXtreme Gradient Boosting
ADABoost	� Adaptive boosting
CNN	� convolutional neural network
SVC-RBF	� Support Vector Classifier - Radial Basis Function
DT	� Decision Trees
ABC	� Ada-Boost-Classifier
QDA	� Quadratic Discriminant Analysis
AI	� Artificial intelligence
QUADAS-2	� Quality Assessment of Diagnostic Accuracy Studies-2
CI	� confidence interval
SEN	� sensitivity
SPE	� specificity
NLR	� negative likelihood ratio
PLR	� positive likelihood ratio
DOR	� diagnostic odds ratio
SEN	� sensitivity
SPE	� specificity
TP	� true positive
FP	� false positive

TN	� true negative
FN	� false negative
AUC	� area under the curve
SROC	� summary receiver operating characteristic
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