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Introduction
Stroke is the leading cause of death and long-term dis-
ability worldwide [1]. 2019 global burden of disease study 
(GBD) data [2]shows that stroke remains to be the sec-
ond leading cause of death (11.6% of deaths) and the 
third leading cause of disability (5.7% of total disability-
adjusted life years) in the world. Hemorrhagic stroke 
(HS) accounts for 37.6% of all stroke types and causes 
5.5  million deaths per year approximately, with about 
half of deaths caused by stroke due to HS. The risk of 
death from HS is higher compared to ischemic stroke 
(IS) [3], with a 30-day mortality of 13-61% [4]. In recent 
years, more and more stroke patients are admitted to the 
intensive care unit (ICU) for neurological monitoring or 
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Abstract
Objective  To evaluate RSF and Cox models for mortality prediction of hemorrhagic stroke (HS) patients in intensive 
care unit (ICU).

Methods  In the training set, the optimal models were selected using five-fold cross-validation and grid search 
method. In the test set, the bootstrap method was used to validate. The area under the curve(AUC) was used for 
discrimination, Brier Score (BS) was used for calibration, positive predictive value(PPV), negative predictive value(NPV), 
and F1 score were combined to compare.

Results  A total of 2,990 HS patients were included. For predicting the 7-day mortality, the mean AUCs for RSF and 
Cox regression were 0.875 and 0.761, while the mean BS were 0.083 and 0.108. For predicting the 28-day mortality, 
the mean AUCs for RSF and Cox regression were 0.794 and 0.649, while the mean BS were 0.129 and 0.174. The mean 
AUCs of RSF and Cox versus conventional scores for predicting patients’ 7-day mortality were 0.875 (RSF), 0.761 (COX), 
0.736 (SAPS II), 0.723 (OASIS), 0.632 (SIRS), and 0.596 (SOFA), respectively.

Conclusions  RSF provided a better clinical reference than Cox. Creatine, temperature, anion gap and sodium were 
important variables in both models.
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management of complications, and 10-30% of them are in 
critical condition [5]. Hence, it is of great significance to 
optimize the allocation of medical resources by identify-
ing and managing high-risk groups.

Predicting the occurrence of adverse outcomes is the 
prerequisite for risk stratification. Risk scores are helpful 
tools for prediction. Many investigators have developed 
diverse disease risk scoring systems. Traditional scor-
ing systems commonly used in clinical practice include 
acute physiology and chronic health evaluation(APACHE 
II) [6], sequential organ failure assessment(SOFA) [7], 
Oxford acute severity of illness score(OASIS) [8], and 
simplified acute physiology score(SAPSII) [9], which 
include various variables with their respective point 
assignment scheme [10]. However, these traditional 
scores are applicable to a wide population, whose effec-
tiveness in predicting specific diseases’ prognosis is not 
always satisfactory [11, 12], the application of these scores 
in HS is limited. Many scholars have made efforts to con-
struct predictive tools for HS. Ho and Smith et al. [13, 14] 
built a prediction model of HS death in the ICU by logis-
tic regression, and stratified the risk degree of patients 
by calculating risk scores. However, with the increasing 
number of clinical examinations and diagnostic items, 
clinical data often present multidimensional, highly cor-
related, and nonlinear characteristics [15], which limits 
the application conditions of traditional clinical model-
ing methods such as logistic and Cox regression [16]. To 
compensate for the shortcomings of traditional analyti-
cal methods, machine learning algorithms have emerged 
in the era of big data [17]. Lin and Trevisi et al. [18, 19] 
employed common machine learning algorithms, such as 
support vector machine, random forest, and neural net-
work to predict poor functional outcomes in HS patients 
in the hospital. Howerer, those studies only considered 
the probability of survival without incorporating the time 
dimension, by which model prediction is often imprecise 
[19, 20]. Random survival forest (RSF) is a derivative of 
the random forest algorithm in survival analysis, which 
can not only handle complex right-censored survival 
data but also analyze interactions between variables, and 
has been applied to pancreatic cancer [21], sepsis [22], 
and breast cancer [23], and its predictive performance is 
better than or equivalent to Cox regression in previous 
studies [22, 24–26], but its performance in the field of HS 
remains to be investigated.

