277
Views
169
CrossRef citations to date
0
Altmetric
Original Articles

Most Effective Colon Cancer Chemopreventive Agents in Rats: A Systematic Review of Aberrant Crypt Foci and Tumor Data, Ranked by Potency

Pages 1-21 | Published online: 18 Nov 2009
 

Abstract

Potential chemopreventive agents for colorectal cancer are assessed in rodents. We speculated that the magnitude of the effect is meaningful and ranked all published agents according to their potency. Data were gathered systematically from 137 articles with the aberrant crypt foci (ACF) end point and from 146 articles with the tumor end point. The potency of each agent to reduce the number of ACF is listed in one table and the potency of each agent to reduce the tumor incidence in another table. Both tables are shown in this review and on a website with sorting abilities (http://www.inra.fr/reseau-nacre/sci-memb/corpet/indexan.html). Potency was estimated as the ratio of the value in control rats to the value in treated rats. From each article, only the most potent agent was kept, except in articles reporting the effect of more than seven agents. Among the 186 agents in the ACF table, the median agent reduced the number of ACF by one-half. The most potent agents to reduce azoxymethane-induced ACF were Pluronic, polyethylene glycol, perilla oil with β-carotene, and sulindac sulfide. Among the 160 agents in the tumor table, the median agent reduced the tumor incidence in rats by one-half. The most potent agents to reduce the incidence of azoxymethane-induced tumors were celecoxib, a protease inhibitor from soy, difluoromethylornithine with piroxicam, polyethylene glycol, and a thiosulfonate. For the 57 agents present in both tables, a significant correlation (r) was found between the potencies against ACF and tumors (r = 0.45, P < 0.001); without celecoxib, a major outlying point in the correlation, r = 0.68 (P < 0.001, n = 56). In conclusion, this review gathers most known chemopreventive agents, ranks the most promising agents against colon carcinogenesis in rats or mice, and further supports the use of ACF as a surrogate end point for tumors in rats.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.