Skip to main content

Endocannabinoid System

  • Chapter
  • First Online:
Medicinal Cannabis and CBD in Mental Healthcare
  • 1201 Accesses

Abstract

The endocannabinoid system (ECS) was discovered in the early 1990s and is one of the most important neuroregulatory systems in the body. The ECS is responsible for homeostasis of most systems in the body. At a simplistic level, it is composed of endogenous ligands called endocannabinoids, cannabinoid receptors (CB1 and CB2 receptors), and enzymes that synthesize and degrade them. However, the ECS is actually more complex than this and there are other receptors and endocannabinoid-like substances involved in the ‘extended ECS’. CB1 receptors are particularly concentrated in the central nervous system and CB2 receptors are particularly concentrated in cells and tissues/organs of the immune system. However, cannabinoid receptors are also widely distributed throughout the body. In the nervous system, the classical understanding is that endocannabinoids are synthesized on demand in postsynaptic neurons and act as retrograde messengers, binding with cannabinoid receptors on presynaptic neurons to reduce neurotransmitter release from the presynaptic neuron. It is now known that there are also intracellular reservoirs and transporters of endocannabinoids. The ECS is critically involved in brain development, from the fetus through to adulthood. Dysfunction including deficiency of the ECS has been associated with a range of pathological disorders, including mental health conditions. The ECS plays a key role in the regulation of our mind and emotions and our reaction to stress. It is involved with the corticolimbic system and the HPA axis, both of which are key systems involved in regulation of stress and emotions. This chapter gives an overview of the ECS, as an understanding is necessary to later understand how medicinal cannabis may work in alleviating mental health disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker LA. Cannabinoids & emotional regulation. In: Cannabinoids and the brain. Cambridge: MIT Press; 2017.

    Chapter  Google Scholar 

  2. Ahmet W, Katz S. Therapeutic use of cannabis in inflammatory bowel disease. Gastroenterol Hepatol. 2016;12(11):668–79.

    Google Scholar 

  3. Fride E, Feigin C, Ponde DE, et al. (+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only. Eur J Pharmacol. 2004;506(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  4. Grill M, Hogenauer C, Blesi A, et al. Members of the endocannabinoid system are distinctly regulated in inflammatory bowel disease and colorectal cancer. Sci Rep. 2019;9:2358.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jarvis S, Rassmussen S, Winters B. Role of the endocannabinoid system and medical cannabis. JNP. 2017;13(8):525–31.

    Google Scholar 

  6. Matias I, Di Marzo V. Endocannabinoids and the control of energy balance. Trends Endocrinol Metab. 2007;8:27–37.

    Article  CAS  Google Scholar 

  7. McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172:737–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olah A, Szekanecz Z, Biro T. Targeting cannabinoid signaling in the immune system: “high”-ly exciting questions, possibilities, and challenges. Front Immunol. 2017;8:1487. https://doi.org/10.3389/fimmu.2017.01487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Izzo AA, Sharkey KA. Cannabinoids and the gut: New developments and emerging concepts. Pharmacol Ther. 2010;126(1):21–38.

    Article  CAS  PubMed  Google Scholar 

  10. McPartland JM, Guy GQ, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One. 2014;9(3):e89566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: a bidirectional process in programming future coping. Dev Psychobiol. 2019;00:1–10.

    Google Scholar 

  12. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–215.

    Article  CAS  PubMed  Google Scholar 

  13. Schubart CD, Sommer IEC, Fusar-Poli P, et al. Cannabidiol as a potential treatment for psychosis. Eur J Neuropsychopharmacol. 2014;24:51–64.

    Article  CAS  Google Scholar 

  14. Atkinson DL, Abbot JK. Cannabinoids and the brain: the effects of endogenous and exogenous cannabinoids on brain systems and function. In: Compton MT, Manseau MW, editors. The complex connection between cannabis and schizophrenia. Elsevier Science and Technology; 2017.

    Google Scholar 

  15. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  PubMed  Google Scholar 

  16. Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  17. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  18. Maccarrone M, Bab I, Biro T, et al. Endocannabinoid signalling at the periphery: 50 years after THC. Trends Pharmacol Sci. 2015;36(5):277–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barrie N, Kuruppu V, Manolios E, et al. Endocannabinoids in arthritis: current views and perspective. Int J Rheum Dis. 2017;20(7):789–97.

    Article  PubMed  Google Scholar 

  20. Dyall SC. Interplay between n-3 and n-6 long-chain polyunsaturated fatty acids and the endocannabinoid system in brain protection and repair. Lipids. 2017;52(11):885–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoids that modulates long-term potentiation. Nature. 1997;388:773–8.

    Article  CAS  PubMed  Google Scholar 

  22. Pamplona FA, Takahashi RN. Psychopharmacology of the endocannabinoids: far beyond anandamide. Psychopharm. 2012;26(1):7–22.

    Article  CAS  Google Scholar 

  23. Piomelli D. The molecular basis logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4:873–84.

    Article  CAS  PubMed  Google Scholar 

  24. Chakrabarti B, Persico A, Battistia N, Maccarrone M. Endocannabinoid signaling in autism. Neurotherapeutics. 2015;12:837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mechoulam R, Hanus LO, Pertwee R, Howlette AC. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci. 2014;15(11):757–64.

    Article  CAS  PubMed  Google Scholar 

  26. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003;163:463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murataeva N, Straiker A, Mackie K. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. Br J Pharmacol. 2014;171(6):1379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009;89:309–80.

    Article  CAS  PubMed  Google Scholar 

  29. Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci. 2010;35(11):601–8.

    Article  CAS  PubMed  Google Scholar 

  30. Maccarrone M. Metabolism of the endocannabinoid anandamide: open questions after 25 years. Front Mol Neurosci. 2017;10:166. http://dx.doi.org.ezproxy.uws.edu.au/10.3389/fnmol.2017.00166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Van der Stelt M, Hansen HH, Veldhuis WB, et al. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases. Neurotox Res. 2003;5(3):183–200.

    Article  PubMed  Google Scholar 

  32. Cravatt BF, Giang DK, Mayfield SP, et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–7.

    Article  CAS  PubMed  Google Scholar 

  33. Hu SS, Bradshaw HB, Chen JS, Tan B, Walker JM. Prostaglandin E2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFkappaB activity. Br J Pharmacol. 2008;153(7):1538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katona I, Freund TF. Multiple functions of endocannabinoid signaling in the brain. Ann Rev Neurosci. 2012;35:529–58.

    Article  CAS  PubMed  Google Scholar 

  35. Pertwee RG, Howlett AC, Abood ME, et al. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev. 2010;62:588–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen D, et al. Brain cannabinoid 2 receptor: expression, function and modulation. Acta Pharmacol Sin. 2017;38:312–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19(3):833.

    Article  PubMed Central  CAS  Google Scholar 

  38. Rivera P, Bindila L, Pastor A et al. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci, 27 March 2015; https://doi.org/10.3389/fncel.2015.00098.

  39. O’Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol. 2016;173(12):1899–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wilson RI, Nichol RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature. 2001;410:588–92.

    Article  CAS  PubMed  Google Scholar 

  41. World Health Organization (WHO). World Health Organization Expert Committee on Drug Dependence. Cannabidiol (CBD) Critical Review Report. Expert Committee on Drug Dependence Fortieth Meeting Geneva, 4–7 June 2018. World Health Organization (WHO), 2018. Available at: https://www.who.int/medicines/access/controlledsubstances/CannabidiolCriticalReview.pdf.

  42. Smith-Kielland A, Skuterud B, Morland J. Urinary excretion of 11-nor-9-carboxy-delta9- tetrahydrocannabinol and cannabinoids in frequent and infrequent drug users. J Anal Toxicol. 1999;23:323–32.

    Article  CAS  PubMed  Google Scholar 

  43. Ho W-SV, Barrett DA, Randall MD. Entourage effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol. 2008;155(6):837–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lambert DM, Di Marzo V. The palmitoylethanolamide and oleamide enigmas: are the two fatty acid amides cannabimimetic? Curr Med Chem. 1999;6:757–73.

    Article  CAS  PubMed  Google Scholar 

  45. De Petrocellis L, Ligresti A, Schiano Moriello A, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011;163:1479–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Re G, Barbero R, Miolo A, Di Marzo V. Palmitoylethanolamide, endocannabinoids and related cannabimimetic compounds in protection against tissue inflammation and pain: potential use in companion animals. Vet J. 2007;173:21–30.

    Article  CAS  PubMed  Google Scholar 

  47. Lin T, Lu C, Wu C, et al. Palmitoylethanolamide inhibits glutamate release in rat cerebrocortical nerve terminals. Int J Mol Sci. 2015;16(3):555–5571.

    CAS  Google Scholar 

  48. Trautmann SM, Sharkey KA. Chapter three - the endocannabinoid system and its role in regulating the intrinsic neural circuitry of the gastrointestinal tract. In chapter three - the endocannabinoid system and its role in regulating the intrinsic neural circuitry of the gastrointestinal tract. Int Rev Neurobiol. 2015;125:85–126.

    Article  CAS  PubMed  Google Scholar 

  49. Appendino G, Ligresti A, Minassi A, et al. Conformationally constrained fatty acid ethanolamides as cannabinoid and vanilloid receptor probes. J Med Chem. 2009;52:3001–9.

    Article  CAS  PubMed  Google Scholar 

  50. Godlewski G, Offertaler L, Wagner JA, Kunos G. Receptors for acylethanolamides—GPR55 and GPR119. Prostaglandins Other Lipid Mediat. 2009;89(3–4):105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansen HS, Artmann A. Endocannabinoids and nutrition. J Neuroendocrinol. 2008;20(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  52. Thabuis C, Tissot-Favre D, Bezelgues J-B, et al. Biological functions and metabolism of oleoylethanolamide. Lipids. 2008;43(10):887–94.

    Article  CAS  PubMed  Google Scholar 

  53. Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Maleki V. The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: a systematic review. Obes Rev. 2019;20(7):1057–69.

    Article  CAS  PubMed  Google Scholar 

  54. Mueller P, Driscoll WJ. Biosynthesis of oleamide. Vitam Horm. 2009;81:55–78.

    Article  CAS  PubMed  Google Scholar 

  55. Leggett JD, Beckett SRG, D’Antona AM, et al. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol. 2004;141(2):253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Federal Drug Administration. FDA completes review of qualified health claim petition for oleic acid and the risk of coronary heart disease. November 19, 2018. Available at: https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-review-qualified-health-claim-petition-oleic-acid-and-risk-coronary-heart-disease. Accessed 10 Jan 2021.

  57. Sugiura T, Kondo S, Kodaka T, et al. Enzymatic synthesis of oleamide (cis-9, 10-octadecenoamide), sleep-inducing lipid, by rat brain microsomes. Biochem Mol Biol Int. 1996;40:931–8.

    CAS  PubMed  Google Scholar 

  58. Bisogno T, Sepe N, De Petrocellis L, et al. The sleep inducing factor oleamide is produced by mouse neuroblastoma cells. Biochem Biophys Res Commun. 1997;239:473–9.

    Article  CAS  PubMed  Google Scholar 

  59. Mendelson W, Basile A. The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology. 2001;25:S36–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86(8):1646–7.

    Article  CAS  Google Scholar 

  61. Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–4.

    Article  CAS  PubMed  Google Scholar 

  62. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.

    Article  CAS  PubMed  Google Scholar 

  63. Health Canada. Information for Health Care Professionals: Cannabis (marihuana, marijuana) and the cannabinoids [Health Canada 2013]. Government of Canada. 2013. Available at: https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/information-medical-practitioners/information-health-care-professionals-cannabis-cannabinoids.html#chp62. Accessed 30 July 2018.

  64. McGeeney BE. Cannabinoids and hallucinogens for headache. Headache. 2013;53(3):447–58.

    Article  PubMed  Google Scholar 

  65. Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res. 2011;50(2):193–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kupczyk P, Reich A, Szepietowski JC. Cannabinoid system in the skin – a possible target for future therapies in dermatology. Exp Dermatol. 2009;18:669–79.

    Article  CAS  PubMed  Google Scholar 

  67. Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K, et al. Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res. 2007;1137(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chua JT, Argueta DA, DiPatrizio NV, et al. Endocannabinoid system and the kidneys: from renal physiology to injury and disease. Cannabis Cannabinoid Res. 2019;4(1):10–20. https://doi.org/10.1089/can.2018.0060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hedlund P. Cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. Neurourol Urodyn. 2013;33(1):46–53.

    Article  CAS  Google Scholar 

  70. Lotersztajn S, Teixeira-Clerc F, Julien B, et al. CB2 receptors as new therapeutic targets for liver diseases. Br J Pharmacol. 2008;153(2):286–9.

    Article  CAS  PubMed  Google Scholar 

  71. Galiègue S, Mary S, Marchand J, Dussossoy D, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232(1):54–61.

    Article  PubMed  Google Scholar 

  72. Cacciola G, Chianese R, Chioccarelli T, et al. Cannabinoids and reproduction: a lasting and intriguing history. Pharmaceuticals (Basel). 2010;3:3275–323.

    Article  CAS  Google Scholar 

  73. Rezkalla S, Kloner RA. Cardiovascular effects of marijuana. Trends Cardiovasc Med. 2019;29(7):403–7.

    Article  CAS  PubMed  Google Scholar 

  74. Park B, Gibbons HM, Mitchell MD, et al. Identification of the CB1 cannabinoid receptor and fatty acid amide hydrolase (FAAH) in the human placenta. Placenta. 2003;24(5):473–8.

    Article  CAS  PubMed  Google Scholar 

  75. Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(S1):10–4.

    Article  CAS  PubMed  Google Scholar 

  76. Gonzales S, Manzanares J, Berrendero F, et al. Identification of endocannabinoids and cannnaboid receptor mRNA in the pituitary gland. Neuroendocrin. 1999;70(2):137–45.

    Article  Google Scholar 

  77. Borowska M, Czarnywojtek A, Sawicka-Gutaj N, et al. The effects of cannabinoids on the endocrine system. Endokrynologia Polska. 2018;69(6):705–19.

    Article  CAS  PubMed  Google Scholar 

  78. Rossi F, Bellini G, Luongo L, et al. Cannabinoid Receptor 2 as Antiobesity Target: Inflammation, Fat Storage, and Browning Modulation. J Clin Endocrinol Metab. 2016;101(9):3469–78.

    Article  CAS  PubMed  Google Scholar 

  79. Rajesh M, Mukhopadhyay P, Batkai S et al. CB2-receptor stimulation attenuates TNF-α-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiolo Heart Circul Physiol. 2007; 293(4): https://doi.org/10.1152/ajpheart.00688.2007.

  80. Pacher P, Batkai S, Kunos G. The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacol Rev. 2006 Sep;58(3):389–462.

    Article  CAS  PubMed  Google Scholar 

  81. Shrestra N, Cuffe JSM, Hutchinson DS, et al. Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today. 2018;23(3):592–604.

    Article  CAS  Google Scholar 

  82. Caterina M. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci. 2014;5(11):1107–16.

    Article  CAS  PubMed  Google Scholar 

  83. Pucci M, Rapino C, Di Francesco A, et al. Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol. 2013;170:581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramot Y, Sugawara K, Zakany N, et al. A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ. Peer J. 2013;1:e40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Pesce M, d’Allessadro, Borelli O, et al. A Endocannabinoid‐related compounds in gastrointestinal diseases. J Cellular Mol med. 2018;22(2):706–15.

    Google Scholar 

  86. Onaivi ES, Ishiguro H, Gu S, Liu Q-R. CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J Psychopharmacol. 2012;26(1):92–103.

    Article  CAS  PubMed  Google Scholar 

  87. Anand U, Otto WR, Sanchez-Herrera D, et al. Cannabinoid receptor CB2 localisation and agonist-mediated inhibition of capsaicin responses in human sensory neurons. Pain. 2008;138(3):667–80.

    Article  CAS  PubMed  Google Scholar 

  88. El-Talatini MR, Taylor AH, Elson JC, et al. Localisation and function of the endocannabinoid system in the human ovary. PLoS One. 2009;4(2):e4579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bermúdez-Silva FJ, Suárez J, Baixeras E, et al. Presence of functional cannabinoid receptors in human endocrine pancreas. Diabetologia. 2008;51(3):476–87.

    Article  PubMed  CAS  Google Scholar 

  90. Ofek O, Karsak M, Leclerc N, et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. PNAS. 2006;103(3):696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pini A, Mannaioni G, Pellegrini-Giampietro D, et al. The role of cannabinoids in inflammatory modulation of allergic respiratory disorders, inflammatory pain and ischemic stroke. Curr Drug Targets. 2012;13(7):984–93.

    Article  CAS  PubMed  Google Scholar 

  92. Xu Z, Lu XA, Dai Q, et al. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and its role in metabolic defects and neuronal apoptosis after TBI. Mol Brain. 2016;9(1):75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sharkey KA, Wiley JW. The role of the endocannabinoid system in the brain-gut axis. Gastroenterology. 2016;151(2):252–66.

    Article  CAS  PubMed  Google Scholar 

  94. Fede C, Albertin G, Petrelli L, et al. Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem. 2016;60:2643.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Alfulaij N, Meiners F, Michalek, J et al. Cannabinoids, the heart of the matter. J Am Heart Assoc. 2018;7:e009099.

    Google Scholar 

  96. Mahavadi S, Sriwai W, Huang J, et al. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/ -arrestin activation of ERK1/2 and Src kinase. Am J Physiol Gastrointest Liver Physiol. 2014;306:G535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signalling. Physiol Rev. 2003;83:1017–66.

    Article  CAS  PubMed  Google Scholar 

  98. Brownjohn PW, Ashton AC. Cannabinoids and neuropathic pain. Mini Rev Med Chem. 2003. Available at: https://www.academia.edu/10078769/Cannabinoids_and_Neuropathic_Pain?email_work_card=view-paper.

  99. Gerard CM, Mollereau C, Vassart G, Parmentier M. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J. 1991;279(1):129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mechoulam R, Shohami E. Endocannabinoids and traumatic brain injury. Mol Neurobiol. 2007;36:68–74.

    Article  CAS  PubMed  Google Scholar 

  101. Shohami E, Cohen-Yeshurun A, Magid L, et al. Endocannabinoids and traumatic brain injury. Br J Pharmacol. 2011;163(7):1402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77(2):299–318.

    Article  CAS  PubMed  Google Scholar 

  103. Busquets-Garcia A, Bains J, Marsicano G. CB1 receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology. 2018;43(1):4–20.

    Article  CAS  PubMed  Google Scholar 

  104. Han J, Kesner P, Metna-Laurant M, et al. Acute cannabinoids impair working memory through astroglial CB(1) receptor modulation of hippocampal LTC. Cell. 2012;148:1039–50.

    Article  CAS  PubMed  Google Scholar 

  105. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;168:299–325.

    Article  CAS  Google Scholar 

  106. Herkenham M, Lynn AB, Little MD, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87:1932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Steindel F, Lerner R, Haring M, et al. Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. J Neurochem. 2013;124:795–807.

    Article  CAS  PubMed  Google Scholar 

  108. Hillard CJ, Liu QS. Endocannabinoid signaling in the etiology and treatment of major depressive illness. Curr Pharm Des. 2014;20:3795–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hebert-Chatelain E, Desprez T, Serrat R, et al. A cannabinoid link between mitochondria and memory. Nature. 2016;539:555–9.

    Article  CAS  PubMed  Google Scholar 

  110. Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci. 1999;11(12):4213–25.

    Article  CAS  PubMed  Google Scholar 

  111. Wamsteeker JI, Bains JS. A synaptocentric view of the neuroendocrine response to stress. Eur J Neurosci. 2010;32:2011–21.

    Article  PubMed  Google Scholar 

  112. Marsicano G, Kuner R. Anatomical distribution of receptors, ligands and enzymes in the brain and in the spinal cord: circuitries and neurochemistry. In: Kofalvi A (ed). Cannabinoids and the Brain. Springer: New York, NY, 2008;161–201.

    Google Scholar 

  113. Haring M, Mariscano G, Lutz B, Monory K. Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience. 2007;146:1212–9.

    Article  CAS  PubMed  Google Scholar 

  114. Oropeza VC, Mackie K, Bockstaele EJ. Cannabinoid receptors are localised to noradrenergic axon terminals in rat frontal cortex. Brain Res. 2007;1127:36–44.

    Article  CAS  PubMed  Google Scholar 

  115. Breivogel CS, Sim LJ, Childers SR. Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J Pharmacol Exp Ther. 1997;282:1632–42.

    CAS  PubMed  Google Scholar 

  116. Leterrier C, Laine J, Darmon M, et al. Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci. 2006;26:3141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nyiri G, Cserep C, Szabadits E, et al. CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience. 2005;136:811–22.

    Article  CAS  PubMed  Google Scholar 

  118. Howlett AC. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 2002;68-69:619–31.

    Article  CAS  PubMed  Google Scholar 

  119. Oz M. Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther. 2006;111:114–44.

    Article  CAS  PubMed  Google Scholar 

  120. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84–8.

    Article  CAS  PubMed  Google Scholar 

  121. Sagredo O, Pazos RM, Valdeolivas S, Fernández-Ruiz J. Cannabinoids: Novel medicines for the treatment of Huntington’s disease. Recent Pat CNS Drug Discov. 2012;7(1):1–8.

    Article  Google Scholar 

  122. Joy JE, Watson SJ, Benson JA (eds). Marijuana and medicine: assessing the science base. Washington (DC): National Academies Press (US); 1999.

    Google Scholar 

  123. Sim LJ, Xiao R, Selley DE, Childers SR. Differences in G-protein activation by mu- and delta-opioid, and cannabinoid, receptors in rat striatum. European Journal of Pharmacology. 1996;307:97–105.

    Article  CAS  PubMed  Google Scholar 

  124. McGeeney BE. Hallucinogens and cannabinoids for headache. Headache. 2012;52(s2):94–7.

    Article  PubMed  Google Scholar 

  125. Akerman S, Kaube H, Goadsby PJ. Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol. 2004;142:1354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suarez J, Rivera P, Rey AA, et al. Adipocyte cannabinoid CB1 receptor deficiency alleviates high fat diet-induced memory deficit, depressive-like behavior, neuroinflammation and impairment in adult neurogenesis. Psychoneuroendocrinology. 2019;110:104418.

    Google Scholar 

  127. González-Mariscal I, Krzysik-Walker S, Doyle M, et al. Human CB1 receptor isoforms, present in hepatocytes and β-cells, are involved in regulating metabolism. Sci Rep. 2016;6:33302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Patel RS, Kamil SH, Bachu R, et al. Marijuana use and acute myocardial infarction: a systematic review of published cases in the literature. Trends Cardiovasc Med. 2019;S1050-1738(19):30112–4.

    Google Scholar 

  129. Laricchiuta D, Musella A, Rossi S, Centonze D. Behavioural and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli. Front Behav Neurosci. 2014;8:183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Griffin G, Tao Q, Abood ME. Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor. J Pharmacol Exp Ther. 2000;292(3):886–94.

    CAS  PubMed  Google Scholar 

  131. Fernandez-Ruiz J, Romero J, Velasco G, et al. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci. 2006;28(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  132. Brusco A, Tagliaferro P, Saez T, Onaivi ES. Postsynaptic localization of CB2 cannabinoid receptors in the rat hippocampus. Synapse. 2008;62(12):944–9.

    Article  CAS  PubMed  Google Scholar 

  133. Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol. 2010;160:467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Svízenská I, Dubový P, Sulcová A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures-a short review. Pharmacol Biochem Behav. 2008;90(4):501–11.

    Google Scholar 

  135. Muller N, Weidinger E, Leitner B, Schwartz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ishiguro H, Horiuchi Y, Ishikawa M, et al. Brain cannabinoid CB2 receptor in schizophrenia. Biol Psychiatry. 2010;67(10):974–82.

    Article  CAS  PubMed  Google Scholar 

  137. Dietrich A, McDaniel WF. Endocannabinoids and exercise. Br J Sports Med. 2004;38(5):536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Demuth DG, Molleman A. Cannabinoid signalling. Life Sci. 2006;78(6):549–63.

    Article  CAS  PubMed  Google Scholar 

  139. Wang J, Wang Y, Tong M, et al. New prospect for cancer cachexia: medical cannabinoid. J Cancer. 2019;10(3):716–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bosier B, Muccioli GG, Hermans E, et al. Functionally selective cannabinoid receptor signalling: therapeutic implications and opportunities. Biochem Pharmacol. 2010;80:1–12.

    Article  CAS  PubMed  Google Scholar 

  141. Franco R, Casado V, Cortes A, et al. G-protein coupled receptor heteromers: function and ligand pharmacology. Br J Pharmacol. 2008;153 Suppl 1(Suppl 1):S90–8.

    Article  CAS  PubMed  Google Scholar 

  142. Saroz Y, Kho DT, Glass M, et al. Cannabinoid receptor 2 (CB2) signals via G-alpha-s and induces IL-6 and IL-10 cytokine secretion in human primary leukocytes. ACS Pharmacol Transl Sci. 2019;2:acsptsci.9b00049.

    Article  CAS  Google Scholar 

  143. Fede C, Pirri C, Petrelli L, et al. Sensitivity of the fasciae to the endocannabinoid system: production of hyaluronan-rich vesicles and potential peripheral effects of cannabinoids in fascial tissue. Int J Mol Sci. 2020;21:2936.

    Article  CAS  PubMed Central  Google Scholar 

  144. Pal US, Kumar L, Mehta G, et al. Trends in management of myofascial pain. Natl J Maxillofac Surg. 2014;5:109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 2019;78-79:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Litwiniuk M, Krejner A, Speyrer MS, et al. Hyaluronic acid in inflammation and tissue regeneration. Wounds. 2016;28:78–88.

    PubMed  Google Scholar 

  147. Cowman MK, Schmidt TA, Raghavan P, Stecco A. Viscoelastic properties of hyaluronan in physiological conditions. F1000Research. 2015;4:622.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Costa B, Comelli F, Bettoni I, et al. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPARc receptors and neurotrophic factors. Pain. 2008;139:541–50.

    Article  CAS  PubMed  Google Scholar 

  149. Di Marzo V, Bisogno T, De Petrocellis L. Anandamide: some like it hot. Trends Pharmacol Sci. 2001;22:346–9.

    Article  PubMed  Google Scholar 

  150. Caterina MJ. An introduction to transient receptor potential ion channels and their roles in disease. In: Szallasi A, editor. TRP channels as therapeutic targets. Academic Press; 2015. p. 1–12.

    Google Scholar 

  151. Fernandes ES, Fernandes MA, Keeble JA. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012;166(2):510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Iu MN. TRPV1 channel: a potential drug target for treating epilepsy. Curr Neuropharmacol. 2015;13(2):239–47.

    Article  Google Scholar 

  153. Szallasi A, Gunthorpe M. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr Pharm Des. 2008;14(1):32–41.

    Article  PubMed  Google Scholar 

  154. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6:357–72.

    Article  CAS  PubMed  Google Scholar 

  155. Kwon DH, Zhang F, Suo Y, et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat Struct Mol Biol. 2021;28(7):554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cimino Brown D, Iadarola MJ. TRPV1 agonist cytotoxicity for chronic pain relief. In: Szallasi A, editor. TRP channels as therapeutic targets. Academic Press; 2015.

    Google Scholar 

  157. Iftinca M, Defaye M, Altier C. TRPV1-targeted drugs in development for human pain conditions. Drugs. 2021;81(1):7–27.

    Article  CAS  PubMed  Google Scholar 

  158. Devinsky O, Cilio MR, Cross H, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55(6):791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tzavara ET, Li DL, Moutsinelli L, et al. Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergic-related hyperactivity: therapeutic indications. Biol Psychiatry. 2006;59(6):508–15.

    Article  CAS  PubMed  Google Scholar 

  160. Muller C, Lynch DL, Hurst DP, Reggio PH. A closer look at anandamide interaction with TRPV1. Front Mol Biosci. 2020;7:144. https://doi.org/10.3389/fmolb.2020.00144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140:790–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Michalik L, Wahli W. Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta. 2007;1771(8):991–8.

    Article  CAS  PubMed  Google Scholar 

  163. Youssef J, Badr M. Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol. 2004;2004(3):156–66.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cherif H, Argaw A, Cecyre B, et al. Role of GPR55 during axon growth and target innervation. eNeuro. 2015;2(5):ENEURO.0011-15.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ryberg E, Larsson N, Sjögren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cheung KAA, Peiris H, Wallace G, et al. The Interplay between the Endocannabinoid System. Epilepsy and Cannabinoids. Int J Mol Sci. 2019;20:6079.

    Article  CAS  Google Scholar 

  167. Kaplan JS. What is the GPR55 receptor and why is it so important in CBD’s benefits? Leafly, April 2018. Available at: https://www.leafly.com/news/science-tech/health-benefits-cbd-on-g-protein-coupled-receptor-55. Accessed 14 Jan 2020.

  168. Hasenoehrl C, Feuersinger D, Sturm EM, et al. G protein-coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. Int J Cancer. 2018;142(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  169. Stancic A, Jandl K, Hasenohrl E, et al. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27(10):1432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Staton PC, Hatcher JP, Walker DJ, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain. 2008;139(1):225–36.

    Article  CAS  PubMed  Google Scholar 

  171. Zhou Y, Wang S, Lou H, Fan P. Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochem Lett. 2018;23:57–61.

    Article  CAS  Google Scholar 

  172. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. PNAS. 2017;114(42):11229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fride E, Gobshtis N, Dahan N, et al. The endocannabinoid system during development: emphasis on perinatal events and delayed effects. Vitam Horm. 2009;81:139–58.

    Article  CAS  PubMed  Google Scholar 

  174. Taylor AH, Ang C, Bell SC, Konje JC. The role of the endocannabinoid system in gametogenesis, implantation and early pregnancy. Hum Reprod Update. 2007;13(5):501–13.

    Article  CAS  PubMed  Google Scholar 

  175. Dow-Edwards D, Silva L. Endocannabinoids in brain plasticity: cortical maturation, HPA axis function and behaviour. Brain Res. 2017;1654:157–64.

    Article  CAS  PubMed  Google Scholar 

  176. Gaffuri AL, Ladarre D, Lenkei Z. Type-1 cannabinoid receptor signaling in neuronal development. Pharmacology. 2012;90:19–39.

    Article  CAS  PubMed  Google Scholar 

  177. Vitalis T, Laine J, Simon A, et al. The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro. Eur J Neurosci. 2008;28:1705–18.

    Article  PubMed  Google Scholar 

  178. Guy AT, Nagatsuka Y, Ooashi N, et al. Glycerophospholipid regulation of modality-specific sensory axon guidance I the spinal cord. Science. 2015;349(6251):974–7.

    Article  CAS  PubMed  Google Scholar 

  179. Dahl RE, Scher MS, Williamson DE, et al. A longitudinal study of prenatal marijuana use: effects on sleep and arousal at age 3 years. Arch Pediatr Adolesc Med. 1995;149(2):145–50. https://doi.org/10.1001/archpedi.1995.02170140027004.

    Article  CAS  PubMed  Google Scholar 

  180. Winiger EA, Hewitt JK. Prenatal cannabis exposure and sleep outcomes in children 9-10 years of age in the adolescent brain cognitive development SM study. Sleep Health. 2020;6(6):787–9. https://doi.org/10.1016/j.sleh.2020.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Corsi DJ, Donelle J, Sucha E, et al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat Med. 2020;26(10):1536–40. https://doi.org/10.1038/s41591-020-1002-5.

    Article  CAS  PubMed  Google Scholar 

  182. Hayes JS, Lampart R, Dreher MC, Morgan L. Five year follow up of rural Jamaican children whose mothers used marijuana during pregnancy. West Indian Med J. 1991;40(3):120–3.

    CAS  PubMed  Google Scholar 

  183. Heng L, Beverley JA, Steiner H, Tseng KY. Differential development trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse. 2011;65:278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Long LE, Lind J, Webster M, Weickert CS. Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci. 2012;13:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004;25(1–2):31–9.

    CAS  PubMed  Google Scholar 

  186. Russo E. Clinical endocannabinoid deficiency reconsidered: current research supports the theory in migraine, fibromyalgia, irritable bowel, and other treatment-resistant syndromes. Cannabis Cannabinoid Res. 2016;1(1):154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sierra S, Luquin N, Navarro-Otan J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res. 2018;28:35–52.

    Article  PubMed  Google Scholar 

  188. Russo E. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2008;29(2):192–200.

    PubMed  Google Scholar 

  189. Del Rio C, Milland E, Garccia V, et al. Endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol. 2018;157:122–33.

    Article  CAS  PubMed  Google Scholar 

  190. Di Marzo V, Piscitelli F, Mechoulam R. Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. Handb Exp Pharmacol. 2011;203:75–104.

    Article  CAS  Google Scholar 

  191. Cooper RE, Williams E, Seegobin S, et al. Cannabinoids in attention-deficit/hyperactivity disorder: A randomised-controlled trial. Eur Neuropsychopharmacol. 2017;27(8):795–808.

    Article  CAS  PubMed  Google Scholar 

  192. Norrod AG, Puffernbarger RA. Genetic polymorphisms of the endocannabinoid system. Chem Biodivers. 2007;4:1926–32.

    Article  CAS  PubMed  Google Scholar 

  193. Boorman E, Zajkowska Z, Ahmed R, et al. Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology. 2016;233(9):1591–604.

    Article  CAS  PubMed  Google Scholar 

  194. Hill MN, Gorzalka BB. Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol. 2005;16(5–6):333–52.

    Article  CAS  PubMed  Google Scholar 

  195. Bluett RJ, Gamble-George JC, Hermanson DJ, et al. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation. Transl Psychiatry. 2014;4:e408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Giuffrida A, Leweke F, Gerth C, et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology. 2004;29:2108–14.

    Article  CAS  PubMed  Google Scholar 

  197. McNamara RK, Hahn C-G, Jandacek R, et al. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry. 2007;62:17–24.

    Article  CAS  PubMed  Google Scholar 

  198. Larrieu T, Laye S. Food for mood: relevance of nutritional omega-3 fatty acids for depression and anxiety. Front Physiol. 2018;9:1047.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Larrieu T, Hilal ML, Fourrier C, et al. Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion. Transl Psychiatry. 2014;4:e437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hibbeln JR. Fish consumption and major depression. Lancet. 1998;351:1213.

