ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Organelle-Targeted Nanocarriers: Specific Delivery of Liposomal Ceramide to Mitochondria Enhances Its Cytotoxicity in Vitro and in Vivo

View Author Information
Northeastern University, Bouve College of Health Sciences, Department of Pharmaceutical Sciences, Boston, Massachusetts
* Corresponding author. E-mail: [email protected].
†Visiting from, Hacettepe University, Department of Radiopharmacy, Faculty of Pharmacy, Sıyhhiye, Ankara, Turkey.
‡Current address: Midwestern University College of Pharmacy Glendale, Glendale, AZ.
Cite this: Nano Lett. 2008, 8, 8, 2559–2563
Publication Date (Web):July 9, 2008
https://doi.org/10.1021/nl801908y
Copyright © 2008 American Chemical Society

    Article Views

    3776

    Altmetric

    -

    Citations

    200
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    To further increase the therapeutic activity of drugs known to act on intracellular target sites, in vivo drug delivery approaches must actively mediate the specific delivery of drug molecules to the subcellular site of action. We show here that surface modification of nanocarriers with mitochondriotropic triphenylphosphonium cations facilitates the efficient subcellular delivery of a model drug to mitochondria of mammalian cells and improves its activity in vitro and in vivo.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 200 publications.

    1. Yao Peng, Jiaqi Lu, Ru Li, Yi Zhao, Li Hai, Li Guo, Yong Wu. Glucose and Triphenylphosphonium Co-Modified Redox-Sensitive Liposomes to Synergistically Treat Glioma with Doxorubicin and Lonidamine. ACS Applied Materials & Interfaces 2021, 13 (23) , 26682-26693. https://doi.org/10.1021/acsami.1c02404
    2. Jin Liu, Ge Ding, Shiya Chen, Caoye Xue, Mian Chen, Xu Wu, Quan Yuan, Jing Zheng, Ronghua Yang. Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces 2021, 13 (8) , 9681-9690. https://doi.org/10.1021/acsami.0c21681
    3. Salame Haddad, Isabel Abánades Lázaro, Marcus Fantham, Ajay Mishra, Joaquin Silvestre-Albero, Johannes W. M. Osterrieth, Gabriele S. Kaminski Schierle, Clemens F. Kaminski, Ross S. Forgan, David Fairen-Jimenez. Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria. Journal of the American Chemical Society 2020, 142 (14) , 6661-6674. https://doi.org/10.1021/jacs.0c00188
    4. Sumit Kumar Pramanik, Sreejesh Sreedharan, Harwinder Singh, Mohsina Khan, Karishma Tiwari, Anjali Shiras, Carl Smythe, Jim. A. Thomas, Amitava Das. Mitochondria Targeting Non-Isocyanate-Based Polyurethane Nanocapsules for Enzyme-Triggered Drug Release. Bioconjugate Chemistry 2018, 29 (11) , 3532-3543. https://doi.org/10.1021/acs.bioconjchem.8b00460
    5. Siyu Wang, Fang Guo, Yanhui Ji, Meng Yu, Jinping Wang, Nan Li. Dual-Mode Imaging Guided Multifunctional Theranosomes with Mitochondria Targeting for Photothermally Controlled and Enhanced Photodynamic Therapy in Vitro and in Vivo. Molecular Pharmaceutics 2018, 15 (8) , 3318-3331. https://doi.org/10.1021/acs.molpharmaceut.8b00351
    6. Jacek Zielonka, Joy Joseph, Adam Sikora, Micael Hardy, Olivier Ouari, Jeannette Vasquez-Vivar, Gang Cheng, Marcos Lopez, and Balaraman Kalyanaraman . Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chemical Reviews 2017, 117 (15) , 10043-10120. https://doi.org/10.1021/acs.chemrev.7b00042
    7. Ye Zhang, Congjun Zhang, Jing Chen, Li Liu, Mengyue Hu, Jun Li, and Hong Bi . Trackable Mitochondria-Targeting Nanomicellar Loaded with Doxorubicin for Overcoming Drug Resistance. ACS Applied Materials & Interfaces 2017, 9 (30) , 25152-25163. https://doi.org/10.1021/acsami.7b07219
    8. Constantinos M. Paleos, Dimitris Tsiourvas, and Zili Sideratou . Triphenylphosphonium Decorated Liposomes and Dendritic Polymers: Prospective Second Generation Drug Delivery Systems for Targeting Mitochondria. Molecular Pharmaceutics 2016, 13 (7) , 2233-2241. https://doi.org/10.1021/acs.molpharmaceut.6b00237
    9. Ye Zhang, Yajing Shen, Xiyao Teng, Manqing Yan, Hong Bi, and Paulo Cesar Morais . Mitochondria-Targeting Nanoplatform with Fluorescent Carbon Dots for Long Time Imaging and Magnetic Field-Enhanced Cellular Uptake. ACS Applied Materials & Interfaces 2015, 7 (19) , 10201-10212. https://doi.org/10.1021/acsami.5b00405
    10. Ran Lin, Pengcheng Zhang, Andrew. G. Cheetham, Jeremy Walston, Peter Abadir, and Honggang Cui . Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting. Bioconjugate Chemistry 2015, 26 (1) , 71-77. https://doi.org/10.1021/bc500408p
    11. Rakesh K. Pathak, Sean Marrache, Donald A. Harn, and Shanta Dhar . Mito-DCA: A Mitochondria Targeted Molecular Scaffold for Efficacious Delivery of Metabolic Modulator Dichloroacetate. ACS Chemical Biology 2014, 9 (5) , 1178-1187. https://doi.org/10.1021/cb400944y
    12. Enguo Ju, Zhenhua Li, Zhen Liu, Jinsong Ren, and Xiaogang Qu . Near-Infrared Light-Triggered Drug-Delivery Vehicle for Mitochondria-Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces 2014, 6 (6) , 4364-4370. https://doi.org/10.1021/am5000883
    13. Sae Rin Jean, David V. Tulumello, Simon P. Wisnovsky, Eric K. Lei, Mark P. Pereira, and Shana O. Kelley . Molecular Vehicles for Mitochondrial Chemical Biology and Drug Delivery. ACS Chemical Biology 2014, 9 (2) , 323-333. https://doi.org/10.1021/cb400821p
    14. Jimmy Pham, Bill Brownlow, and Tamer Elbayoumi . Mitochondria-Specific Pro-Apoptotic Activity of Genistein Lipidic Nanocarriers. Molecular Pharmaceutics 2013, 10 (10) , 3789-3800. https://doi.org/10.1021/mp4004892
    15. Anjali Sharma, Ghareb M. Soliman, Noura Al-Hajaj, Rishi Sharma, Dusica Maysinger, and Ashok Kakkar . Design and Evaluation of Multifunctional Nanocarriers for Selective Delivery of Coenzyme Q10 to Mitochondria. Biomacromolecules 2012, 13 (1) , 239-252. https://doi.org/10.1021/bm201538j
    16. Igor Meerovich, Alexander Koshkaryev, Ritesh Thekkedath, and Vladimir P. Torchilin . Screening and Optimization of Ligand Conjugates for Lysosomal Targeting. Bioconjugate Chemistry 2011, 22 (11) , 2271-2282. https://doi.org/10.1021/bc200336j
    17. Colin G. Hebert, Apoorv Gupta, Rohan Fernandes, Chen-Yu Tsao, James J. Valdes, and William E. Bentley . Biological Nanofactories Target and Activate Epithelial Cell Surfaces for Modulating Bacterial Quorum Sensing and Interspecies Signaling. ACS Nano 2010, 4 (11) , 6923-6931. https://doi.org/10.1021/nn1013066
    18. Hanjun Zhao, Rina Naganawa, Yuma Yamada, Yasuko Osakada, Mamoru Fujitsuka, Hideyuki Mitomo, Yukiko Miyatake, Hideyoshi Harashima, Vasudevanpillai Biju, Yuta Takano. π-extended porphyrin-based near-infrared photosensitizers for mitochondria-targeted photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry 2024, 449 , 115397. https://doi.org/10.1016/j.jphotochem.2023.115397
    19. Subramaniyam Sivagnanam, Kiran Das, Ieshita Pan, Adele Stewart, Atanu Barik, Biswanath Maity, Priyadip Das. Engineered triphenylphosphonium-based, mitochondrial-targeted liposomal drug delivery system facilitates cancer cell killing actions of chemotherapeutics. RSC Chemical Biology 2024, 5 (3) , 236-248. https://doi.org/10.1039/D3CB00219E
    20. Harsh Patel, Jiaxin Li, Letao Bo, Riddhi Mehta, Charles R. Ashby, Shanzhi Wang, Wei Cai, Zhe-Sheng Chen. Nanotechnology-based delivery systems to overcome drug resistance in cancer. Medical Review 2024, 4 (1) , 5-30. https://doi.org/10.1515/mr-2023-0058
    21. Senta M. Kapnick, Corinne A. Martin, Christopher M. Jewell. Engineering metabolism to modulate immunity. Advanced Drug Delivery Reviews 2024, 204 , 115122. https://doi.org/10.1016/j.addr.2023.115122
    22. Dilpreet Singh. A sojourn on mitochondria targeted drug delivery systems for cancer: Strategies, clinical and future prospects. Mitochondrion 2024, 74 , 101826. https://doi.org/10.1016/j.mito.2023.101826
    23. Yi Yang, Yahui An, Mingli Ren, Haijiao Wang, Jing Bai, Wenli Du, Dezhi Kong. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis. Frontiers in Pharmacology 2023, 14 https://doi.org/10.3389/fphar.2023.1243613
    24. T. N. Pashirova, A. V. Nemtarev, E. B. Souto, V. F. Mironov. Triarylphosphonium compounds as effective vectors for mitochondria-targeted delivery systems: decoration strategies and prospects for clinical application. Russian Chemical Reviews 2023, 92 (10) , RCR5095. https://doi.org/10.59761/RCR5095
    25. Leysan Vasileva, Gulnara Gaynanova, Farida Valeeva, Elvira Romanova, Rais Pavlov, Denis Kuznetsov, Grigory Belyaev, Irina Zueva, Anna Lyubina, Alexandra Voloshina, Konstantin Petrov, Lucia Zakharova. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. International Journal of Molecular Sciences 2023, 24 (15) , 12312. https://doi.org/10.3390/ijms241512312
    26. Hoda Shamsnajafabadi, Robert E. MacLaren, Jasmina Cehajic-Kapetanovic. Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy. Cells 2023, 12 (15) , 2013. https://doi.org/10.3390/cells12152013
    27. Bao Quang Gia Le, Tan Le Hoang Doan. Trend in biodegradable porous nanomaterials for a nticancer drug delivery. WIREs Nanomedicine and Nanobiotechnology 2023, 15 (4) https://doi.org/10.1002/wnan.1874
    28. Venturina Stagni, Archontia Kaminari, Claudia Contadini, Daniela Barilà, Rosario Luigi Sessa, Zili Sideratou, Spiros A. Vlahopoulos, Dimitris Tsiourvas. A Triphenylphosphonium-Functionalized Delivery System for an ATM Kinase Inhibitor That Ameliorates Doxorubicin Resistance in Breast Carcinoma Mammospheres. Cancers 2023, 15 (5) , 1474. https://doi.org/10.3390/cancers15051474
    29. Ping Jin, Jingwen Jiang, Li Zhou, Zhao Huang, Edouard C. Nice, Canhua Huang, Li Fu. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. Journal of Hematology & Oncology 2022, 15 (1) https://doi.org/10.1186/s13045-022-01313-4
    30. Tanzeel Khan, Rashid Waseem, Zainy Zehra, Ayesha Aiman, Priyanka Bhardwaj, Jaoud Ansari, Md. Imtaiyaz Hassan, Asimul Islam. Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics 2022, 14 (12) , 2657. https://doi.org/10.3390/pharmaceutics14122657
    31. Ardhendu Kumar Mandal. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. Journal of Biomaterials Applications 2022, 37 (4) , 614-633. https://doi.org/10.1177/08853282221111656
    32. Yingying Shi, Zhenyu Luo, Jian You. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WIREs Nanomedicine and Nanobiotechnology 2022, 14 (5) https://doi.org/10.1002/wnan.1803
    33. Anand Saminathan, Matthew Zajac, Palapuravan Anees, Yamuna Krishnan. Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials 2022, 7 (5) , 355-371. https://doi.org/10.1038/s41578-021-00396-8
    34. Kayalvizhi Rajendran, Akhilasree Karthikeyan, Uma Maheswari Krishnan. Emerging trends in nano-bioactive-mediated mitochondria-targeted therapeutic stratagems using polysaccharides, proteins and lipidic carriers. International Journal of Biological Macromolecules 2022, 208 , 627-641. https://doi.org/10.1016/j.ijbiomac.2022.03.121
    35. Feng Gao, Yongcheng Zhao, Bin Zhang, Chunwei Xiao, Zhanfa Sun, Yuan Gao, Xueyong Dou. Mitochondrial targeted astaxanthin liposomes for myocardial ischemia-reperfusion injury based on oxidative stress. Journal of Biomaterials Applications 2022, 27 , 088532822210871. https://doi.org/10.1177/08853282221087102
    36. Sonali Jena, Sonali Mohanty, Monalisha Ojha, Kumari Subham, Suman Jha. Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics. 2022, 177-207. https://doi.org/10.1007/978-981-16-2516-9_11
    37. Rahul Checker, Debojyoti Pal, Deepak Sharma, Santosh K. Sandur. Targeting Natural Compounds to Mitochondria as a Novel Strategy for Cancer Therapy. 2022, 1-23. https://doi.org/10.1007/978-981-16-1247-3_186-1
    38. Vijay Sharma, Kamla Pathak. Advanced drug delivery systems involving mitochondrial disorders. 2022, 411-423. https://doi.org/10.1016/B978-0-323-99616-7.00012-8
    39. Rahul Checker, Debojyoti Pal, Deepak Sharma, Santosh K. Sandur. Targeting Natural Compounds to Mitochondria as a Novel Strategy for Cancer Therapy. 2022, 465-487. https://doi.org/10.1007/978-981-16-5422-0_186
    40. Yue Zhang, Han Yang, Daohe Wei, Xinhui Zhang, Jian Wang, Xiaoli Wu, Jin Chang. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. Exploration 2021, 1 (3) https://doi.org/10.1002/EXP.20210115
    41. Altab Shaikh, Praveen Kumar Neeli, Gajalakshmi Singuru, Sravya Panangipalli, Rajkumar Banerjee, Sridhar Reddy Maddi, Rajamannar Thennati, Surendar Reddy Bathula, Srigiridhar Kotamraju. A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chemical Communications 2021, 57 (92) , 12329-12332. https://doi.org/10.1039/D1CC03497A
    42. Bijaideep Dutta, K.C. Barick, P.A. Hassan. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Advances in Colloid and Interface Science 2021, 296 , 102509. https://doi.org/10.1016/j.cis.2021.102509
    43. Martin Pisárčik, Miloš Lukáč, Josef Jampílek, František Bilka, Andrea Bilková, Ľudmila Pašková, Ferdinand Devínsky, Renáta Horáková, Matěj Březina, Tomáš Opravil. Silver Nanoparticles Stabilized with Phosphorus-Containing Heterocyclic Surfactants: Synthesis, Physico-Chemical Properties, and Biological Activity Determination. Nanomaterials 2021, 11 (8) , 1883. https://doi.org/10.3390/nano11081883
    44. Yoon-ha Jang, Sae Ryun Ahn, Ji-yeon Shim, Kwang-il Lim. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021, 13 (6) , 810. https://doi.org/10.3390/pharmaceutics13060810
    45. Dandan Guo, Xiaotian Ji, Juntao Luo. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials 2021, 16 (3) , 032005. https://doi.org/10.1088/1748-605X/abe35a
    46. Han Jiang, Yuedong Guo, Chenyang Wei, Ping Hu, Jianlin Shi. Nanocatalytic Innate Immunity Activation by Mitochondrial DNA Oxidative Damage for Tumor‐Specific Therapy. Advanced Materials 2021, 33 (20) https://doi.org/10.1002/adma.202008065
    47. Khaled S Allemailem, Ahmad Almatroudi, Mohammed A Alsahli, Aseel Aljaghwani, Asmaa M El-Kady, Arshad Husain Rahmani, Amjad Ali Khan. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations. International Journal of Nanomedicine 2021, Volume 16 , 3907-3936. https://doi.org/10.2147/IJN.S303832
    48. Amaraporn Wongrakpanich, Jiraphong Suksiriworapong, Sean M. Geary, Phawanan Sawangchan, Janjira Intra, Uracha Ruktanonchai, Aliasger K. Salem. Nanotechnology, mitochondria, and cancer. 2021, 291-310. https://doi.org/10.1016/B978-0-323-85666-9.00013-9
    49. Parul Benien, Mohammed Almuteri, Shrey Shah, Mark Böhlke, Ahmed Mehanna, Gerard G. M. D’Souza. Synthesis of Triphenylphosphonium Phospholipid Conjugates for the Preparation of Mitochondriotropic Liposomes. 2021, 119-126. https://doi.org/10.1007/978-1-0716-1262-0_7
    50. Volkmar Weissig, Maria Lozoya, Nusem Yu, Gerard G. M. D’Souza. DQAsomes as the Prototype of Mitochondria-Targeted Pharmaceutical Nanocarriers: An Update. 2021, 13-25. https://doi.org/10.1007/978-1-0716-1262-0_2
    51. Lina Lu, Shuhe Kang, Chao Sun, Chufeng Sun, Zhong Guo, Jia Li, Taofeng Zhang, Xingping Luo, Bin Liu. Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers. Current Topics in Medicinal Chemistry 2020, 20 (27) , 2427-2441. https://doi.org/10.2174/1568026620666200825170030
    52. Olakunle Oladimeji, Jude Akinyelu, Moganavelli Singh. Nanomedicines for Subcellular Targeting: The Mitochondrial Perspective. Current Medicinal Chemistry 2020, 27 (33) , 5480-5509. https://doi.org/10.2174/0929867326666191125092111
    53. Anthoula Arta, Jannik B. Larsen, Anne Z. Eriksen, Paul J. Kempen, Michael Larsen, Thomas L. Andresen, Andrew J. Urquhart. Cell targeting strategy affects the intracellular trafficking of liposomes altering loaded doxorubicin release kinetics and efficacy in endothelial cells. International Journal of Pharmaceutics 2020, 588 , 119715. https://doi.org/10.1016/j.ijpharm.2020.119715
    54. Seyed Hossein Kiaie, Solmaz Mojarad-Jabali, Farnaz Khaleseh, Saeideh Allahyari, Elham Taheri, Parvin Zakeri-Milani, Hadi Valizadeh. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. International Journal of Pharmaceutics 2020, 581 , 119269. https://doi.org/10.1016/j.ijpharm.2020.119269
    55. Rahat Ullah, Junaid Wazir, Farhan Ullah Khan, Maladho Tanta Diallo, Awais Ullah Ihsan, Reyaj Mikrani, Md Aquib, Xiaohui Zhou. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. AAPS PharmSciTech 2020, 21 (4) https://doi.org/10.1208/s12249-020-01691-3
    56. Igor A. Sobenin, Vasily N. Sukhorukov. Current Trends in Vascular Biology and Atherothrombosis. Current Pharmaceutical Design 2020, 26 (1) , 6-10. https://doi.org/10.2174/138161282601200225102449
    57. Saravana Babu Chidambaram, Bipul Ray, Abid Bhat, Arehally Marappa Mahalakshmi, Tuladhar Sunanda, Padamati Jagadeeswari, Mysore Prakash Gowrav, Ramesh Chandra, Meena Kishore Sakharkar. Mitochondria-targeted drug delivery in neurodegenerative diseases. 2020, 97-117. https://doi.org/10.1016/B978-0-12-817776-1.00005-5
    58. Cuneyt Karaarslan. Leber’s Hereditary Optic Neuropathy as a Promising Disease for Gene Therapy Development. Advances in Therapy 2019, 36 (12) , 3299-3307. https://doi.org/10.1007/s12325-019-01113-2
    59. Juanjuan Li, Ruitao Cha, Huize Luo, Wenshuai Hao, Yan Zhang, Xingyu Jiang. Nanomaterials for the theranostics of obesity. Biomaterials 2019, 223 , 119474. https://doi.org/10.1016/j.biomaterials.2019.119474
    60. Darya A. Kuznetsova, Gulnara A. Gaynanova, Leysan A. Vasileva, Guzel V. Sibgatullina, Dmitry V. Samigullin, Anastasiia S. Sapunova, Alexandra D. Voloshina, Irina V. Galkina, Konstantin A. Petrov, Lucia Ya. Zakharova. Mitochondria-targeted cationic liposomes modified with alkyltriphenylphosphonium bromides loaded with hydrophilic drugs: preparation, cytotoxicity and colocalization assay. Journal of Materials Chemistry B 2019, 7 (46) , 7351-7362. https://doi.org/10.1039/C9TB01853K
    61. Lucia Biasutto, Andrea Mattarei, Martina La Spina, Michele Azzolini, Sofia Parrasia, Ildikò Szabò, Mario Zoratti. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. European Journal of Medicinal Chemistry 2019, 181 , 111557. https://doi.org/10.1016/j.ejmech.2019.07.060
    62. Vajihe Nejadshafiee, Hossein Naeimi, Bahram Goliaei, Bahareh Bigdeli, Armin Sadighi, Sadegh Dehghani, Alireza Lotfabadi, Maryam Hosseini, Maryam Sadat Nezamtaheri, Massoud Amanlou, Mohammad Sharifzadeh, Mehdi Khoobi. Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Materials Science and Engineering: C 2019, 99 , 805-815. https://doi.org/10.1016/j.msec.2019.02.017
    63. , . Recent Developments in Phosphonium Chemistry. 2019, 59-111. https://doi.org/10.1002/9783527672240.ch2
    64. Vishal Das, Channakeshavaiah Chikkaputtaiah, Mintu Pal. Aptamer-conjugated functionalized nano-biomaterials for diagnostic and targeted drug delivery applications. 2019, 469-494. https://doi.org/10.1016/B978-0-08-102555-0.00014-5
    65. Magisetty Obulesu. Mitochondria-Targeted Nanoparticles. 2019, 45-50. https://doi.org/10.1016/B978-0-12-816412-9.00008-2
    66. Wei‐Hai Chen, Guo‐Feng Luo, Xian‐Zheng Zhang. Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. Advanced Materials 2019, 31 (3) https://doi.org/10.1002/adma.201802725
    67. Yongfeng Tian, Hua Zhang, Yanmei Qin, Dong Li, Yang Liu, Hao Wang, Li Gan. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Development and Industrial Pharmacy 2018, 44 (12) , 2071-2082. https://doi.org/10.1080/03639045.2018.1512613
    68. Nobuyuki Morimoto, Riho Takei, Masaru Wakamura, Yoshifumi Oishi, Masafumi Nakayama, Makoto Suzuki, Masaya Yamamoto, Françoise M. Winnik. Fast and effective mitochondrial delivery of ω-Rhodamine-B-polysulfobetaine-PEG copolymers. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-19598-2
    69. Hui-na Liu, Ning-ning Guo, Wang-wei Guo, Ming-yi Huang-Fu, Mohammad Reza Vakili, Jie-jian Chen, Wen-hong Xu, Qi-chun Wei, Min Han, Afsaneh Lavasanifar, Jian-qing Gao. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer. Acta Pharmacologica Sinica 2018, 39 (10) , 1681-1692. https://doi.org/10.1038/aps.2018.9
    70. Yoon-ha Jang, Kwang-il Lim. Recent Advances in Mitochondria-Targeted Gene Delivery. Molecules 2018, 23 (9) , 2316. https://doi.org/10.3390/molecules23092316
    71. Weiyuan Zhang, Wenyue Wang, David X Yu, Zhicheng Xiao, Zhiyong He. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine 2018, 13 (18) , 2341-2371. https://doi.org/10.2217/nnm-2018-0163
    72. Vittoria Di Mauro, Maria Barandalla-Sobrados, Daniele Catalucci. The noncoding-RNA landscape in cardiovascular health and disease. Non-coding RNA Research 2018, 3 (1) , 12-19. https://doi.org/10.1016/j.ncrna.2018.02.001
    73. Ana L. Silva, Liane I.F. Moura, Bárbara Carreira, João Conniot, Ana I. Matos, Carina Peres, Vanessa Sainz, Liana C. Silva, Rogério S. Gaspar, Helena F. Florindo. Functional Moieties for Intracellular Traffic of Nanomaterials. 2018, 399-448. https://doi.org/10.1016/B978-0-323-50878-0.00014-8
    74. Xiaowei Chen, Changhui Fu, Yaqin Wang, Qirun Wu, Xianwei Meng, Ke Xu. Mitochondria-targeting nanoparticles for enhanced microwave ablation of cancer. Nanoscale 2018, 10 (33) , 15677-15685. https://doi.org/10.1039/C8NR03927E
    75. Bhabatosh Banik, Shanta Dhar. Centrifugation‐Free Magnetic Isolation of Functional Mitochondria Using Paramagnetic Iron Oxide Nanoparticles. Current Protocols in Cell Biology 2018, 76 (1) https://doi.org/10.1002/cpcb.26
    76. Chao Zhang, Zunfeng Liu, Ying Zheng, Yadi Geng, Chao Han, Yamin Shi, Hongbin Sun, Can Zhang, Yijun Chen, Luyong Zhang, Qinglong Guo, Lei Yang, Xiang Zhou, Lingyi Kong. Glycyrrhetinic Acid Functionalized Graphene Oxide for Mitochondria Targeting and Cancer Treatment In Vivo. Small 2018, 14 (4) https://doi.org/10.1002/smll.201703306
    77. Shi-Ying Li, Hong Cheng, Bo-Ru Xie, Wen-Xiu Qiu, Chu-Xin Li, Bin Li, Han Cheng, Xian-Zheng Zhang. Mitochondria targeted cancer therapy using ethidium derivatives. Materials Today Chemistry 2017, 6 , 34-44. https://doi.org/10.1016/j.mtchem.2017.09.002
    78. Zhenjie Wang, Weiling Guo, Xiao Kuang, Shanshan Hou, Hongzhuo Liu. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian Journal of Pharmaceutical Sciences 2017, 12 (6) , 498-508. https://doi.org/10.1016/j.ajps.2017.05.006
    79. Ping Hu, Tong Wu, Wenpei Fan, Lei Chen, Yanyan Liu, Dalong Ni, Wenbo Bu, Jianlin Shi. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017, 141 , 86-95. https://doi.org/10.1016/j.biomaterials.2017.06.035
    80. Sarah R. MacEwan, Ashutosh Chilkoti. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angewandte Chemie 2017, 129 (24) , 6814-6837. https://doi.org/10.1002/ange.201610819
    81. Sarah R. MacEwan, Ashutosh Chilkoti. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angewandte Chemie International Edition 2017, 56 (24) , 6712-6733. https://doi.org/10.1002/anie.201610819
    82. MengJia Chen, Airen Xu, Wenyue He, Weicheng Ma, Song Shen. Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. Journal of Drug Delivery Science and Technology 2017, 39 , 501-507. https://doi.org/10.1016/j.jddst.2017.05.009
    83. Ronak Savla, Tamara Minko. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Advanced Drug Delivery Reviews 2017, 113 , 122-140. https://doi.org/10.1016/j.addr.2016.06.016
    84. Yeon Su Choi, Kiyoon Kwon, Kwonhyeok Yoon, Kang Moo Huh, Han Chang Kang. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials. International Journal of Pharmaceutics 2017, 520 (1-2) , 195-206. https://doi.org/10.1016/j.ijpharm.2017.02.013
    85. Yu-Su Chen, David W. Allen, Graham J. Tizzard, Mateusz B. Pitak, Simon J. Coles, Neil A. Cross, Neil Bricklebank. Biological and structural studies of phosphonium ‘masked thiolate’ compounds. European Journal of Medicinal Chemistry 2017, 125 , 528-537. https://doi.org/10.1016/j.ejmech.2016.08.025
    86. Jinjun Shi, Philip W. Kantoff, Richard Wooster, Omid C. Farokhzad. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer 2017, 17 (1) , 20-37. https://doi.org/10.1038/nrc.2016.108
    87. Zhenjie Wang, Xiao Kuang, Jia Shi, Weiling Guo, Hongzhuo Liu. Targeted delivery of geranylgeranylacetone to mitochondria by triphenylphosphonium modified nanoparticles: a promising strategy to prevent aminoglycoside-induced hearing loss. Biomaterials Science 2017, 5 (9) , 1800-1809. https://doi.org/10.1039/C7BM00224F
    88. Bei-Yu Liu, Wan-Xia Wu, Yan-Hong Liu, Chao Jia, Xian-Ling Yang, Jun Li, Na Wang, Xiao-Qi Yu. Water-soluble mitochondria-targeting polymeric prodrug micelles for fluorescence monitoring and high intracellular anticancer efficiency. Polymer Chemistry 2017, 8 (38) , 5982-5987. https://doi.org/10.1039/C7PY01138E
    89. . Mitochondria as an Emerging Target for the Delivery of Small Therapeutic Molecules. 2016, 259-289. https://doi.org/10.1201/9781315370118-12
    90. Phong Lu, Benjamin J. Bruno, Malena Rabenau, Carol S. Lim. Delivery of drugs and macromolecules to the mitochondria for cancer therapy. Journal of Controlled Release 2016, 240 , 38-51. https://doi.org/10.1016/j.jconrel.2015.10.023
    91. Xiaowei Ma, Ningqiang Gong, Lin Zhong, Jiadong Sun, Xing-Jie Liang. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016, 97 , 10-21. https://doi.org/10.1016/j.biomaterials.2016.04.026
    92. Zhi-Peng Chen, Man Li, Liu-Jie Zhang, Jia-Yu He, Li Wu, Yan-Yu Xiao, Jin-Ao Duan, Ting Cai, Wei-Dong Li. Mitochondria-targeted drug delivery system for cancer treatment. Journal of Drug Targeting 2016, 24 (6) , 492-502. https://doi.org/10.3109/1061186X.2015.1108325
    93. Xinli Chen, Lisha Liu, Chen Jiang. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharmaceutica Sinica B 2016, 6 (4) , 261-267. https://doi.org/10.1016/j.apsb.2016.05.011
    94. K Kitatani, T Usui, S K Sriraman, M Toyoshima, M Ishibashi, S Shigeta, S Nagase, M Sakamoto, H Ogiso, T Okazaki, Y A Hannun, V P Torchilin, N Yaegashi. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene 2016, 35 (21) , 2801-2812. https://doi.org/10.1038/onc.2015.330
    95. Ru Wen, Bhabatosh Banik, Rakesh K. Pathak, Anil Kumar, Nagesh Kolishetti, Shanta Dhar. Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Advanced Drug Delivery Reviews 2016, 99 , 52-69. https://doi.org/10.1016/j.addr.2015.12.024
    96. Parul Benien, Melani A. Solomon, Paul Nguyen, Erin M. Sheehan, Ahmed S. Mehanna, Gerard G. M. D’Souza. Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect. Journal of Liposome Research 2016, 26 (1) , 21-27. https://doi.org/10.3109/08982104.2015.1022557
    97. Diana Guzman-Villanueva, Volkmar Weissig. Mitochondria-Targeted Agents: Mitochondriotropics, Mitochondriotoxics, and Mitocans. 2016, 423-438. https://doi.org/10.1007/164_2016_37
    98. Diana Guzman-Villanueva, Volkmar Weissig. Delivery of Biologically Active Molecules to Mitochondria. 2016, 255-267. https://doi.org/10.1007/978-3-319-42139-1_13
    99. Aleš Prokop, Volkmar Weissig. Overview of Present Problems Facing Commercialization of Nanomedicines. 2016, 3-36. https://doi.org/10.1007/978-3-319-43525-1_1
    100. Ru Wen, Afoma C. Umeano, Shanta Dhar. Accessing Mitochondrial Targets Using NanoCargos. 2016, 229-254. https://doi.org/10.1007/978-3-319-43525-1_9
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect