Skip to main content
Log in

In Vitro Studies on Therapeutic Potential of Probiotic Yeasts Isolated from Various Sources

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The present study investigates the therapeutic properties of probiotic yeasts viz. Yarrowia lipolytica VIT-MN01, Kluyveromyces lactis VIT-MN02, Lipomyces starkeyi VIT-MN03, Saccharomycopsis fibuligera VIT-MN04 and Brettanomyces custersianus VIT-MN05. The antimutagenic activity of probiotic yeasts against the mutagens viz. Benzo[a]pyrene (B[a]P), and Sodium azide (SA) was tested. S. fibuligera VIT-MN04 showed highest antimutagenicity (75%). Binding ability on the mutagen acridine orange (AO) was tested and L. starkeyi VIT-MN03 was able to bind AO effectively (88%). The probiotic yeasts were treated with the genotoxins viz. 4-Nitroquinoline 1-Oxide (NQO) and Methylnitronitrosoguanidine (MNNG). The prominent changes in UV shift confirmed the reduction in genotoxic activity of S. fibuligera VIT-MN04 and L. starkeyi VIT-MN03, respectively. Significant viability of probiotic yeasts was noted after being exposed to mutagens and genotoxins. The adhesion capacity and anticancer activity were also assessed using Caco-2 and IEC-6 cell lines. Adhesion ability was found to be more in IEC-6 cells and remarkable antiproliferative activity was noted in Caco-2 cells compared to normal cells. Further, antagonistic activity of probiotic yeasts was investigated against S. typhimurium which was found to be more in S. fibuligera VIT-MN04 and L. starkeyi VIT-MN03. The inhibition of α-glucosidase and α-amylase activity confirmed the antidiabetic activity of probiotic yeasts. Antioxidant activity was also tested using standard assays. Therefore, based on the results, it can be concluded that probiotic yeasts can serve as potential therapeutic agents for the prevention and treatment of colon cancer, type 2 diabetes and gastrointestinal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solanki KH, Shah DA, Thakkar JH (2015) Antimutagenic potential of probiotic Lactobacillus sporogenes using Ames assay. Am J Cancer Biol 3:1–8

    Google Scholar 

  2. Araujo CDS, Brito LD, Tarifa MO, Silva NJ, Rodrigues KS, Cavalcante DG, Job AE (2019) Protective effects of bark ethanolic extract from Spondias dulcis Forst F. against DNA damage induced by benzo [a] pyrene and cyclophosphamide. Genet Mol Biol 42:643–654. https://doi.org/10.1590/1678-4685-gmb-2018-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jost M, Szurman-Zubrzycka M, Gajek K, Szarejko I, Stein N (2019) TILLING in barley. barley. Humana Press, New York, pp 73–94

    Chapter  Google Scholar 

  4. Amado AM, Pazin WM, Ito AS, Kuzmin VA, Borissevitch IE (2017) Acridine orange interaction with DNA: effect of ionic strength. Biochim Biophys Acta 1861:900–909. https://doi.org/10.1016/j.bbagen.2017.01.023

    Article  CAS  Google Scholar 

  5. Derevensky M, Fasullo M (2018) DNA damaging agents trigger the expression of the HML silent mating type locus in Saccharomyces cerevisiae. Mutat Res-Gen Toxicol Environ Mutagen 835:16–20. https://doi.org/10.1016/j.mrgentox.2018.08.007

    Article  CAS  Google Scholar 

  6. Jurjus A, Eid A, Kattar AL et al (2016) Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: the links. BBA Clin 5:16–24. https://doi.org/10.1016/j.bbacli.2015.11.002

    Article  PubMed  Google Scholar 

  7. Lee JE, Lee J, Kim JH et al (2019) Characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum using 2D vs 3D culture in colorectal cancer cells. Biomolecules 10:557. https://doi.org/10.3390/biom9100557

    Article  CAS  Google Scholar 

  8. Pourmollaei S, Barzegari A, Farshbaf-Khalili A, Nouri M, Fattahi A, Shahnazi M, Dittrich R (2020) Anticancer effect of bacteria on cervical cancer: molecular aspects and therapeutic implications. Life Sci 6:117413. https://doi.org/10.1016/j.lfs.2020.117413

    Article  CAS  Google Scholar 

  9. Baghbani-Arani F, Asgary V, Hashemi A (2019) Cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii display antiproliferative and antioxidant activities against HT-29 cell line. Nutr Cancer 9:1–10. https://doi.org/10.1080/01635581.2019.1685674

    Article  CAS  Google Scholar 

  10. Bibalan MH, Eshaghi M, Rohani M, Esghaei M, Darban-Sarokhalil D, Pourshafie MR, Talebi M (2017) Isolates of Lactobacillus plantarum and L. reuteri display greater antiproliferative and antipathogenic activity than other Lactobacillus isolates. J Med Microbiol 66:1416–1420. https://doi.org/10.1099/jmm.0.000591

    Article  CAS  Google Scholar 

  11. Panwar H, Calderwood D, Grant IR, Grover S, Green BD (2014) Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha-and beta-glucosidases suggesting antidiabetic potential. Eur J Nutr 53:1465–1474. https://doi.org/10.1007/s00394-013-0649-9

    Article  CAS  PubMed  Google Scholar 

  12. Lau LYJ, Chye FY (2018) Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Control 91:237–247. https://doi.org/10.1016/j.foodcont.2018.04.001

    Article  CAS  Google Scholar 

  13. Kawarizadeh A, Nojoomi F, Tabatabaei M, Hosseinzadeh S, Farzaneh M (2019) The effect of Bacillus coagulans on cytotoxicity and apoptosis induced by Salmonella Typhimurium in HT-29 cell culture. Iran J Microbiol 11:305

    PubMed  PubMed Central  Google Scholar 

  14. Shehata MG, Abu-Serie MM, El-Aziz MA, El-Sohaimy SA (2019) In vitro assessment of antioxidant, antimicrobial and anticancer properties of lactic acid bacteria. Int J Pharmacol 15:651–663. https://doi.org/10.3923/ijp.2019.651.663

    Article  CAS  Google Scholar 

  15. Ragavan ML, Das N (2017) Isolation and characterization of potential probiotic yeasts from different sources. Asian J Pharm Clin Res 10:451–455. https://doi.org/10.22159/ajpcr.2017.v10i4.17067

    Article  CAS  Google Scholar 

  16. Apás AL, González SN, Arena ME (2014) Potential of goat probiotic to bind mutagens. Anaerobe 28:8–12. https://doi.org/10.1016/j.anaerobe.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  17. Pithva SP, Dave JM, Vyas BRM (2015) Binding of acridine orange by probiotic Lactobacillus rhamnosus strains of human origin. Ann Microbiol 65:1373–1379. https://doi.org/10.1007/s13213-014-0975-z

    Article  CAS  Google Scholar 

  18. Pithva SP, Ambalam PS, Ramoliya JM, Dave JM, Vyas BRM (2015) Antigenotoxic and antimutagenic activities of probiotic Lactobacillus rhamnosus Vc against N-Methyl-N′-Nitro-N-Nitrosoguanidine. Nutr Cancer 67:1142–1150. https://doi.org/10.1080/01635581.2015.1073751

    Article  CAS  PubMed  Google Scholar 

  19. Verdenelli MC, Ricciutelli M, Gigli F, Cenci G, Trotta F, Caldini G, Orpianesi C (2010) Investigation of the antigenotoxic properties of the probiotic Lactobacillus rhamnosus IMC 501 by gas chromatography-mass spectrometry. Ital J Food Sci 22:473–478

    CAS  Google Scholar 

  20. Walia S, Sood S, Kanwar SS (2014) Exhibition of DNA-bioprotective activity by microflora of traditional fermented foods of North-Western Himalayas. Food Res Int 55:176–180. https://doi.org/10.1016/j.foodres.2013.11.001

    Article  CAS  Google Scholar 

  21. Han BJ, Li W, Jiang GB, Lai SH, Zhang C, Zeng CC, Liu YJ (2015) Effects of daidzein in regards to cytotoxicity in vitro, apoptosis, reactive oxygen species level, cell cycle arrest and the expression of caspase and Bcl-2 family proteins. Curr Oncol Rep 34:1115–1120. https://doi.org/10.3892/or.2015.4133

    Article  CAS  Google Scholar 

  22. Kim YM, Wang MH, Rhee HI (2004) A novel a-glucosidase inhibitor from pine bark. Carbohydr Res 339:715–717. https://doi.org/10.1016/j.carres.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Arasu MV, Kim DH, Kim PI, Jung MW, Ilavenil S, Jane M, Choi KC (2014) In vitro antifungal, probiotic and antioxidant properties of novel Lactobacillus plantarum K46 isolated from fermented sesame leaf. Ann Microbiol 64:1333–1346. https://doi.org/10.1007/s13213-013-0777-8

    Article  CAS  Google Scholar 

  24. Pei-Ren L, Cheng-Chun C, Ya-Hui T (2002) Antimutagenic activity of several probiotic bifidobacteria against benzo [a] pyrene. J Biosci Bioeng 94:148–153. https://doi.org/10.1016/S1389-1723(02)80135-9

    Article  Google Scholar 

  25. Ambalam P, Dave JM, Nair BM, Vyas BRM (2011) In vitro mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231. Anaerobe 17:217–222. https://doi.org/10.1016/j.anaerobe.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  26. Trotta F, Caldini G, Dominici L, Federici E, Tofalo R, Schirone M, Cenci G (2012) Food borne yeasts as DNA-bioprotective agents against model genotoxins. Int J Food Microbiol 153:275–280. https://doi.org/10.1016/j.ijfoodmicro.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  27. Bocci A, Sebastiani B, Trotta F, Federici E, Cenci G (2015) In vitro inhibition of 4-nitroquinoline-1-oxide genotoxicity by probiotic Lactobacillus rhamnosus IMC501. J Microbiol Biotechnol 25:1680–1686. https://doi.org/10.4014/jmb.1501.01086

    Article  CAS  PubMed  Google Scholar 

  28. Potočnjak M, Pušić P, Frece J, Abram M, Janković T, Gobin I (2017) Three new Lactobacillus plantarum strains in the probiotic toolbox against gut pathogen Salmonella enterica serotype Typhimurium. Food Technol Biotechnol 55:48–54. https://doi.org/10.17113/ftb.55.01.17.4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Son SH, Jeon HL, Yang SJ, Lee NK, Paik HD (2017) In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb Pathog 112:135–141. https://doi.org/10.1016/j.micpath.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  30. Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen W (2014) Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control 35:65–72. https://doi.org/10.1016/j.foodcont.2013.06.027

    Article  CAS  Google Scholar 

  31. Ayyash M, Al-Nuaimi AK, Al-Mahadin S, Liu SQ (2018) In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. Food Chem 239:588–597. https://doi.org/10.1016/j.foodchem.2017.06.149

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Wu Y, Wang Y et al (2017) Antioxidant properties of probiotic bacteria. Nutrients 9:521. https://doi.org/10.3390/nu9050521

    Article  CAS  PubMed Central  Google Scholar 

  33. Amaretti A, Di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817. https://doi.org/10.1007/s00253-012-4241-7

    Article  CAS  PubMed  Google Scholar 

  34. Lin X, Xia Y, Wang G, Yang Y, Xiong Z, Lv F, Ai L (2018) Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front Microbiol 9:2684. https://doi.org/10.3389/fmicb.2018.02684

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Indian Council of Medical Research (ICMR), New Delhi, India, Grant (OMI-Fellowship/1/2019-ECD-1 and ID No. 2019-0420). Authors are thankful to School of BioSciences and Technology (SBST), Vellore Institute of Technology, India for providing laboratory facilities while conducting the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Das.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragavan, M.L., Das, N. In Vitro Studies on Therapeutic Potential of Probiotic Yeasts Isolated from Various Sources. Curr Microbiol 77, 2821–2830 (2020). https://doi.org/10.1007/s00284-020-02100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02100-5

Navigation