Therefore, the aim of this study was to establish RSF 
and Cox regression models based on clinical survival data 
of HS patients admitted to ICU respectively, and then we 
evaluated the predictive effect in terms of discrimination 
and calibration. We also compared developed models 
with traditional scores with the aim of providing a refer-
ence for clinical prediction model construction and clini-
cal decision-making.

Materials and methods
Data source and study participants
All data were extracted from Medical Information Mart 
for Intensive Care IV, v2.1 (MIMIC-IV) [27], an openly 
accessible critical care database, containing 256,878 
patients electronic medical records, which was collected 
by Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts from 2008 to 2019. Patients’ demographic 
information, laboratory tests, vital signs, hospital status, 
medication and surgical procedures were documented 
in detail in the MIMIC-IV database. All information 
regarding patients’ identification were anonymized and 
all identifiable information were hidden. Thus, informed 
consent was exempt. The author had completed all the 
data research training from the Collaborative Institu-
tional Training Initiative in order to obtain database per-
mission (Record ID:52,310,626). Our study complies with 
the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) 
guideline statement [28].

Among 69,639 ICU admission records in MIMIC-
IV, 53,569 patients with first admission were selected. 
Included criteria were: (1) patients first diagnosed of 
HS(the diagnosis international classification of diseases 
(ICD) codes were shown in Table S1); (2) first ICU admis-
sion record. Excluded criteria were: (1) patients’ age ≤ 18; 
(2) length of ICU stay ≤ 24  h; (3) patients diagnosed of 
tumor, cancer or aids. Finally, 2,990 eligible patients were 
seected for the study in total.

Data collection and outcomes
Based on previous studies [1, 3, 5, 19, 29, 30] and the 
characteristics of MIMIC-IV database, the extracted vari-
ables could be summarized into the following five parts: 
(1) demographic characteristics: insurance, marital sta-
tus, admission age, weight, gender, hospital length of stay 
(HOSLOS), mechanical ventilation, weight; 2) comor-
bidities: myocardial infarction (MI), congestive heart fail-
ure (CHF), peripheral vascular disease (PVD), dementia, 
chronic pulmonary disease (CPD), rheumatic disease, 
peptic ulcer disease, mild liver disease, diabetes with-
out chronic complication (diabetes without cc), diabetes 
with chronic complication (diabetes with cc), paraplegia, 
renal disease, severe liver disease; 3) vital signs: heart 
rate, diastolic blood pressure (DBP), systolic blood pres-
sure (SBP), mean blood pressure (MBP), respiratory rate 
(RR), temperature, peripheral capillary oxygen saturation 
(Spo2); 4) laboratory examination: hematocrit, hemoglo-
bin, platelets, white blood cell (WBC), anion gap, bicar-
bonate, blood urea nitrogen (BUN), calcium, chloride, 
creatinine, glucose, sodium, international normalized 
ratio (INR), Prothrombin time (PT), partial thrombo-
plastin time (PTT), urine output; 5) conventional scor-
ing systems: SAPSII, OASIS, SIRS, SOFA, Glasgow Coma 
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Scale (GCS), Charlson comorbidity index (CCI). All of 
the above variables were recorded within 24 h after ICU 
admission. If repeated measurements were recorded, the 
mean values were used instead. For the missing values, if 
the missing proportion was greater than 20%, the vari-
ables will be eliminated, otherwise, the multiple imputa-
tion method would be used to fill [31].

Two primary outcomes were analysed in the study. One 
was the in-hospital survival status within 7 days after 
admission to the ICU, and the other was the in-hospital 
survival status within 28 days.

