ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVAccelerated ArticleNEXT

Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators:  Diaminofluoresceins

View Author Information
Graduate School of Pharmaceutical Sciences and Second Department of Internal Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Cite this: Anal. Chem. 1998, 70, 13, 2446–2453
Publication Date (Web):May 28, 1998
https://doi.org/10.1021/ac9801723
Copyright © 1998 American Chemical Society

    Article Views

    10874

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Nitric oxide is a gaseous, free radical which plays a role as an intracellular second messenger and a diffusable intercellular messenger. To obtain direct evidence for NO functions in vivo, we have designed and synthesized diaminofluoresceins (DAFs) as novel fluorescent indicators for NO. The fluorescent chemical transformation of DAFs is based on the reactivity of the aromatic vicinal diamines with NO in the presence of dioxygen. The N-nitrosation of DAFs, yielding the highly green-fluorescent triazole form, offers the advantages of specificity, sensitivity, and a simple protocol for the direct detection of NO (detection limit 5 nM). The fluorescence quantum efficiencies are increased more than 100 times after the transformation of DAFs by NO. Fluorescence detection with visible light excitation and high sensitivity enabled the practical assay of NO production in living cells. Membrane-permeable DAF-2 diacetate (DAF-2 DA) can be used for real-time bioimaging of NO with fine temporal and spatial resolution. The dye was loaded into activated rat aortic smooth muscle cells, where the ester bonds are hydrolyzed by intracellular esterase, generating DAF-2. The fluorescence in the cells increased in a NO concentration-dependent manner.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Graduate School of Pharmaceutical Sciences.

     Second Department of Internal Medicine.

    *

     Corresponding author:  (e-mail) [email protected]; (fax) 81-3-5684-2395.

    Cited By

    This article is cited by 1123 publications.

    1. Masafumi Minoshima, Shahi Imam Reja, Ryu Hashimoto, Kohei Iijima, Kazuya Kikuchi. Hybrid Small-Molecule/Protein Fluorescent Probes. Chemical Reviews 2024, Article ASAP.
    2. Subrata Munan, Abir Mondal, Singh Shailja, Soumya Pati, Animesh Samanta. Unique Synthetic Strategy for Probing in Situ Lysosomal NO for Screening Neuroinflammatory Phenotypes against SARS-CoV-2 RNA in Phagocytotic Microglia. Analytical Chemistry 2024, Article ASAP.
    3. Suritra Bandyopadhyay, Zhenxiang Zhao, Amanda K. East, Rodrigo Tapia Hernandez, Joseph A. Forzano, Benjamin A. Shapiro, Anuj K. Yadav, Chelsea B. Swartchick, Jefferson Chan. Activity-Based Nitric Oxide-Responsive Porphyrin for Site-Selective and Nascent Cancer Ablation. ACS Applied Materials & Interfaces 2024, 16 (8) , 9680-9689. https://doi.org/10.1021/acsami.3c15604
    4. Hanieh Mardani, Sana Mehrbakhsh, Sina Sheikhzadegan, Milad Babazadeh-Mamaqani, Hossein Roghani-Mamaqani. Colloidal Polymer Nanoparticles as Smart Inks for Authentication and Indication of Latent Fingerprints and Scratch. ACS Applied Materials & Interfaces 2024, 16 (1) , 1605-1615. https://doi.org/10.1021/acsami.3c16574
    5. Yinghua Guo, Lei Yin, Xuhong Qian, Youjun Yang, Xiao Luo. PET/d-PET (PdP) Pairing for the Design of Dual-Channel Probes. Analytical Chemistry 2023, 95 (25) , 9722-9728. https://doi.org/10.1021/acs.analchem.3c02054
    6. Kenjiro Hanaoka, Shimpei Iwaki, Kiyoshi Yagi, Takuya Myochin, Takayuki Ikeno, Hisashi Ohno, Eita Sasaki, Toru Komatsu, Tasuku Ueno, Motokazu Uchigashima, Takayasu Mikuni, Kazuki Tainaka, Shinya Tahara, Satoshi Takeuchi, Tahei Tahara, Masanobu Uchiyama, Tetsuo Nagano, Yasuteru Urano. General Design Strategy to Precisely Control the Emission of Fluorophores via a Twisted Intramolecular Charge Transfer (TICT) Process. Journal of the American Chemical Society 2022, 144 (43) , 19778-19790. https://doi.org/10.1021/jacs.2c06397
