<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 26 March 2014

Hypoxia and Metabolic Properties of Hematopoietic Stem Cells

Publication: Antioxidants & Redox Signaling
Volume 20, Issue Number 12

Abstract

Significance: The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. Recent Advances: A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. Critical Issues: Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. Future Directions: Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration. Antioxid. Redox Signal. 20, 1891–1901.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abdel-Wahab O and Levine RL. Metabolism and the leukemic stem cell. J Exp Med 207: 677–680, 2010.
2.
Abramson S, Miller RG, and Phillips RA. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med 145: 1567–1579, 1977.
3.
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, and Suda T. Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161, 2004.
4.
Argiropoulos B, Yung E, and Humphries RK. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev 21: 2845–2849, 2007.
5.
Azcoitia V, Aracil M, Martinez AC, and Torres M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev Biol 280: 307–320, 2005.
6.
Bardos JI and Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 1755: 107–120, 2005.
7.
Baris OR, Klose A, Kloepper JE, Weiland D, Neuhaus JF, Schauen M, Wille A, Muller A, Merkwirth C, Langer T, Larsson NG, Krieg T, Tobin DJ, Paus R, and Wiesner RJ. The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells. Stem Cells 29: 1459–1468, 2011.
8.
Beckman JS and Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424–C1437, 1996.
9.
Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, and Cooke MP. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329: 1345–1348, 2010.
10.
Bradley TR, Hodgson GS, and Rosendaal M. The effect of oxygen tension on haemopoietic and fibroblast cell proliferation in vitro. J Cell Physiol 97: 517–522, 1978.
11.
Bryder D, Rossi DJ, and Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169: 338–346, 2006.
12.
Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, and Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–846, 2003.
13.
Cardier JE and Barbera-Guillem E. Extramedullary hematopoiesis in the adult mouse liver is associated with specific hepatic sinusoidal endothelial cells. Hepatology 26: 165–175, 1997.
14.
Chen Y, Yu M, Dai X, Zogg M, Wen R, Weiler H, and Wang D. Critical role for Gimap5 in the survival of mouse hematopoietic stem and progenitor cells. J Exp Med 208: 923–935, 2011.
15.
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, and Scadden DT. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287: 1804–1808, 2000.
16.
Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, and Frenette PS. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208: 261–271, 2011.
17.
Chow DC, Wenning LA, Miller WM, and Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys J 81: 675–684, 2001.
18.
Christensen JL and Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98: 14541–14546, 2001.
19.
Cipolleschi MG, Dello Sbarba P, and Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82: 2031–2037, 1993.
20.
Danet GH, Pan Y, Luongo JL, Bonnet DA, and Simon MC. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112: 126–135, 2003.
21.
Domen J and Weissman IL. Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol Med Today 5: 201–208, 1999.
22.
Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell 17: 755–773, 2009.
23.
Eliasson P and Jonsson JI. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222: 17–22.
24.
Ergen AV and Goodell MA. Mechanisms of hematopoietic stem cell aging. Exp Gerontol 45: 286–290, 2010.
25.
Fuchs E, Tumbar T, and Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 116: 769–778, 2004.
26.
Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Cote D, Sykes M, Strom TB, Scadden DT, and Lin CP. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474: 216–219, 2011.
27.
Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang YA, Chin L, and Depinho RA. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468: 701–704, 2010.
28.
Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal 10: 1923–1940, 2008.
29.
Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park PJ, Shirihai OS, Scadden DT, and Bardeesy N. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468: 659–663, 2010.
30.
Hardie DG. Metabolic control: a new solution to an old problem. Curr Biol 10: R757–R759, 2000.
31.
Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 20: 145–147, 1972.
32.
Hirota K, Fukuda R, Takabuchi S, Kizaka-Kondoh S, Adachi T, Fukuda K, and Semenza GL. Induction of hypoxia-inducible factor 1 activity by muscarinic acetylcholine receptor signaling. J Biol Chem 279: 41521–41528, 2004.
33.
Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, Devor-Henneman DE, Saiki Y, Kutsuna H, Tessarollo L, Jenkins NA, and Copeland NG. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. Embo J 23: 450–459, 2004.
34.
Hochachka PW, Buck LT, Doll CJ, and Land SC. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 93: 9493–9498, 1996.
35.
Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K, James D, Witte L, Zhu Z, Wu Y, Pytowski B, Rosenwaks Z, Mittal V, Sato TN, and Rafii S. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4: 263–274, 2009.
36.
Ichihara S, Yamada Y, Gonzalez FJ, Nakajima T, Murohara T, and Ichihara G. Inhibition of ischemia-induced angiogenesis by benzo[a]pyrene in a manner dependent on the aryl hydrocarbon receptor. Biochem Biophys Res Commun 381: 44–49, 2009.
37.
Imamura T, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Ishii E, and Imashuku S. Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement. Br J Haematol 119: 119–121, 2002.
38.
This reference has been deleted.
39.
Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, and Suda T. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431: 997–1002, 2004.
40.
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, and Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468, 2001.
41.
Ivanovic Z, Dello Sbarba P, Trimoreau F, Faucher JL, and Praloran V. Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 40: 1482–1488, 2000.
42.
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, and Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12: 149–162, 1998.
43.
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, and Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472, 2001.
44.
Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, and Weissman IL. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138: 271–285, 2009.
45.
Jang YY and Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110: 3056–3063, 2007.
46.
Jeong JH, Kang JH, Hwang SL, Cho HJ, Park KK, Park YY, Chung IK, Chang HW, Kim CH, Min KS, Kim HD, Magae J, Kang SS, and Chang YC. 4-O-methylascochlorin, methylated derivative of ascochlorin, stabilizes HIF-1alpha via AMPK activation. Biochem Biophys Res Commun 406: 353–358, 2011.
47.
Jiang BH, Semenza GL, Bauer C, and Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271: C1172–C1180, 1996.
48.
Jordan CT, McKearn JP, and Lemischka IR. Cellular and developmental properties of fetal hematopoietic stem cells. Cell 61: 953–963, 1990.
49.
Kaidi A, Williams AC, and Paraskeva C. Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9: 210–217, 2007.
50.
Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, and Conaway JW. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 97: 10430–10435, 2000.
51.
Katahira J and Mizoguchi H. Improvement of culture conditions for human megakaryocytic and pluripotent progenitor cells by low oxygen tension. Int J Cell Cloning 5: 412–420, 1987.
52.
Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, and Frenette PS. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124: 407–421, 2006.
53.
Ke Q and Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70: 1469–1480, 2006.
54.
Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, and Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121, 2005.
55.
Kim CG, Lee JJ, Jung DY, Jeon J, Heo HS, Kang HC, Shin JH, Cho YS, Cha KJ, Kim CG, Do BR, Kim KS, and Kim HS. Profiling of differentially expressed genes in human stem cells by cDNA microarray. Mol Cells 21: 343–355, 2006.
56.
Kirito K, Fox N, Komatsu N, and Kaushansky K. Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1alpha. Blood 105: 4258–4263, 2005.
57.
Klimmeck D, Hansson J, Raffel S, Vakhrushev SY, Trumpp A, and Krijgsveld J. Proteomic cornerstones of hematopoietic stem cell differentiation: distinct signatures of multipotent progenitors and myeloid committed cells. Mol Cell Proteomics 11: 286–302, 2012.
58.
Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, Deberardinis RJ, Zhang C, and Sadek HA. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120: 4963–4972, 2012.
59.
Koller MR, Bender JG, Miller WM, and Papoutsakis ET. Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. Exp Hematol 20: 264–270, 1992.
60.
Krumlauf R. Hox genes in vertebrate development. Cell 78: 191–201, 1994.
61.
Kubota Y, Takubo K, and Suda T. Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. Biochem Biophys Res Commun 366: 335–339, 2008.
62.
LaIuppa JA, Papoutsakis ET, and Miller WM. Oxygen tension alters the effects of cytokines on the megakaryocyte, erythrocyte, and granulocyte lineages. Exp Hematol 26: 835–843, 1998.
63.
Laughner E, Taghavi P, Chiles K, Mahon PC, and Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21: 3995–4004, 2001.
64.
Lee JW, Bae SH, Jeong JW, Kim SH, and Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36: 1–12, 2004.
65.
Li W, Johnson SA, Shelley WC, and Yoder MC. Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol 32: 1226–1237, 2004.
66.
Li Z, Wang D, Messing EM, and Wu G. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep 6: 373–378, 2005.
67.
Lim JH, Lee YM, Chun YS, Chen J, Kim JE, and Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38: 864–878, 2010.
68.
Liochev SI and Fridovich I. Superoxide and iron: partners in crime. IUBMB Life 48: 157–161, 1999.
69.
Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, and Scadden DT. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457: 92–96, 2009.
70.
Lo Celso C, Wu JW, and Lin CP. In vivo imaging of hematopoietic stem cells and their microenvironment. J Biophotonics 2: 619–631, 2009.
71.
Lymperi S, Ferraro F, and Scadden DT. The HSC niche concept has turned 31. Has our knowledge matured? Ann N Y Acad Sci 1192: 12–18, 2010.
72.
Majeti R, Park CY, and Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1: 635–645, 2007.
73.
Mantel C, Messina-Graham S, and Broxmeyer HE. Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: a potential strategy for reducing oxidative risk in stem cells. Cell Cycle 9: 2008–2017, 2010.
74.
Mantel C, Messina-Graham S, Moh A, Cooper S, Hangoc G, Fu XY, and Broxmeyer HE. Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 120: 2589–2599
75.
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, and Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.
76.
Mazure NM and Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22: 177–180, 2010.
77.
Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, and Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834, 2010.
78.
Miharada K, Karlsson G, Rehn M, Rorby E, Siva K, Cammenga J, and Karlsson S. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 9: 330–344, 2011.
79.
Miquel J, Economos AC, Fleming J, and Johnson JE Jr. Mitochondrial role in cell aging. Exp Gerontol 15: 575–591, 1980.
80.
Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, and Hirao A. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1: 101–112, 2007.
81.
Morrison SJ, Uchida N, and Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11: 35–71, 1995.
82.
Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, and Simon AK. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208: 455–467, 2011.
83.
Nakada D, Saunders TL, and Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468: 653–658, 2010.
84.
Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, and Ronai Z. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117: 941–952, 2004.
85.
Nie Y, Han YC, and Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205: 777–783, 2008.
86.
Nohl H and Hegner D. Do mitochondria produce oxygen radicals in vivo. Eur J Biochem 82: 563–567, 1978.
87.
Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, and Lasky LA. Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92: 908–919, 1998.
88.
Osawa M, Hanada K, Hamada H, and Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245, 1996.
89.
Owusu-Ansah E and Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461: 537–541, 2009.
90.
Palis J, Robertson S, Kennedy M, Wall C, and Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126: 5073–5084, 1999.
91.
Parmar K, Mauch P, Vergilio JA, Sackstein R, and Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104: 5431–5436, 2007.
92.
Passonneau JV and Lowry OH. Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Commun 7: 10–15, 1962.
93.
Pasteur L. Expériences et vues nouvelles sur la nature des fermentations. Comp Rend Acad Sci 52: 1260–1264, 1861.
94.
Pervaiz S, Taneja R, and Ghaffari S. Oxidative stress regulation of stem and progenitor cells. Antioxid Redox Signal 11: 2777–2789, 2009.
95.
Piccoli C, D'Aprile A, Ripoli M, Scrima R, Boffoli D, Tabilio A, and Capitanio N. The hypoxia-inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions. FEBS Lett 581: 3111–3119, 2007.
96.
Piccoli C, Ria R, Scrima R, Cela O, D'Aprile A, Boffoli D, Falzetti F, Tabilio A, and Capitanio N. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 280: 26467–26476, 2005.
97.
Pineault N, Helgason CD, Lawrence HJ, and Humphries RK. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30: 49–57, 2002.
98.
This reference has been deleted.
99.
Qi J, Nakayama K, Gaitonde S, Goydos JS, Krajewski S, Eroshkin A, Bar-Sagi D, Bowtell D, and Ronai Z. The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc Natl Acad Sci U S A 105: 16713–16718, 2008.
100.
Quintanilla RA, Porras OH, Castro J, and Barros LF. Cytosolic [Ca(2+)] modulates basal GLUT1 activity and plays a permissive role in its activation by metabolic stress and insulin in rat epithelial cells. Cell Calcium 28: 97–106, 2000.
101.
Rehn M, Olsson A, Reckzeh K, Diffner E, Carmeliet P, Landberg G, and Cammenga J. Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 118: 1534–1543, 2011.
102.
Ryan HE, Lo J, and Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J 17: 3005–3015, 1998.
103.
Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, and Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324–336, 2007.
104.
Salceda S and Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272: 22642–22647, 1997.
105.
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7–25, 1978.
106.
Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, and Johnson RS. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21: 3436–3444, 2001.
107.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732, 2003.
108.
Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007: cm8, 2007.
109.
Semenza GL. Life with oxygen. Science 318: 62–64, 2007.
110.
Shizuru JA, Negrin RS, and Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56: 509–538, 2005.
111.
Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, and Sadek HA. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7: 380–390, 2010.
112.
Spangrude GJ and Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A 87: 7433–7437, 1990.
113.
Spradling A, Drummond-Barbosa D, and Kai T. Stem cells find their niche. Nature 414: 98–104, 2001.
114.
Sugiyama T, Kohara H, Noda M, and Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977–988, 2006.
115.
Taichman RS and Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7–15, 1998.
116.
Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, and Suda T. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7: 391–402, 2010.
117.
Thoren LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H, Antonchuk J, and Jacobsen SE. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 180: 2045–2053, 2008.
118.
Till JE and Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222, 1961.
119.
Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, and Gilliland DG. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128: 325–339, 2007.
120.
Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17: 3–8, 1997.
121.
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 552: 335–344, 2003.
122.
Unwin RD, Smith DL, Blinco D, Wilson CL, Miller CJ, Evans CA, Jaworska E, Baldwin SA, Barnes K, Pierce A, Spooncer E, and Whetton AD. Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood 107: 4687–4694, 2006.
123.
Verma IM and Weitzman MD. Gene therapy: twenty-first century medicine. Annu Rev Biochem 74: 711–738, 2005.
124.
Wang Y, Liu Y, Malek SN, and Zheng P. Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8: 399–411, 2011.
125.
Webster KA. Regulation of glycolytic enzyme RNA transcriptional rates by oxygen availability in skeletal muscle cells. Mol Cell Biochem 77: 19–28, 1987.
126.
Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol 206: 2911–2922, 2003.
127.
Webster KA, Gunning P, Hardeman E, Wallace DC, and Kedes L. Coordinate reciprocal trends in glycolytic and mitochondrial transcript accumulations during the in vitro differentiation of human myoblasts. J Cell Physiol 142: 566–573, 1990.
128.
Wilson A and Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106, 2006.
129.
Wineman J, Moore K, Lemischka I, and Muller-Sieburg C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87: 4082–4090, 1996.
130.
Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, and Levesque JP. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116: 375–385, 2010.
131.
Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, and Levesque JP. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116: 4815–4828, 2010.
132.
Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, and Li L. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457: 97–101, 2009.
133.
Yalcin S, Zhang X, Luciano JP, Mungamuri SK, Marinkovic D, Vercherat C, Sarkar A, Grisotto M, Taneja R, and Ghaffari S. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 283: 25692–25705, 2008.
134.
Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, and Prchal JT. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 281: 25703–25711, 2006.
135.
Zhang CC and Lodish HF. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105: 4314–4320, 2005.
136.
Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, Schito L, Chen J, Krishnamachary B, Winnard PT Jr., Raman V, Zhen L, Mitzner WA, Sukumar S, and Semenza GL. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31: 1757–1770, 2012.
137.
Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, and Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841, 2003.
138.
Zheng J, Huynh H, Umikawa M, Silvany R, and Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117: 470–479, 2011.
139.
Zheng J, Umikawa M, Zhang S, Huynh H, Silvany R, Chen BP, Chen L, and Zhang CC. Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell 9: 119–130, 2011.
140.
Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, Hyunh H, Kang X, Silvany R, Wan X, Ye J, Canto AP, Chen SH, Wang HY, Ward ES, and Zhang CC. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 485: 656–660, 2012.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 20Issue Number 12April 20, 2014
Pages: 1891 - 1901
PubMed: 23621582

History

Published in print: April 20, 2014
Published online: 26 March 2014
Published ahead of print: 21 June 2013
Published ahead of production: 28 April 2013
Accepted: 28 April 2013
Revision received: 3 April 2013
Received: 6 December 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Cheng Cheng Zhang
Division of Cardiology, Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
Hesham A. Sadek
Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.

Notes

Address correspondence to:Dr. Cheng Cheng ZhangDivision of CardiologyDepartments of Physiology and Developmental BiologyUniversity of Texas Southwestern Medical Center5323 Harry Hines BoulevardDallas, TX 75390E-mail: [email protected]
Hesham A. SadekDivision of CardiologyDepartment of Internal MedicineUniversity of Texas Southwestern Medical Center5323 Harry Hines BoulevardDallas, TX 75390E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top