Data preprocessing and statistical analysis
All data were extracted by writing structured query lan-
guage (SQL) in Navicat Premium 15 software and data 
analysis procedures were conducted in R 4.1.2 software 
(R Foundation for Statistical Computing, Vienna, Aus-
tria). For continuous variables, normal distribution 
variables were presented as mean ± standard deviation 
(χ ± S ) and t-tests were used for comparisons between 
groups, while non-normal distribution variables were 
presented as median and interquartile range [M(P25, P75)] 
and Wilcoxon rank-sum test were used for comparison 
between groups. Categorical variables were presented 
as frequency and percentages and Chi-square test or 
Fisher’s exact test were used for comparison. A two-side 
p-value < 0.05 was considered statistically significant.

Model construction and evaluation
RSF model
RSF is a non-parametric and nonlinear ensemble learn-
ing method, which is the extension of random forest 
method in survival data [32]. It is an adaptive process that 
can simulate the complex interaction between nonlinear 
effects and variables, and find important variables based 
on the variables ranking of the model’s output to reduce 
generalization errors [33] which makes it well adapted to 
complex survival data. RSF can calculate the cumulative 
risk function of each sample even though the assumption 
of proportional risk is not satisfied, and then aggregate by 
survival time to generate prediction results of integrated 
mortality [34].

The procedures to construct a RSF model are as fol-
lows: (1) Samples are randomly selected with replace-
ment in the original data by the bootstrap method. Each 
sample includes 63% of the original data and 37% of the 
out of bag (OOB) data, and OOB is used to calculate 
the prediction error rate of the ensemble cumulative 
risk function. (2) Each bootstrapped sample grows into 
a survival tree. At each node of the tree, the log-rank or 
logrank-score splitting criteria is used to select ‘mtry’ 
candidate variables which make maximum survival dif-
ference between child nodes. When the number of final 
node events is less than ‘nodesize’, the growth of survival 

tree will quit. (3) The Nelson-Aalen method is used to 
calculate the cumulative risk for each tree, and the aver-
age value of the cumulative risks for all trees is used to 
estimate the total cumulative risk of the RSF model [34].

Cox regression model
Cox regression is a traditional survival analysis method, 
which can be presented as lnh(t,x)

h0(t)
= β1x1 + ... + βpxp

, h(t, x)  refers to the risk function at time ′t′  under the 
influence of risk factor ′t′ , h0(t) is the baseline risk func-
tion at time ′t′  when all independent variables ′xp′  equal 
to 0, which is related to time. The mortality risk of each 
patient is proportional, and the proportional coefficient 
can be expressed as: h(t,x)

h0(t)
= exp(β1x1 + ... + βpxp) . The 

fitting Cox regression model is usually expressed as: 
h(t, x) = h0 (t) exp(b1x1 + ... + bpxp).

Model construction
All data were randomly divided into the training set 
and the test set in a ratio of 7:3. In the training set, the 
least absolute shrinkage and selection operator (LASSO) 
analysis with ten-fold cross-validation was used to screen 
variables preliminarily, and then five-fold cross-valida-
tion was adopted. In each fold, the grid search method 
[35] was used to select optimal hyperparameters and 
the minimum depth method [36] was used to select 
the optimal variable subset for the construction of RSF 
model, while the akaike information criterion (AIC) [37] 
was used to choose the optimal variable subset for Cox 
regression. The AUC was regarded as the model evalu-
ation index, when the AUC reached optimal value, then 
the final prediction model was determined.

Model evaluation
In the test set, the bootstrap method [38] with 500 re-
samplings was used to compare the differentiation and 
calibration of RSF and Cox models. The differentiation 
was evaluated by AUC, and the calibration was evalu-
ated by Brier Score (BS). The larger the AUC was, the 
better the differentiation was, while, the smaller the BS 
was, the better the model fit the actual data [39]. More-
over, the positive predictive value (PPV), negative pre-
dictive value(NPV) and F1 score were also combined 
to compare. See Fig.  1 for the model construction and 
comparison process. In order to further explore the risk 
stratification ability of Cox and RSF model, patients were 
divided into low and high risk group according to the 
optimal cut-off point determined by Yoden index. The 
Kaplan-Meier (K-M) curve was drawn, and the log-rank 
test was used to compare whether the survival difference 
between the two groups was statistically significant. At 
the same time, the RSF and Cox models were compared 
with the traditional scores, namely, SAPSII, OASIS, SIRS 
and SOFA, which further helped to indicate that whether 



Page 4 of 11Wang et al. BMC Medical Informatics and Decision Making          (2023) 23:215 

the constructed models had better prediction efficiency. 
The point assignment scheme of each system were shown 
in Table S2.

Results
Patient characteristics
A total of 2,990 patients diagnosed with HS were 
included in our study after excluding those who did not 
meet the selection criteria, as shown in Fig.  2. Among 
these patients, 601(20.1%) deaths occurred in hospi-
tal after admission to the ICU, 376(12.6%) died within 
7 days, and 586(19.6%) died within 28 days. The basic 
information comparison of these patients stratified by 
hospital-outcome was shown in Table S3. Compared 
with those patients who were alive, the dead patients 
were older(p < 0.001), divorced or widowed(p < 0.001), 
more likely to be diagnosed with CHF(p < 0.001), 
liver disease(p < 0.001), diabetes(p = 0.037) and renal 
disease(p < 0.001), and had a shorter length of stay in hos-
pital. After all patients were randomly divided into the 

training and test set, all variables were balanced across 
the two data sets(p > 0.05), as shown in Table S2.

Variables significance
LASSO regression
After LASSO analysis, a total of 19 variables were 
screened out from 48 variables (Figure S1): marital status, 
PVD, severe liver disease, diabetes without cc, admission 
age, heart rate, MBP, temperature, RR, platelets, WBC, 
anion gap, creatinine, glucose, sodium, potassium, PT, 
GCS, weight. The correlation analysis of the selected con-
tinuous variables showed that the correlation coefficients 
among all variables were lower than 0.5 (the lighter the 
color, the less correlated the variables were), indicating 
that the correlations between variables were low (Figure 
S2).

RSF model
After the five-fold cross-validation and grid search in 
the training set, it was found that when the hyperparam-
eter ‘ntree’ was set to be 500, ‘mtry’ was set to be 13, and 

Fig. 1  Flow chart of model construction and comparison
Notes: LASSO, the least absolute shrinkage and selection operator; HS, hemorrhagic stroke; RSF, Random survival forest; AUC, area under the curve; PPV, 
positive predictive value; NPV, negative predictive value
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‘nodesize’ was set to be 8, the AUC of RSF model reached 
maximum and the error rate was low as well as stable. 
Finally, a total of 16 variables were selected: GCS, glu-
cose, admission age, creatinine, temperature, anion gap, 
RR, sodium, MBP, marital status, heart rate, PT, plate-
lets, potassium, weight, WBC. The error rate and vari-
able importance were shown in Fig. 3, and the grid search 
process was shown in Figure S3.

Cox regression model
In the training set, five-fold cross-validation was adopted, 
and backward method was used to screen variables 
according to AIC. Finally, 18 variables were screened out: 
WBC, MBP, marital status, GCS, potassium, tempera-
ture, anion gap, PVD, severe liver disease, platelets, PT, 
heart rate, weight, sodium, diabetes without cc, creati-
nine, admission age, glucose, whose significance could be 
ranked by absolute value of standardized-β. (Table 1)

Model performance
For the model differentiation, the AUCs of RSF and 
Cox models in predicting hospital-mortality within 7 
days were 0.875(95% CI 0.842–0.908) and 0.794(95% 
CI 0.724–0.865) respectively, and those in predicting 

hospital-mortality within 28 days were 0.761(95%CI 
0.712–0.809) and 0.649(95%CI 0.559–0.739) respectively. 
The ROC curves of RSF and Cox models in predicting 
7-day and 28-day hospital mortality were shown in Fig. 4. 
For the model calibration, the brier scores of RSF and 
Cox were 0.083(95%CI 0.071–0.095) and 0.108(95%CI 
0.093–0.123) in predicting hospital-mortality within 7 
days, and those in predicting hospital-mortality within 
28 days were 0.129(95%CI 0.116–0.143) and 0.174(95%CI 
0.167–0.181) respectively. The calibration curve were 
shown in Figure S4. Other model performance indices, 
namely, PPV, NPV, F1 score, were shown in Figure S5. In 
addition, every performance index of the two models was 
statistically different(p < 0.001).

Risk stratification
All HS patients were divided into high and low risk group 
according to optimal cut-off risk-score of RSF and Cox 
models. The optimal cut-off risk-score of RSF model 
was 22.20, while that of Cox model was 0.883, and as the 
patient’s risk-score increased, so did the risk of hospi-
tal death. K-M curves showed both models could divide 
patients into high and low risk group with significant sur-
vival difference(p < 0.001). (Figure 5)

Fig. 2  Flow chart of participants inclusion and exclusion
Notes: MIMIC-IV, medical information mart for intensive care IV; ICU, intensive care unit

 



Page 6 of 11Wang et al. BMC Medical Informatics and Decision Making          (2023) 23:215 

Comparison of RSF with traditional score systems
As the results showed above, the 7-day prediction per-
formance was better than that of 28-day in both RSF and 
Cox model. Therefore, we further compared the predic-
tion performance of RSF and Cox models with traditional 
scores, namely, SAPSII, OASIS, SIRS and SOFA. After 
500 re-samplings, the box scatter plot showed RSF and 
Cox models had a good advantage over the four tradi-
tional scores in predicting 7-day hospital mortality risk, 
as shown in Figure S6. The AUCs of six models were 
0.875(95%CI 0.842–0.908), 0.761(95%CI 0.712–0.809), 
0.736(95%CI 0.685–0.785), 0.723(95%CI 0.676–0.770), 
0.632(95%CI 0.575–0.689) and 0.596(95%CI 0.536–0.657) 
in order from largest to smallest. Other measures related 
to traditional scoring systems were shown in Table S4. 
The ROC curves of six models for 7-day mortality were 
described in Fig. 6. In addition, The AUCs of six models 
for 28-day mortality were shown in Table S5.

Discussion
In this study, we constructed RSF and Cox regression 
models to predict the risk of death of HS patients within 
7 and 28 days after admission to ICU, respectively. By 
comparing the AUC, BS, PPV, NPV, and F1 score of the 
two models, it was found that RSF model was better than 

Cox regression model in terms of differentiation and cal-
ibration, while both models were able to divide all sub-
jects into low-risk and high-risk groups. Comparing RSF 
and Cox models with traditional scores, it was observed 
that the AUC of RSF model was higher than that of tradi-
tional scores, suggesting that RSF had a better predictive 
performance and application value in disease prognosis 
of HS patients.

For ICU patients, studies have shown that predictive 
models based solely on survival status do not provide 
adequate information for clinicians’ intervention time 
decisions [40]. The dependent variables of traditional Cox 
regression consist of survival time and a dichotomous 
variable indicating whether survival outcome occurs, 
which takes into account the patient’s survival time but 
performs poorly when dealing with high-dimension clini-
cal data because the predictive effect is easily limited by 
the assumption of proportional hazards [37], and can 
not provide clinicians with a timely decision reference 
in restricted time with confined medical resources. RSF 
can be used to generate multiple decision trees by ran-
domizing, integrating all of them to form the final predic-
tion model, which does not depend on applied premises 
such as p-value, proportional hazards assumption, lin-
earity, etc., and reduces computational time by replacing 

Fig. 3  Error rate curve and variable importance of RSF
Notes: MBP, mean blood pressure; WBC, white blood cell; PT, prothrombin time; GCS, glasgow coma scale
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cross-validation with out-of-bag data estimation. In this 
study, RSF had higher predictive efficacy than Cox regres-
sion for both 7-day and 28-day mortality in HS patients 
in the ICU. Hadanny et al. predicted 1-year mortality in 
patients with acute coronary syndrome, and the results 
also showed that compared to DeepSurv and Cox regres-
sion, the RSF model performed best (C-index = 0.924) 
[41], but Qiu et al. obtained the opposite conclusion 
(C-index = 0.611 vs. 0.629) using RSF and Cox regres-
sion respectively based on 10 characteristic variables in 
82 patients with glioma [42], which may be due to the 
small sample size and fewer variables in that study. Lin 
et al. constructed RSF, DeepSurv and Cox to predict the 
long-term mortality of patients with ischemic stroke, the 
results showed that all algorithms achieved good predic-
tion effect, which may be because the variables included 
were few, and these variables satisfied the application 
conditions of Cox regression. In this case, Cox regression 
is more suitable for clinical workers to apply and under-
stand [43]. Specially, we found that RSF showed better 
predictive efficacy for short-term outcomes. Huang et al. 
also obtained similar findings when using RSF and Cox 
regression to predict mortality in patients with pot-belly 
adenocarcinoma over 1–10 years [44], which may be 
due to the fact that short-term mortality risk is easier to 
predict because it only needs to consider serious events 
that occur in a shorter period of time, whereas long-term 

mortality risk is subject to more unknown and confound-
ing factors. In addition, compared to traditional scores, 
we found that the RSF model had the best AUC perfor-
mance (AUC = 0.875), followed by SAPSII, OASIS, SIRS 
and SOFA. Zhang et al. compared RSF with SOFA, SAPS 
II and APS III when exploring the 30-day risk of death 
in sepsis patients in the ICU, and the C-index of the four 
scores were 0.551, 0.654, 0.669 and 0.731, all of which 
were lower than the RSF model [22], which was con-
sistent with the results of our study, suggesting that the 
RSF may provide new methods and ideas for developing 
new clinical disease severity scores. Moreover, some of 
the scoring systems had low AUCs, and some others had 
the opposite in the study, which may due to the fact that 
SAPSII and OASIS are mainly used to assess the sever-
ity of illness and predict prognosis for the ICU or general 
ward patients. SIRS and SOFA are mainly used for assess-
ing systemic inflammatory response and degree of organ 
dysfunction respectively.

Identifying variables that are associated with the risk 
of death has important implications for clinical prac-
tice. Both RSF and Cox regression were able to screen 
for variables of high importance, and among the top 10 
important variables, the variables that were identical in 
both models were creatine, temperature, anon gap, and 
sodium. Creatine is an important indicator for monitor-
ing of acute kidney injury [45], and Luo et al. showed a 
steep linear relationship between reduced blood cre-
atine levels and increased risk of in-hospital and 1-year 
mortality in patients with intracranial hemorrhage when 
blood creatine values were < 1.9  mg/dL [46]. We found 
a 1.3-fold increase in the risk of in-hospital death in HS 
patients for each range of temperature change, which 
was consistent with previous studies [47]. Iglesias Rey 
et al. conducted a retrospective study of 887 patients 
with non-traumatic cerebral hemorrhage and found that 
patients with hypertensive cerebral hemorrhage had the 
highest body temperature and the greatest increase in 
body temperature within 24 h. Patients with hypertensive 
cerebral hemorrhage who developed hyperthermia after 
3 months had a 5.3-fold increased risk of poor progno-
sis, moreover, the amount of edema within 24 h was posi-
tively correlated with body temperature in patients with 
cerebral hemorrhage due to hypertension [48]. Anion 
gap reflects the acid-base balance in body fluids and plays 
an important role in the identification of metabolic aci-
dosis [49]. Previous studies have shown that anion gap is 
an important short- and long-term prognostic marker in 
patients with IS [50], however, its use in patients with HS 
is less studied. Shen et al. found that HS patients experi-
enced a decrease in the mini-mental state examination, 
GCS and other indicators of neurological and cognitive 
function as the anion gap increased at the time of admis-
sion [51]. A meta-analysis had shown that high sodium 

Table 1  Multivariate Cox regression analysis results
Characteristics Stan-

dard-
ized β

HR(95% CI) p 
value

Marital status(ref:Divorced)
  Married -0.286 0.751 [0.502, 1.123] 0.164
  Single -0.409 0.664 [0.425, 1.038] 0.073
  Widowed 0.005 1.005 [0.636, 1.587] 0.984
PVD(ref:no) -0.478 0.620 [0.418, 0.920] 0.017
Severe liver disease(ref:no) 0.832 2.299 [1.277, 4.138] 0.006
Diabetes without cc(ref:no) -0.623 0.536 [0.389, 0.738] < 0.001
Admission age 0.028 1.028 [1.019, 1.038] < 0.001
Heart rate 0.014 1.014 [1.004, 1.023] 0.004
MBP -0.010 0.990 [0.977, 1.003] 0.124
Temperature 0.239 1.270 [0.999, 1.615] 0.051
Platelets -0.002 0.998 [0.996, 0.999] 0.011
WBC 0.022 1.022 [0.993, 1.053] 0.143
Anion gap 0.053 1.054 [1.006, 1.104] 0.027
Creatinine 0.310 1.364 [1.196, 1.554] < 0.001
Glucose 0.010 1.010 [1.008, 1.013] < 0.001
Sodium 0.053 1.054 [1.025, 1.085] < 0.001
Potassium 0.249 1.282 [0.994, 1.655] 0.056
PT 0.047 1.048 [1.014, 1.083] 0.005
GCS -0.027 0.975 [0.947, 1.003] 0.081
Weight -0.010 0.990 [0.984, 0.997] 0.003
Notes: HR, hazard ratio; PVD, peripheral vascular disease; MBP, mean blood 
pressure; WBC, white blood cell; PT, prothrombin time; GCS, glasgow coma scale
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Fig. 5  K-M curves for risk stratification. (A) RSF model. (B) Cox regression model

 

Fig. 4  ROC curve for predicting 7-day and 28-day hospital mortality
Notes: ROC, receiver operation characteristic. RSF, random survival forest
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intake was positively associated with stroke risk, with a 
23% increase in stroke risk for every 86 mmol/d increase 
in sodium intake [52]. Wang et al., who included 64,909 
patients with non-traumatic HS in the United States, 
showed that spontaneous cerebral hemorrhage patients 
with abnormal serum sodium had a 1.11-fold increased 
risk of 30-day readmission compared to patients with 
normal serum sodium [30].

We have some strengths in this study. We not only 
compared the predictive efficacy of RSF and Cox, we also 
compared the models constructed by RSF and Cox with 
the clinical traditional scoring systems, in addition, we 
also found the variables that had a strong influence on 
the occurrence of patient’s deaths in the ICU and ranked 
the variables in terms of importance, which may provide 
guidance for further practical applications. However, 
this study has several limitations. Firstly, the MIMIC-
IV database is a single-center database, which may limit 
the applicability of the study results to patients in other 
centers, so future inclusion of clinical data from multiple 
centers is desired for external validation. Secondly, due 
to the limitations of the MIMIC-IV database features, 
some important indicators such as bilirubin, lactate and 
albumin could not be included in the analysis because of 
serious missing values. Finally, only demographic infor-
mation, laboratory indicators, and comorbidity informa-
tion were included in this study, and some important 

information such as medication and imaging tests were 
not included, which reduced the predictive performance 
of the models.

Conclusion
We constructed the RSF and Cox models based on the 
survival data of patients with HS in the ICU. The results 
showed that the prediction performance of RSF was bet-
ter than Cox regression for 7-day and 28-day mortality, 
with creatine, temperature, anion gap and sodium rank-
ing in the top 10 important variables in both models. RSF 
can provide new ideas for clinical decision-making of HS 
patients.
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