    7. Jack T. McCann, Brittany R. Benlian, Susanna K. Yaeger-Weiss, Isaac J. Knudson, Minyi He, Evan W. Miller. Flipping the Switch: Reverse-Demand Voltage-Sensitive Fluorophores. Journal of the American Chemical Society 2022, 144 (29) , 13050-13054. https://doi.org/10.1021/jacs.2c05385
    8. Quanyi Liu, Sheng Zhao, Yihong Zhang, Xueying An, Quan Wang, Sirong Li, Anqi Lin, Yan Du, Hui Wei. Biochar Nanozyme from Silkworm Excrement for Scavenging Vapor-Phase Free Radicals in Cigarette Smoke. ACS Applied Bio Materials 2022, 5 (5) , 1831-1838. https://doi.org/10.1021/acsabm.1c01080
    9. Chuanchen Wu, Yuantao Mao, Xin Wang, Ping Li, Bo Tang. Deep-Tissue Fluorescence Imaging Study of Reactive Oxygen Species in a Tumor Microenvironment. Analytical Chemistry 2022, 94 (1) , 165-176. https://doi.org/10.1021/acs.analchem.1c03104
    10. Zihnil A. I. Mazrad, Baptiste Schelle, Joseph A. Nicolazzo, Meike N. Leiske, Kristian Kempe. Nitrile-Functionalized Poly(2-oxazoline)s as a Versatile Platform for the Development of Polymer Therapeutics. Biomacromolecules 2021, 22 (11) , 4618-4632. https://doi.org/10.1021/acs.biomac.1c00923
    11. Soumya Paul, Swagata Pan, Arindam Mukherjee, Priyadarsi De. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Molecular Pharmaceutics 2021, 18 (9) , 3181-3205. https://doi.org/10.1021/acs.molpharmaceut.1c00486
    12. Fei Huang, Yuhao Li, Jinliang Liu, Jing Zhang, Xiang Wang, Bing Li, Haizhou Chang, Yuqing Miao, Yun Sun. Intraperitoneal Injection of Cyanine-Based Nanomicelles for Enhanced Near-Infrared Fluorescence Imaging and Surgical Navigation in Abdominal Tumors. ACS Applied Bio Materials 2021, 4 (7) , 5695-5706. https://doi.org/10.1021/acsabm.1c00444
    13. Jian Sun, Xuetong Cai, Chengjun Wang, Ke Du, Weijian Chen, Fude Feng, Shu Wang. Cascade Reactions by Nitric Oxide and Hydrogen Radical for Anti-Hypoxia Photodynamic Therapy Using an Activatable Photosensitizer. Journal of the American Chemical Society 2021, 143 (2) , 868-878. https://doi.org/10.1021/jacs.0c10517
    14. Yamuna Krishnan, Junyi Zou, Maulik S. Jani. Quantitative Imaging of Biochemistry in Situ and at the Nanoscale. ACS Central Science 2020, 6 (11) , 1938-1954. https://doi.org/10.1021/acscentsci.0c01076
    15. Johannes Morstein, Denis Höfler, Kohei Ueno, Jonah W. Jurss, Ryan R. Walvoord, Kevin J. Bruemmer, Samir P. Rezgui, Thomas F. Brewer, Minoru Saitoe, Brian W. Michel, Christopher J. Chang. Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection. Journal of the American Chemical Society 2020, 142 (37) , 15917-15930. https://doi.org/10.1021/jacs.0c06405
    16. Tongliang Zhou, Junda Wang, Jiamin Xu, Cangxin Zheng, Yan Niu, Chao Wang, Fengrong Xu, Lan Yuan, Xin Zhao, Lei Liang, Ping Xu. A Smart Fluorescent Probe for NO Detection and Application in Myocardial Fibrosis Imaging. Analytical Chemistry 2020, 92 (7) , 5064-5072. https://doi.org/10.1021/acs.analchem.9b05435
    17. Ying Dong, Xiao-Rong Li, Qi Chen, Rui-Ying Guo, Bi-Xi Tang, Wei-Juan Kan, Wei Zhang, Yongzhou Hu, Jia Li, Yi Zang, Xin Li. Microenvironment-Responsive Small-Molecule Probe for Pulmonary Fibrosis Detection. Analytical Chemistry 2020, 92 (1) , 699-706. https://doi.org/10.1021/acs.analchem.9b02264
    18. Xiao-Xiao Chen, Li-Ya Niu, Na Shao, Qing-Zheng Yang. BODIPY-Based Fluorescent Probe for Dual-Channel Detection of Nitric Oxide and Glutathione: Visualization of Cross-Talk in Living Cells. Analytical Chemistry 2019, 91 (7) , 4301-4306. https://doi.org/10.1021/acs.analchem.9b00169
    19. Yuki Nishikawa, Takayuki Miki, Masashi Awa, Keiko Kuwata, Tomonori Tamura, Itaru Hamachi. Development of a Nitric Oxide-Responsive Labeling Reagent for Proteome Analysis of Live Cells. ACS Chemical Biology 2019, 14 (3) , 397-404. https://doi.org/10.1021/acschembio.8b01021
    20. Hailey J. Knox, Jefferson Chan. Acoustogenic Probes: A New Frontier in Photoacoustic Imaging. Accounts of Chemical Research 2018, 51 (11) , 2897-2905. https://doi.org/10.1021/acs.accounts.8b00351
    21. Kamalpreet Singh, Adrian M. Rotaru, Andrew A. Beharry. Fluorescent Chemosensors as Future Tools for Cancer Biology. ACS Chemical Biology 2018, 13 (7) , 1785-1798. https://doi.org/10.1021/acschembio.8b00014
    22. Ranran Cheng, Fanpeng Kong, Lili Tong, Xiaojun Liu, Kehua Xu, Bo Tang. Simultaneous Detection of Mitochondrial Hydrogen Selenide and Superoxide Anion in HepG2 Cells under Hypoxic Conditions. Analytical Chemistry 2018, 90 (13) , 8116-8122. https://doi.org/10.1021/acs.analchem.8b01345
    23. Bo Hu, Ranran Cheng, Xiaonan Gao, Xiaohong Pan, Fanpeng Kong, Xiaojun Liu, Kehua Xu, Bo Tang. Targetable Mesoporous Silica Nanoprobes for Mapping the Subcellular Distribution of H2Se in Cancer Cells. ACS Applied Materials & Interfaces 2018, 10 (20) , 17345-17351. https://doi.org/10.1021/acsami.8b02206
    24. Xiaodong Tian, Xinda Liu, Anni Wang, Choiwan Lau, Jianzhong Lu. Bioluminescence Imaging of Carbon Monoxide in Living Cells and Nude Mice Based on Pd0-Mediated Tsuji–Trost Reaction. Analytical Chemistry 2018, 90 (9) , 5951-5958. https://doi.org/10.1021/acs.analchem.8b01102
    25. Jonathan S. Rink, Wangqiang Sun, Sol Misener, Jiao-Jing Wang, Zheng Jenny Zhang, Melina R. Kibbe, Vinayak P. Dravid, Subbu Venkatraman, and C. Shad Thaxton . Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nanotherapy for Vascular Diseases. ACS Applied Materials & Interfaces 2018, 10 (8) , 6904-6916. https://doi.org/10.1021/acsami.7b18525
    26. Sandip V. Mulay, Youngsam Kim, Minsuk Choi, Dong Yun Lee, Jonghoon Choi, Yunho Lee, Sangyong Jon, and David G. Churchill . Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems. Analytical Chemistry 2018, 90 (4) , 2648-2654. https://doi.org/10.1021/acs.analchem.7b04375
    27. Christopher J. Reinhardt, Effie Y. Zhou, Michael D. Jorgensen, Gina Partipilo, and Jefferson Chan . A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide. Journal of the American Chemical Society 2018, 140 (3) , 1011-1018. https://doi.org/10.1021/jacs.7b10783
    28. Chun-Guang Dai, Ji-Long Wang, Ying-Long Fu, Hong-Ping Zhou, and Qin-Hua Song . Selective and Real-Time Detection of Nitric Oxide by a Two-Photon Fluorescent Probe in Live Cells and Tissue Slices. Analytical Chemistry 2017, 89 (19) , 10511-10519. https://doi.org/10.1021/acs.analchem.7b02680
    29. Zhiqiang Mao, Hong Jiang, Xinjian Song, Wei Hu, and Zhihong Liu . Development of a Silicon-Rhodamine Based Near-Infrared Emissive Two-Photon Fluorescent Probe for Nitric Oxide. Analytical Chemistry 2017, 89 (18) , 9620-9624. https://doi.org/10.1021/acs.analchem.7b02697
    30. Sagarika Bhattacharya, Rhitajit Sarkar, Biswarup Chakraborty, Angel Porgador, and Raz Jelinek . Nitric Oxide Sensing through Azo-Dye Formation on Carbon Dots. ACS Sensors 2017, 2 (8) , 1215-1224. https://doi.org/10.1021/acssensors.7b00356
    31. Pan Jin, Christian Wiraja, Jinmin Zhao, Jinlu Zhang, Li Zheng, and Chenjie Xu . Nitric Oxide Nanosensors for Predicting the Development of Osteoarthritis in Rat Model. ACS Applied Materials & Interfaces 2017, 9 (30) , 25128-25137. https://doi.org/10.1021/acsami.7b06404
    32. Qi Zhang, Lei Lei, and Shiping Zhu . Gas-Responsive Polymers. ACS Macro Letters 2017, 6 (5) , 515-522. https://doi.org/10.1021/acsmacrolett.7b00245
    33. Hui-Wen Yao, Xiao-Yan Zhu, Xiao-Feng Guo, and Hong Wang . An Amphiphilic Fluorescent Probe Designed for Extracellular Visualization of Nitric Oxide Released from Living Cells. Analytical Chemistry 2016, 88 (18) , 9014-9021. https://doi.org/10.1021/acs.analchem.6b01532
    34. Felix-A. Litty, Julia Gudd, Ulrich Girreser, Bernd Clement, and Dennis Schade . Design, Synthesis, and Bioactivation of O-Glycosylated Prodrugs of the Natural Nitric Oxide Precursor Nω-Hydroxy-l-arginine. Journal of Medicinal Chemistry 2016, 59 (17) , 8030-8041. https://doi.org/10.1021/acs.jmedchem.6b00810
    35. Chao Wang, Xinbo Song, Zhuo Han, Xiaoyu Li, Yongping Xu, and Yi Xiao . Monitoring Nitric Oxide in Subcellular Compartments by Hybrid Probe Based on Rhodamine Spirolactam and SNAP-tag. ACS Chemical Biology 2016, 11 (7) , 2033-2040. https://doi.org/10.1021/acschembio.5b01032
    36. Jinming Hu, Michael R. Whittaker, John F. Quinn, and Thomas P. Davis . Nitric Oxide (NO) Endows Arylamine-Containing Block Copolymers with Unique Photoresponsive and Switchable LCST Properties. Macromolecules 2016, 49 (7) , 2741-2749. https://doi.org/10.1021/acs.macromol.6b00054
    37. Sul Hwa Yu, Jinming Hu, Francesca Ercole, Nghia P. Truong, Thomas P. Davis, Michael R. Whittaker, and John F. Quinn . Transformation of RAFT Polymer End Groups into Nitric Oxide Donor Moieties: En Route to Biochemically Active Nanostructures. ACS Macro Letters 2015, 4 (11) , 1278-1282. https://doi.org/10.1021/acsmacrolett.5b00733
    38. Kazuhisa Hirabayashi, Kenjiro Hanaoka, Toshio Takayanagi, Yuko Toki, Takahiro Egawa, Mako Kamiya, Toru Komatsu, Tasuku Ueno, Takuya Terai, Kengo Yoshida, Masanobu Uchiyama, Tetsuo Nagano, and Yasuteru Urano . Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein and Its Application to Develop a Scaffold for Red Fluorescent Probes. Analytical Chemistry 2015, 87 (17) , 9061-9069. https://doi.org/10.1021/acs.analchem.5b02331
    39. Xin Zhou, Songyi Lee, Zhaochao Xu, and Juyoung Yoon . Recent Progress on the Development of Chemosensors for Gases. Chemical Reviews 2015, 115 (15) , 7944-8000. https://doi.org/10.1021/cr500567r
    40. Jinming Hu, Michael R. Whittaker, Sul Hwa Yu, John F. Quinn, and Thomas P. Davis . Nitric Oxide (NO) Cleavable Biomimetic Thermoresponsive Double Hydrophilic Diblock Copolymer with Tunable LCST. Macromolecules 2015, 48 (12) , 3817-3824. https://doi.org/10.1021/acs.macromol.5b00996
    41. Peyton Shieh, Vivian T. Dien, Brendan J. Beahm, Joseph M. Castellano, Tony Wyss-Coray, and Carolyn R. Bertozzi . CalFluors: A Universal Motif for Fluorogenic Azide Probes across the Visible Spectrum. Journal of the American Chemical Society 2015, 137 (22) , 7145-7151. https://doi.org/10.1021/jacs.5b02383
    42. Zi-Xing Zhang, Xiao-Feng Guo, Hong Wang, and Hua-Shan Zhang . Capillary Electrophoresis Strategy to Monitor the Released and Remaining Nitric Oxide from the Same Single Cell Using a Specially Designed Water-Soluble Fluorescent Probe. Analytical Chemistry 2015, 87 (7) , 3989-3995. https://doi.org/10.1021/acs.analchem.5b00191
    43. Hideo Takakura, Ryosuke Kojima, Mako Kamiya, Eiji Kobayashi, Toru Komatsu, Tasuku Ueno, Takuya Terai, Kenjiro Hanaoka, Tetsuo Nagano, and Yasuteru Urano . New Class of Bioluminogenic Probe Based on Bioluminescent Enzyme-Induced Electron Transfer: BioLeT. Journal of the American Chemical Society 2015, 137 (12) , 4010-4013. https://doi.org/10.1021/ja511014w
    44. Clifford R. Woodford, E. Paxon Frady, Richard S. Smith, Benjamin Morey, Gabriele Canzi, Sakina F. Palida, Ricardo C. Araneda, William B. Kristan, Jr., Clifford P. Kubiak, Evan W. Miller, and Roger Y. Tsien . Improved PeT Molecules for Optically Sensing Voltage in Neurons. Journal of the American Chemical Society 2015, 137 (5) , 1817-1824. https://doi.org/10.1021/ja510602z
    45. Jialin Li, Jiale Xie, Lixia Gao, and Chang Ming Li . Au Nanoparticles–3D Graphene Hydrogel Nanocomposite To Boost Synergistically in Situ Detection Sensitivity toward Cell-Released Nitric Oxide. ACS Applied Materials & Interfaces 2015, 7 (4) , 2726-2734. https://doi.org/10.1021/am5077777
    46. Luisa B. Maia, Vânia Pereira, Lurdes Mira, and José J. G. Moura . Nitrite Reductase Activity of Rat and Human Xanthine Oxidase, Xanthine Dehydrogenase, and Aldehyde Oxidase: Evaluation of Their Contribution to NO Formation in Vivo. Biochemistry 2015, 54 (3) , 685-710. https://doi.org/10.1021/bi500987w
    47. John E. Pearl . Free Radicals in Mycobacterial Disease. 2015, 503-539. https://doi.org/10.1021/bk-2015-1200.ch020
    48. Yuan-Qiang Sun, Jing Liu, Hongxing Zhang, Yingying Huo, Xin Lv, Yawei Shi, and Wei Guo . A Mitochondria-Targetable Fluorescent Probe for Dual-Channel NO Imaging Assisted by Intracellular Cysteine and Glutathione. Journal of the American Chemical Society 2014, 136 (36) , 12520-12523. https://doi.org/10.1021/ja504156a
    49. Tao Peng, Nai-Kei Wong, Xingmiao Chen, Yee-Kwan Chan, Derek Hoi-Hang Ho, Zhenning Sun, Jun Jacob Hu, Jiangang Shen, Hani El-Nezami, and Dan Yang . Molecular Imaging of Peroxynitrite with HKGreen-4 in Live Cells and Tissues. Journal of the American Chemical Society 2014, 136 (33) , 11728-11734. https://doi.org/10.1021/ja504624q
    50. Luisa B. Maia and José J. G. Moura . How Biology Handles Nitrite. Chemical Reviews 2014, 114 (10) , 5273-5357. https://doi.org/10.1021/cr400518y
    51. Bin Mu, Jingqing Zhang, Thomas P. McNicholas, Nigel F. Reuel, Sebastian Kruss, and Michael S. Strano . Recent Advances in Molecular Recognition Based on Nanoengineered Platforms. Accounts of Chemical Research 2014, 47 (4) , 979-988. https://doi.org/10.1021/ar400162w
    52. Hui-Xian Zhang, Jian-Bo Chen, Xiao-Feng Guo, Hong Wang, and Hua-Shan Zhang . Highly Sensitive Low-Background Fluorescent Probes for Imaging of Nitric Oxide in Cells and Tissues. Analytical Chemistry 2014, 86 (6) , 3115-3123. https://doi.org/10.1021/ac4041718
    53. Xiaohua Li, Xinghui Gao, Wen Shi, and Huimin Ma . Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chemical Reviews 2014, 114 (1) , 590-659. https://doi.org/10.1021/cr300508p
    54. Xiaohu Dong, Cheol Ho Heo, Shiyu Chen, Hwan Myung Kim, and Zhihong Liu . Quinoline-Based Two-Photon Fluorescent Probe for Nitric Oxide in Live Cells and Tissues. Analytical Chemistry 2014, 86 (1) , 308-311. https://doi.org/10.1021/ac403226h
    55. Debashree Basudhar, Gaurav Bharadwaj, Robert Y. Cheng, Sarthak Jain, Sa Shi, Julie L. Heinecke, Ryan J. Holland, Lisa A. Ridnour, Viviane M. Caceres, Regina C. Spadari-Bratfisch, Nazareno Paolocci, Carlos A. Velázquez-Martínez, David A. Wink, and Katrina M. Miranda . Synthesis and Chemical and Biological Comparison of Nitroxyl- and Nitric Oxide-Releasing Diazeniumdiolate-Based Aspirin Derivatives. Journal of Medicinal Chemistry 2013, 56 (20) , 7804-7820. https://doi.org/10.1021/jm400196q
    56. Tina Wang, Eugene F. Douglass, Jr., Kelly J. Fitzgerald, and David A. Spiegel . A “Turn-On” Fluorescent Sensor for Methylglyoxal. Journal of the American Chemical Society 2013, 135 (33) , 12429-12433. https://doi.org/10.1021/ja406077j
    57. Haibo Yu, Xinfu Zhang, Yi Xiao, Wei Zou, Liping Wang, and Liji Jin . Targetable Fluorescent Probe for Monitoring Exogenous and Endogenous NO in Mitochondria of Living Cells. Analytical Chemistry 2013, 85 (15) , 7076-7084. https://doi.org/10.1021/ac401916z
    58. Giri K. Vegesna, Srinivas R. Sripathi, Jingtuo Zhang, Shilei Zhu, Weilue He, Fen-Tair Luo, Wan Jin Jahng, Megan Frost, and Haiying Liu . Highly Water-Soluble BODIPY-Based Fluorescent Probe for Sensitive and Selective Detection of Nitric Oxide in Living Cells. ACS Applied Materials & Interfaces 2013, 5 (10) , 4107-4112. https://doi.org/10.1021/am303247s
    59. Yan Yan, Saarangan Krishnakumar, Huan Yu, Srinivas Ramishetti, Lih-Wen Deng, Suhua Wang, Leaf Huang, and Dejian Huang . Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide. Journal of the American Chemical Society 2013, 135 (14) , 5312-5315. https://doi.org/10.1021/ja401555y
    60. Liming Yang, Dagang Tian, Christopher D. Todd, Yuming Luo, and Xiangyang Hu . Comparative Proteome Analyses Reveal that Nitric Oxide Is an Important Signal Molecule in the Response of Rice to Aluminum Toxicity. Journal of Proteome Research 2013, 12 (3) , 1316-1330. https://doi.org/10.1021/pr300971n
    61. Selda Sen, Fatih Sen, Ardemis A. Boghossian, Jingqing Zhang, and Michael S. Strano . Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2013, 117 (1) , 593-602. https://doi.org/10.1021/jp307175f
    62. Yuming Yang, Qiang Zhao, Wei Feng, and Fuyou Li . Luminescent Chemodosimeters for Bioimaging. Chemical Reviews 2013, 113 (1) , 192-270. https://doi.org/10.1021/cr2004103
    63. Quanjuan Zhang, Zhichuan Zhu, Yongli Zheng, Jiagao Cheng, Na Zhang, Yi-Tao Long, Jing Zheng, Xuhong Qian, and Youjun Yang . A Three-Channel Fluorescent Probe That Distinguishes Peroxynitrite from Hypochlorite. Journal of the American Chemical Society 2012, 134 (45) , 18479-18482. https://doi.org/10.1021/ja305046u
    64. Haibo Yu, Yi Xiao, and Liji Jin . A Lysosome-Targetable and Two-Photon Fluorescent Probe for Monitoring Endogenous and Exogenous Nitric Oxide in Living Cells. Journal of the American Chemical Society 2012, 134 (42) , 17486-17489. https://doi.org/10.1021/ja308967u
    65. Brian W. Michel, Alexander R. Lippert, and Christopher J. Chang . A Reaction-Based Fluorescent Probe for Selective Imaging of Carbon Monoxide in Living Cells Using a Palladium-Mediated Carbonylation. Journal of the American Chemical Society 2012, 134 (38) , 15668-15671. https://doi.org/10.1021/ja307017b
    66. Tsun-Wei Shiue, Yen-Hao Chen, Chi-Ming Wu, Gyan Singh, Hsing-Yin Chen, Chen-Hsiung Hung, Wen-Feng Liaw, and Yun-Ming Wang . Nitric Oxide Turn-on Fluorescent Probe Based on Deamination of Aromatic Primary Monoamines. Inorganic Chemistry 2012, 51 (9) , 5400-5408. https://doi.org/10.1021/ic300379u
    67. Kiyoshi Sasakura, Kenjiro Hanaoka, Norihiro Shibuya, Yoshinori Mikami, Yuka Kimura, Toru Komatsu, Tasuku Ueno, Takuya Terai, Hideo Kimura, and Tetsuo Nagano . Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide. Journal of the American Chemical Society 2011, 133 (45) , 18003-18005. https://doi.org/10.1021/ja207851s
    68. Michael D. Pluth, Maria R. Chan, Lindsey E. McQuade, and Stephen J. Lippard . Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells. Inorganic Chemistry 2011, 50 (19) , 9385-9392. https://doi.org/10.1021/ic200986v
    69. Yuichiro Koide, Yasuteru Urano, Kenjiro Hanaoka, Takuya Terai, and Tetsuo Nagano . Evolution of Group 14 Rhodamines as Platforms for Near-Infrared Fluorescence Probes Utilizing Photoinduced Electron Transfer. ACS Chemical Biology 2011, 6 (6) , 600-608. https://doi.org/10.1021/cb1002416
    70. Li-Yen Lin, Xiauo-Yun Lin, Francis Lin, and Ken-Tsung Wong . A New Spirobifluorene-Bridged Bipolar System for a Nitric Oxide Turn-On Fluorescent Probe. Organic Letters 2011, 13 (9) , 2216-2219. https://doi.org/10.1021/ol200463m
    71. Yi Zhou, Ke Liu, Ju-Ying Li, Yuan Fang, Tian-Chu Zhao, and Cheng Yao . Visualization of Nitroxyl in Living Cells by a Chelated Copper(II) Coumarin Complex. Organic Letters 2011, 13 (6) , 1290-1293. https://doi.org/10.1021/ol103077q
    72. Jingqing Zhang, Ardemis A. Boghossian, Paul W. Barone, Alina Rwei, Jong-Ho Kim, Dahua Lin, Daniel A. Heller, Andrew J. Hilmer, Nitish Nair, Nigel F. Reuel, and Michael S. Strano . Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes. Journal of the American Chemical Society 2011, 133 (3) , 567-581. https://doi.org/10.1021/ja1084942
    73. Boxuan Simen Zhao, Yujie Liang, Yanqun Song, Chunhong Zheng, Ziyang Hao, and Peng R. Chen. A Highly Selective Fluorescent Probe for Visualization of Organic Hydroperoxides in Living Cells. Journal of the American Chemical Society 2010, 132 (48) , 17065-17067. https://doi.org/10.1021/ja1071114
    74. Tao Peng and Dan Yang. HKGreen-3: A Rhodol-Based Fluorescent Probe for Peroxynitrite. Organic Letters 2010, 12 (21) , 4932-4935. https://doi.org/10.1021/ol102182j
    75. Youjun Yang, Stephanie K. Seidlits, Michelle M. Adams, Vincent M. Lynch, Christine E. Schmidt, Eric V. Anslyn, and Jason B. Shear . A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. Journal of the American Chemical Society 2010, 132 (38) , 13114-13116. https://doi.org/10.1021/ja1040013
    76. Kazuo Tanaka, Narufumi Kitamura and Yoshiki Chujo. Biodegradable Main-Chain Phosphate-Caged Fluorescein Polymers for the Evaluation of Enzymatic Activity. Macromolecules 2010, 43 (14) , 6180-6184. https://doi.org/10.1021/ma1009066
    77. Zachary J. Tonzetich, Lindsey E. McQuade and Stephen J. Lippard. Detecting and Understanding the Roles of Nitric Oxide in Biology. Inorganic Chemistry 2010, 49 (14) , 6338-6348. https://doi.org/10.1021/ic9022757
    78. Ellen V. Stevens, Alexis W. Carpenter, Jae Ho Shin, Jinsong Liu, Channing J. Der and Mark H. Schoenfisch . Nitric Oxide-Releasing Silica Nanoparticle Inhibition of Ovarian Cancer Cell Growth. Molecular Pharmaceutics 2010, 7 (3) , 775-785. https://doi.org/10.1021/mp9002865
    79. Bryan C. Dickinson, Calvin Huynh and Christopher J. Chang . A Palette of Fluorescent Probes with Varying Emission Colors for Imaging Hydrogen Peroxide Signaling in Living Cells. Journal of the American Chemical Society 2010, 132 (16) , 5906-5915. https://doi.org/10.1021/ja1014103
    80. Joel Rosenthal and Stephen J. Lippard. Direct Detection of Nitroxyl in Aqueous Solution Using a Tripodal Copper(II) BODIPY Complex. Journal of the American Chemical Society 2010, 132 (16) , 5536-5537. https://doi.org/10.1021/ja909148v
    81. Xiaoying Ye, Fang Xie, Elena V. Romanova, Stanislav S. Rubakhin and Jonathan V. Sweedler. Production of Nitric Oxide within the Aplysia californica Nervous System. ACS Chemical Neuroscience 2010, 1 (3) , 182-193. https://doi.org/10.1021/cn900016z
    82. Daihi Oushiki, Hirotatsu Kojima, Takuya Terai, Makoto Arita, Kenjiro Hanaoka, Yasuteru Urano and Tetsuo Nagano. Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes. Journal of the American Chemical Society 2010, 132 (8) , 2795-2801. https://doi.org/10.1021/ja910090v
    83. Maricela Viola Rhenals, Mary Strasberg-Rieber and Manuel Rieber. Nitric Oxide Donors or Nitrite Counteract Copper-[dithiocarbamate]2-Mediated Tumor Cell Death and Inducible Nitric Oxide Synthase Down-Regulation: Possible Role of a Nitrosyl-Copper [Dithiocarbamate]2 Complex. Journal of Medicinal Chemistry 2010, 53 (4) , 1627-1635. https://doi.org/10.1021/jm901314r
    84. Yumi Makino, Seiichi Uchiyama, Ken-ichi Ohno and Hidetoshi Arakawa . Low-Cost Fluorimetric Determination of Radicals Based on Fluorogenic Dimerization of the Natural Phenol Sesamol. Analytical Chemistry 2010, 82 (4) , 1213-1220. https://doi.org/10.1021/ac9029778
    85. Mahantesh S. Navati and Joel M. Friedman. Reactivity of Glass-Embedded Met Hemoglobin Derivatives toward External NO: Implications for Nitrite-Mediated Production of Bioactive NO. Journal of the American Chemical Society 2009, 131 (34) , 12273-12279. https://doi.org/10.1021/ja903364h
    86. Emmanuel F. Olasehinde, Kazuhiko Takeda and Hiroshi Sakugawa . Development of an Analytical Method for Nitric Oxide Radical Determination in Natural Waters. Analytical Chemistry 2009, 81 (16) , 6843-6850. https://doi.org/10.1021/ac901128y
    87. Kei Toda, Takahiro Koga, Junichi Kosuge, Mieko Kashiwagi, Hiroshi Oguchi and Takemi Arimoto . Micro Gas Analyzer Measurement of Nitric Oxide in Breath by Direct Wet Scrubbing and Fluorescence Detection. Analytical Chemistry 2009, 81 (16) , 7031-7037. https://doi.org/10.1021/ac901131d
    88. Saki Izumi, Yasuteru Urano, Kenjiro Hanaoka, Takuya Terai and Tetsuo Nagano. A Simple and Effective Strategy To Increase the Sensitivity of Fluorescence Probes in Living Cells. Journal of the American Chemical Society 2009, 131 (29) , 10189-10200. https://doi.org/10.1021/ja902511p
    89. Kazuhiro Furukawa, Hiroshi Abe, Kayo Hibino, Yasushi Sako, Satoshi Tsuneda and Yoshihiro Ito . Reduction-Triggered Fluorescent Amplification Probe for the Detection of Endogenous RNAs in Living Human Cells. Bioconjugate Chemistry 2009, 20 (5) , 1026-1036. https://doi.org/10.1021/bc900040t
    90. Hiroshi Abe, Jin Wang, Kazuhiro Furukawa, Kazuma Oki, Miwako Uda, Satoshi Tsuneda and Yoshihiro Ito . A Reduction-Triggered Fluorescence Probe for Sensing Nucleic Acids. Bioconjugate Chemistry 2008, 19 (6) , 1219-1226. https://doi.org/10.1021/bc800014d
    91. Hong Zheng, Gui-Qin Shang, Shi-Yao Yang, Xia Gao and Jin-Gou Xu. Fluorogenic and Chromogenic Rhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring Opening Reaction. Organic Letters 2008, 10 (12) , 2357-2360. https://doi.org/10.1021/ol800206x
    92. Hitoshi Asakawa,, Katsumi Mochitate, and, Tetsuya Haruyama. Seamless Signal Transduction from Live Cells to an NO Sensor via a Cell-Adhesive Sensing Matrix. Analytical Chemistry 2008, 80 (5) , 1505-1511. https://doi.org/10.1021/ac702001u
    93. Evan M. Hetrick, Jae Ho Shin, Nathan A. Stasko, C. Bryce Johnson, Daniel A. Wespe, Ekhson Holmuhamedov and Mark H. Schoenfisch . Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano 2008, 2 (2) , 235-246. https://doi.org/10.1021/nn700191f
    94. Chia-Jui Ku,, Welivitiya Karunarathne,, Stacy Kenyon,, Paul Root, and, Dana Spence. Fluorescence Determination of Nitric Oxide Production in Stimulated and Activated Platelets. Analytical Chemistry 2007, 79 (6) , 2421-2426. https://doi.org/10.1021/ac061572q
    95. Tomoya Hirano,, Kenichi Hiromoto, and, Hiroyuki Kagechika. Development of a Library of 6-Arylcoumarins as Candidate Fluorescent Sensors. Organic Letters 2007, 9 (7) , 1315-1318. https://doi.org/10.1021/ol070142z
    96. Moritoshi Sato,, Takahiro Nakajima,, Mariko Goto, and, Yoshio Umezawa. Cell-Based Indicator to Visualize Picomolar Dynamics of Nitric Oxide Release from Living Cells. Analytical Chemistry 2006, 78 (24) , 8175-8182. https://doi.org/10.1021/ac061791b
    97. Tomoko Mineno,, Tasuku Ueno,, Yasuteru Urano,, Hirotatsu Kojima, and, Tetsuo Nagano. Creation of Superior Carboxyfluorescein Dyes by Blocking Donor-Excited Photoinduced Electron Transfer. Organic Letters 2006, 8 (26) , 5963-5966. https://doi.org/10.1021/ol0623926
    98. Elizabeth M. Boon and, Michael A. Marletta. Sensitive and Selective Detection of Nitric Oxide Using an H−NOX Domain. Journal of the American Chemical Society 2006, 128 (31) , 10022-10023. https://doi.org/10.1021/ja0632714
    99. Takuya Terai,, Kazuya Kikuchi,, Shin-ya Iwasawa,, Takao Kawabe,, Yasunobu Hirata,, Yasuteru Urano, and, Tetsuo Nagano. Modulation of Luminescence Intensity of Lanthanide Complexes by Photoinduced Electron Transfer and Its Application to a Long-Lived Protease Probe  [J. Am. Chem. Soc. 2006, 128, 6938−6946]. . Journal of the American Chemical Society 2006, 128 (26) , 8699-8700. https://doi.org/10.1021/ja069963+
    100. Takuya Terai,, Kazuya Kikuchi,, Shin-ya Iwasawa,, Takao Kawabe,, Yasunobu Hirata,, Yasuteru Urano, and, Tetsuo Nagano. Modulation of Luminescence Intensity of Lanthanide Complexes by Photoinduced Electron Transfer and Its Application to a Long-Lived Protease Probe. Journal of the American Chemical Society 2006, 128 (21) , 6938-6946. https://doi.org/10.1021/ja060729t
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect