Skip to main content

Advertisement

Log in

Cytotoxic effects of high concentrations of sodium ascorbate on human myeloid cell lines

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The effect of high doses of intravenous (sodium) ascorbate (ASC) in the treatment of cancer has been controversial although there is growing evidence that ASC in high (pharmacologic) concentrations induces dose-dependent pro-apoptotic death of tumor cells, in vitro. Very few data are available on the role of ASC in the treatment of acute myeloid leukemia (AML). Ascorbate behaves as an antioxidant at low (physiologic), and as pro-oxidant at pharmacologic, concentrations, and this may account for the differences reported in different experimental settings, when human myeloid cell lines, such as HL60, were treated with ASC. Considering the myeloid origin of HL60 cells, and previous literature reports showing that some cell lines belonging to the myeloid lineage could be sensitive to the pro-apoptotic effects of high concentrations of ASC, we investigated in more details the effects of high doses (0.5 to 7 mM) of ASC in vitro, on a variety of human myeloid cell lines including the following: HL60, U937, NB4, NB4-R4 (retinoic acid [RA]-resistant), NB4/AsR (ATO-resistant) acute promyelocytic leukemia (APL)-derived cell lines, and K562 as well as on normal CD34+ progenitors derived from human cord blood. Our results indicate that all analyzed cell lines including all-trans retinoic acid (ATRA)- and arsenic trioxide (ATO)-resistant ones are highly sensitive to the cytotoxic, pro-oxidant effects of high doses of ASC, with an average 50 % lethal concentration (LC50) of 3 mM, depending on cell type, ASC concentration, and time of exposure. Conversely, high doses of ASC neither did exert significant cytotoxic effects nor impaired the differentiation potential in cord blood (CB) CD34+ normal cells. Since plasma ASC concentrations within the millimolar (mM) range can be easily and safely reached by intravenous administration, we conclude that phase I/II clinical trials using high doses of ASC should be designed for patients with advanced/refractory AML and APL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCormick WJ (1954) Cancer: the preconditioning factor in pathogenesis; a new etiologic approach. Arch Pediatr 71(10):313–322

    CAS  PubMed  Google Scholar 

  2. McCormick WJ (1959) Cancer: a collagen disease, secondary to a nutritional deficiency. Arch Pediatr 76:166–171

    CAS  PubMed  Google Scholar 

  3. Cameron E, Campbell A, Jack T (1975) The orthomolecular treatment of cancer. III. Reticulum cell sarcoma: double complete regression induced by high-dose ascorbic acid therapy. Chem Biol Interact 11(5):387–393

    Article  CAS  PubMed  Google Scholar 

  4. Cameron E, Pauling L (1976) Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 73(10):3685–3689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cameron E, Pauling L (1978) Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 75(9):4538–4542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin J et al (1979) Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer: a controlled trial. N Engl J Med 301(13):687–690

    Article  CAS  PubMed  Google Scholar 

  7. Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM (1985) High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy: a randomized double-blind comparison. N Engl J Med 312(3):137–141

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR et al (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. PNAS 102(38):13604–13609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E et al (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. PNAS 104(21):8749–8754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC et al (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. PNAS 105(32):11105–11109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bachleitner-Hofmann T, Gisslinger B, Grumbeck E, Gisslinger H (2001) Arsenic trioxide and ascorbic acid: synergy with potential implications for the treatment of acute myeloid leukaemia? Br J Haematol 112:783–786

    Article  CAS  PubMed  Google Scholar 

  12. Yedjou C, Thuisseu L, Tchounwou C, Gomes M, Howard C, Tchounwou P (2009) Ascorbic acid potentiation of arsenic trioxide anticancer activity against acute promyelocytic leukemia. Arch Drug Inf 2:50–65

    Article  Google Scholar 

  13. Welch JS, Klco JM, Gao F, Procknow E, Uy GL, Stockerl-Goldstein KE et al (2011) Combination decitabine, arsenic trioxide, and ascorbic acid for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a phase I study. Am J Hematol 86(9):796–800

    Article  CAS  PubMed  Google Scholar 

  14. Au WY, Kumana CR, Lee HKK, Lin SY, Liu H, Yeung DYM et al (2011) Oral arsenic trioxide-based maintenance regimens for first complete remission of acute promyelocytic leukemia: a 10-year follow-up study. Blood 118(25):6535–6543

    Article  CAS  PubMed  Google Scholar 

  15. Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A et al (2004) Vitamin C pharmacokinetics implications for oral and intravenous use. Ann Inter Med 140(7):533–537

    Article  CAS  Google Scholar 

  16. Levine M, Graham Espey M, Chen Q (2009) Losing and finding a way at C: new promise for pharmacologic ascorbate in cancer treatment. Free Radic Biol Med 47(1):27–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J (1998) Vitamin C exhibits pro-oxidant properties. Nature 392(6676):559

    Article  CAS  PubMed  Google Scholar 

  18. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13(9):1007–1025

    CAS  PubMed  Google Scholar 

  19. Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ et al (2012) Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and Erlotinib in patients with metastatic pancreatic cancer. PLoS One 7(1):e29794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stephenson CM, Levin RD, Spector T, Lis CG (2013) Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol 72:139–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Carr AC, Vissers MCM, Cook JS (2014) The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front Oncol 4:283. doi:10.3389/fonc.2014.00283

    Article  PubMed Central  PubMed  Google Scholar 

  22. Park S (2013) The effects of high concentrations of vitamin C on cancer cells. Nutrients 5(9):3496–3505. doi:10.3390/nu5093496

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K et al (2008) Phase I clinical trial of i.v. Ascorbic acid in advanced malignancy. Ann Oncol 19(11):1969–1974

    Article  CAS  PubMed  Google Scholar 

  24. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q (2014) High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med 6(222):222ra18

    Article  PubMed  Google Scholar 

  25. Mastrangelo D, Massai L, Fioritoni G, Iacone A, Di Bartolomeo P, Accorsi P et al (2013) Megadoses of sodium ascorbate efficiently kill HL60 cells in vitro: comparison with arsenic trioxide. J Cancer Ther 4(8):1366–1372. doi:10.4236/jct.2013.48162

    Article  CAS  Google Scholar 

  26. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol. doi:10.1002/0471142735.ima03bs21, May; Appendix 3:Appendix 3B

    Google Scholar 

  27. Schmidt I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 13:204–208

    Article  Google Scholar 

  28. Diaz G, Liu S, Isola R, Diana A, Falchi AM (2003) Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes. Histochem Cell Biol 120(4):319–325

    Article  CAS  PubMed  Google Scholar 

  29. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′- dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′- dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159

    Article  CAS  PubMed  Google Scholar 

  30. Mastrangelo D, Laghi-Pasini F, Pasqui AL, Orrico A, Capecchi PL (1986) Improved procedure for cytochemical demonstration of myeloperoxidase (MPO) activity on blood and bone marrow smears: preliminary study on blood neutrophils. Haematologica 71:270–271

    CAS  PubMed  Google Scholar 

  31. Kawada H, Kaneko M, Sawanobori M, Uno T, Matsuzawa H, Nakamura Y et al (2013) High concentrations of L-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1α transcription. PloS One 8(4):e62717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Mastrangelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrangelo, D., Massai, L., Lo Coco, F. et al. Cytotoxic effects of high concentrations of sodium ascorbate on human myeloid cell lines. Ann Hematol 94, 1807–1816 (2015). https://doi.org/10.1007/s00277-015-2464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2464-2

Keywords

Navigation