    Article  CAS  PubMed  Google Scholar 

  201. Green P, Hermesh H, Monselise A, et al. Red cell membrane omega-3 fatty acids are decreased in nondepressed patients with social anxiety disorder. Eur Neuropsychopharmacol. 2006;16:107–13.

    Article  CAS  PubMed  Google Scholar 

  202. McNamara RK, Liu Y. Reduced expression of fatty acid biosynthesis genes in the prefrontal cortex of patients with major depressive disorder. J Affect Disord. 2011;129:359–63.

    Article  CAS  PubMed  Google Scholar 

  203. Parletta N, Zarnowiecki D, Cho J, et al. People with schizophrenia and depression have a low omega-3 index. Prostaglandins Leukot Essent Fatty Acids. 2016;110:42–7.

    Article  CAS  PubMed  Google Scholar 

  204. Thesing CS, Bota M, Milaneschia Y, et al. Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology. 2018;87:53–62.

    Article  CAS  PubMed  Google Scholar 

  205. Lin P-Y, Huang S-Y, Su K-P. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry. 2010;68:140–7.

    Article  CAS  PubMed  Google Scholar 

  206. McNamara R, Jandacek R, Rider T, et al. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 2008;160:285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. McNamara RK, Jandacek R, Tso P, et al. Lower docosahexaenoic acid concentrations in the postmortem prefrontal cortex of adult depressed suicide victims compared with controls without cardiovascular disease. J Psychiatr Res. 2013;47:1187–91.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bondi CO, Taha AY, Tock JL, et al. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol Psychiatry. 2014;75:38–46.

    Article  CAS  PubMed  Google Scholar 

  209. Lafourcade M, Larrieu T, Mato S, et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci. 2011;14(3):345–50.

    Article  CAS  PubMed  Google Scholar 

  210. Larrieu T, Madore C, Joffre C, Lay S. Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. J Physiol Biochem. 2012;68:671–81.

    Article  CAS  PubMed  Google Scholar 

  211. Larrieu T, Hilal ML, Desmedt-peyrusse V, et al. Nutritional omega-3 deficiency alters glucocorticoid receptor-signaling pathway and neuronal morphology in regionally distinct brain structures associated with emotional deficits. Neural Plast. 2016;2016:8574830.

    Article  PubMed  CAS  Google Scholar 

  212. Bourre JM. Dietary omega-3 fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging. J Nutr Health Aging. 2005;9:31–8.

    CAS  PubMed  Google Scholar 

  213. Thomazeua A, Bosch-Bouju C, Manzoni O, Laye S. Nutritional n-3 PUFA deficiency abolishes endocannabinoid gating of hippocampal long-term potentiation. Cereb Cortex. 2016;27(4):2571–9.

    Google Scholar 

  214. Kang JX, Gleason ED. Omega-3 fatty acids and hippocampal neurogenesis in depression. CNS Neurol Disord Drug Targets. 2013;12(4):460–5.

    Article  CAS  PubMed  Google Scholar 

  215. Simopoulos AP. The importance of the ratio of omega 6/omega 3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.

    Article  CAS  PubMed  Google Scholar 

  216. Simopoulos AP. Evolutionary aspects of diet: the omega 6/omega 3 ratio and the brain. Mol Neurobiol. 2011;44:203.

    Article  CAS  PubMed  Google Scholar 

  217. Wilkinson D. Can food be medicine against cancer? A healthy handbook that combines science, medicine and not-so-common sense. Australia: Inspiring Publishers; 2015.

    Google Scholar 

  218. Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr. 1991;54:438–63.

    Article  CAS  PubMed  Google Scholar 

  219. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.

    Article  CAS  PubMed  Google Scholar 

  220. Leizer C, Ribnicky D, Poulev A, et al. The composition of hemp seed oil and its potential as an important source of nutrition. J Nutraceuticals Funct Med Foods. 2000;2:35–53.

    Article  Google Scholar 

  221. Rodriguez-Leyva D, Pierce GN. The cardiac and haemostatic effects of dietary hempseed. Nutr Metab. 2010;7:32.

    Article  CAS  Google Scholar 

  222. Russo R, Reggiani R. Variability in anti-nutritional compounds in hempseed meal of Italian and French varieties. Plant. 2013;1:25–9.

    Article  Google Scholar 

  223. Crescente G, Piccolella S, Esposito A, et al. Chemical composition and nutraceutical properties of hempseed: an ancient food with actual functional value. Phytochem Rev. 2018;17:733–49.

    Article  CAS  Google Scholar 

  224. Welch AA, Shakya-Shrestha S, Lentjes MAH, et al. 2010. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of α-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr. 2010;92(5):1040–51.

    Article  CAS  PubMed  Google Scholar 

  225. Aran A, Eylon M, Harel M et al. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Molecular Autism 2019a;10:2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Brien, K., Blair, P. (2021). Endocannabinoid System. In: Medicinal Cannabis and CBD in Mental Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-030-78559-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78559-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78558-1

  • Online ISBN: 978-3-030-78559-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics