Skip to main content
Log in

Preclinical Evidence of Probiotics in Colorectal Carcinogenesis: A Systematic Review

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer, the second major cause of cancer deaths, imposes a major health burden worldwide. There is growing evidence that supports that the use of probiotics is effective against various diseases, especially in gastrointestinal diseases, including the colorectal cancer, but the differences between the strains, dose, and frequency used are not yet clear.

Aims

To perform a systematic review to compile the results of studies carried out in animal models and investigated the effect of probiotics on colorectal carcinogenesis.

Methods

Studies were selected in PubMed/MEDLINE and Scopus according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search filters were developed using three parameters: probiotics, colorectal cancer, and animal model.

Results

From a structured search, we discovered 34 original articles and submitted them to a risk of bias analysis using SYRCLE’s tool. The studies show a great diversity of models, most were conducted in rats (55.8%) and used 1,2 dimethylhydrazine as the drug to induce colorectal carcinogenesis (61.7%). The vast majority of trials investigated Lactobacillus (64%) and Bifidobacterium (29.4%) strains. Twenty-six (86.6%) studies found significant reduction in lesions or tumors in the animals that received probiotics. The main methodological limitation was the insufficient amount of information for the adequate reproducibility of the trials, which indicated a high risk of bias due to incomplete characterization of the experimental design.

Conclusions

The different probiotics’ strains showed anti-carcinogenic effect, reduced the development of lesions and intestinal tumors, antioxidant and immunomodulatory activity, and reduced fecal bacterial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization. World Health Statistics 2018: monitoring health for the SDGs. Geneva; 2018.

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. 2012;13:790–801. https://doi.org/10.1016/S1470-2045(12)70211-5.

    Article  PubMed  Google Scholar 

  4. World Cancer Research Fund/American Institute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective. 2018.

  5. Bray F, Soerjomataram I. The changing global burden of cancer: transitions in human development and implications for cancer prevention and control. In: Gelband HS, Jha P, Sankaranarayanan R, eds. Cancer: disease control priorities. 3rd ed. Washington; 2015.

  6. Schottenfeld D, Fraumeni JF. Cancer epidemiology and prevention. In: Thun M, Linet MS, Cerhan JR, Haiman CA, Schottenfeld D, eds. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780190238667.001.0001.

  7. Yao Y, Suo T, Andersson R, et al. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas (Review). Cochrane Database Syst Rev. 2017;. https://doi.org/10.1002/14651858.CD003430.pub2.www.cochranelibrary.com.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sánchez B, Delgado S, Blanco-Míguez A, Anália Lourenço MG, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017;61:1–15. https://doi.org/10.1002/mnfr.201600240.

    Article  CAS  Google Scholar 

  9. Feng YL, Shu L, Zheng PF, et al. Dietary patterns and colorectal cancer risk: a meta-analysis. Eur J Cancer Prev. 2017;26:201–211. https://doi.org/10.1097/CEJ.0000000000000245.

    Article  PubMed  Google Scholar 

  10. Fung TT, Brown LS. Dietary patterns and the risk of colorectal cancer. Curr Nutr Rep. 2014;2:48–55. https://doi.org/10.1007/s13668-012-0031-1.Dietary.

    Article  Google Scholar 

  11. World Health Organization/Food and Agriculture Organization of the United Nations. Probiotics in food: health and nutritional properties and guidelines for evaluation. Rome; 2006.

  12. Bird RP, Good CK. The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol Lett. 2000;112–113:395–402.

    Article  Google Scholar 

  13. Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013;10:1–4. https://doi.org/10.1371/journal.pmed.1001482.

    Article  Google Scholar 

  14. Van Luijk J, Bakker B, Rovers MM, Ritskes-Hoitinga M, De Vries RBM, Leenaars M. Systematic reviews of animal studies; Missing link in translational research? PLoS ONE. 2014;9:1–5. https://doi.org/10.1371/journal.pone.0089981.

    Article  CAS  Google Scholar 

  15. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. https://doi.org/10.1136/bmj.b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-hoitinga M, Langendam MW. SYRCLE’ s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:1–9. https://doi.org/10.1186/1471-2288-14-43.

    Article  Google Scholar 

  17. Goldin BR, Gorbach SL. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. JNCI. 1980;64:263–265.

    Article  CAS  Google Scholar 

  18. Shackelford LA, Rao DR, Chawan CB, Pulusani SR. Effect of feeding fermented milk on the incidence of chemically induced colon tumors in rats. Nutr Cancer. 1983;5:159–164. https://doi.org/10.1080/01635588309513793.

    Article  CAS  PubMed  Google Scholar 

  19. Kulkarni N, Reddy BS. Inhibitory effect of Bifidobacterium longurn cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial β-glucuronidase. Proc Soc Exp Biol Med. 1994;207:278–283.

    Article  CAS  Google Scholar 

  20. Abdelali H, Cassand P, Soussotte V, Daubeze M, Bouley C, Narbonne JF. Effect of dairy products on initiation of precursor lesions of colon cancer in rats. Nutr Cancer. 1995;24:121–132. https://doi.org/10.1080/01635589509514400.

    Article  CAS  PubMed  Google Scholar 

  21. Goldin BR, Gualtieri LJ, Moore RP. The effect of Lactobacillus GG on the initiation and promotion of DMH—induced intestinal tumors in the rat. Nutr Cancer. 1996;25:197–204. https://doi.org/10.1080/01635589609514442.

    Article  CAS  PubMed  Google Scholar 

  22. Challa A, Rao DR, Chawan CB, Shackelford L. Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis. 1997;18:517–521.

    Article  CAS  Google Scholar 

  23. Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 1997;18:833–841.

    Article  CAS  Google Scholar 

  24. Balansky R, Gyosheva B, Ganchev G, Mircheva Z, Minkova S, Georgiev G. Inhibitory effects of freeze-dried milk fermented by selected Lactobacillus bulgaricus strains on carcinogenesis induced by 1, 2-dimethylhydrazine in rats and by diethylnitrosamine in hamsters. Cancer Latt. 1999;147:125–137.

    Article  CAS  Google Scholar 

  25. Rao CV, Sanders ME, Indranie C, Simi B, Reddy BS. Prevention of colonic preneoplastic lesions by the probiotic Lactobacillus acidophilus NCFMTM in F344 rats. Int J Oncol. 1999;14:939–944.

    CAS  PubMed  Google Scholar 

  26. Gallaher DD, Khil J. Nutritional and health benefits of inulin and oligofructose the effect of synbiotics on colon carcinogenesis in rats. J Nutr. 1999;129:1483S–1487S.

    Article  CAS  Google Scholar 

  27. Liu J-R, Wang S-Y, Lin Y-Y, Lin C-W. Antitumor activity of milk kefir and soy milk kefir in tumor-bearing mice. Nutr Cancer. 2002;44:182–187. https://doi.org/10.1207/S15327914NC4402.

    Article  Google Scholar 

  28. Tavan E, Cayuela C, Antoine J, Trugnan G, Chaugier C, Cassand P. Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis. 2002;23:477–483.

    Article  CAS  Google Scholar 

  29. LeBlanc A, de Moreno MA, Perdigón G. Reduction of β-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell. 2005;29:15–24.

    Google Scholar 

  30. Lee N-K, Park J-S, Park E, Paik H-D. Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Lett Appl Microbiol. 2007;44:274–278. https://doi.org/10.1111/j.1472-765X.2006.02078.x.

    Article  PubMed  Google Scholar 

  31. de LeBlanc A, De M, LeBlanc JG, et al. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J Med Microbiol. 2008;57:100–105. https://doi.org/10.1099/jmm.0.47403-0.

    Article  CAS  PubMed  Google Scholar 

  32. Takagi A, Ikemura H, Matsuzaki T, et al. Relationship between the in vitro response of dendritic cells to Lactobacillus and prevention of tumorigenesis in the mouse. J Gastroenterol. 2008;43:661–669. https://doi.org/10.1007/s00535-008-2212-7.

    Article  PubMed  Google Scholar 

  33. Cenesiz S, Devrim AK, Kamber U, Sozmen M. The effect of kefir on glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels in mice with colonic abnormal crypt formation (ACF) induced by azoxymethane (AOM). Dtsch Tierarztl Wschr. 2008;115:15–19. https://doi.org/10.2377/0341-6593-115-15.

    Article  CAS  Google Scholar 

  34. Urbanska AM, Bhathena J, Martoni C, Prakash S. Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc (Min/+) Mice. Dig Dis Sci. 2009;54:264–273. https://doi.org/10.1007/s10620-008-0363-2.

    Article  PubMed  Google Scholar 

  35. Kumar A, Kumar ÆN, Rabindra P, Raj SÆ. Intervention of Acidophilus-casei dahi and wheat bran against molecular alteration in colon carcinogenesis. Mol Biol Rep. 2010;37:621–627. https://doi.org/10.1007/s11033-009-9649-5.

    Article  CAS  PubMed  Google Scholar 

  36. Narushima S, Sakata T, Hioki K, Itoh T, Nomura T, Itoh K. Inhibitory effect of yogurt on aberrant crypt foci formation in the rat colon and colorectal tumorigenesis in RasH2 mice. Exp Anim. 2010;59:487–494.

    Article  CAS  Google Scholar 

  37. Foo N-P, Yang HO, Chiu H-H, et al. Probiotics prevent the development of 1, 2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem. 2011;59:13337–13345.

    Article  CAS  Google Scholar 

  38. Chang J, Shim YY, Cha S, Reaney MJT, Chee KM. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J Med Microbiol. 2012;61:361–368. https://doi.org/10.1099/jmm.0.035154-0.

    Article  CAS  PubMed  Google Scholar 

  39. Verma A, Shukla G. Probiotics Lactobacillus rhamnosus GG, Lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in Sprague Dawley rats. Nutr Cancer. 2013;65:84–91. https://doi.org/10.1080/01635581.2013.741746.

    Article  PubMed  Google Scholar 

  40. Urbanska AM, Bhathena J, Cherif S, Prakash S. Orally delivered microencapsulated probiotic formulation favorably impacts polyp formation in APC (Min/+) model of intestinal carcinogenesis. Artif Cells Nanomed Biotechnol. 2014;. https://doi.org/10.3109/21691401.2014.898647.

    Article  PubMed  Google Scholar 

  41. Mohania D, Kansal VK, Kruzliak P, Kumari A. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates the formation of aberrant crypt foci, mucin depleted foci and cell proliferation on 1, 2-dimethylhydrazine induced colorectal carcinogenesis in Wistar rats. Rejuvenation Res. 2014;17:325–333. https://doi.org/10.1089/rej.2013.1537.

    Article  CAS  PubMed  Google Scholar 

  42. Verma A, Shukla G. Synbiotic (Lactobacillus rhamnosus + Lactobacillus acidophilus + inulin) attenuates oxidative stress and colonic damage in 1, 2 dimethylhydrazine dihydrochloride-induced colon carcinogenesis in Sprague–Dawley rats: a long-term study. Eur J Cancer Prev. 2014;23:550–559. https://doi.org/10.1097/CEJ.0000000000000054.

    Article  CAS  PubMed  Google Scholar 

  43. Walia S, Kamal R, Kanwar SS, Dhawan DK. Cyclooxygenase as a target in chemoprevention by probiotics during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Nutr Cancer. 2015;. https://doi.org/10.1080/01635581.2015.1011788.

    Article  PubMed  Google Scholar 

  44. Shin R, Itoh Y, Kataoka M, et al. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice. Int J Food Sci Nutr. 2016;. https://doi.org/10.1080/09637486.2016.1185771.

    Article  PubMed  Google Scholar 

  45. Lenoir M, del Carmen S, Cortes-Perez NG, et al. Lactobacillus casei BL23 regulates T reg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol. 2016;51:862–873. https://doi.org/10.1007/s00535-015-1158-9.

    Article  CAS  Google Scholar 

  46. del Carmen S, de LeBlanc ADM, Levit R, et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol. 2017;42:122–129. https://doi.org/10.1016/j.intimp.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  47. Irecta-Nájera CA, Huizar-López MR, Casas-Solís J, Castro-Félix P, Santerre A. Protective effect of lactobacillus casei on DMH-induced colon carcinogenesis in mice. Probiotics Antimicro Prot. 2017;9:163–171. https://doi.org/10.1007/s12602-017-9253-2.

    Article  CAS  Google Scholar 

  48. Kahouli I, Malhotra M, Westfall S, Alaoui-Jamali MA, Prakash S. Design and validation of an orally administrated active L. fermentumL. acidophilus probiotic formulation using colorectal cancer Apc Min/+ mouse model. Appl Microbiol Biotechnol. 2017;101:1999–2019. https://doi.org/10.1007/s00253-016-7885-x.

    Article  CAS  PubMed  Google Scholar 

  49. Walia S, Kamal R, Dhawan DK, Kanwar SS. Chemoprevention by probiotics during 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Dig Dis Sci. 2018;63:900–909. https://doi.org/10.1007/s10620-018-4949-z.

    Article  CAS  PubMed  Google Scholar 

  50. Agah S, Alizadeh AM, Mosavi M, et al. More protection of lactobacillus acidophilus than bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicro Prot. 2018;. https://doi.org/10.1007/s12602-018-9425-8.

    Article  Google Scholar 

  51. Kumar A, Singh NK, Sinha PR. Inhibition of 1,2-dimethylhydrazine induced colon genotoxicity in rats by the administration of probiotic curd. Mol Biol Rep. 2010;37:1373–1376. https://doi.org/10.1007/s11033-009-9519-1.

    Article  CAS  PubMed  Google Scholar 

  52. Borriello SP, Hammes WP, Holzapfel W, et al. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis. 2003;36:775–780.

    Article  CAS  Google Scholar 

  53. Didari T, Solki S, Mozaffari S, Nikfar S, Abdollahi M. A systematic review of the safety of probiotics. Expert Opin Drug Saf. 2014;13:227–239.

    Article  Google Scholar 

  54. Johnson RL, Fleet JC. Animal models of colorectal cancer. Cancer Metastasis Rev. 2013;32:39–61.

    Article  Google Scholar 

  55. Kim S, Paik HY, Yoon H, et al. Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015;21:5167–5175. https://doi.org/10.3748/wjg.v21.i17.5167.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ma W, Song M, Kværner AS, et al. Sex-specific association between family history of diabetes and risk of colorectal cancer: two prospective cohort studies. Cancer Prev Res. 2018;. https://doi.org/10.1158/1940-6207.CAPR-18-0159.

    Article  Google Scholar 

  57. Chun KA, Kocarnik JM, Hardikar SS, et al. Leptin gene variants and colorectal cancer risk: sex-specific associations. PLoS Med. 2018;13:e0206519.

    Article  Google Scholar 

  58. Corpet DE, Pierre F. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomark Prev. 2003;12:391–400.

    Google Scholar 

  59. Daniel M, Tollefsbol TO. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol. 2015;218:59–70. https://doi.org/10.1242/jeb.107110.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vieira AM, de Almeida Brasiel PG, Ferreira MS, et al. Maternal soybean diet during lactation alters breast milk composition and programs the lipid profile in adult male rat offspring. Endocrine. 2018;60:272–281. https://doi.org/10.1007/s12020-018-1572-x.

    Article  CAS  PubMed  Google Scholar 

  61. Perse M, Cerar A. Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol. 2011;. https://doi.org/10.1155/2011/473964.

    Article  PubMed  Google Scholar 

  62. de Souza ASC, Casagrande TAC. Animal models for colorectal cancer. Arq Bras Cir Dig. 2018;31:e1369.

    Article  Google Scholar 

  63. Jucá MJ, Bandeira BC, Carvalho DS, Leal AT. Comparative study of 1,2-dimethylhydrazine and azoxymethane on the induction of colorectal cancer in rats. J Coloproctol. 2014;34:167–173. https://doi.org/10.1016/j.jcol.2014.06.003.

    Article  Google Scholar 

  64. Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. The Cancer Genome Atlas Network; 2012. https://doi.org/10.1038/nature11252.Comprehensive.

  65. Suzui M, Morioka T, Yoshimi N. Colon preneoplastic lesions in animal models. J Toxicol Pathol. 2013;26:335–341. https://doi.org/10.1293/tox.2013-0028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dazard JJ, Sandlers Y, Doerner SK, Berger NA, Brunengraber H. Metabolomics of Apc Min/+ mice genetically susceptible to intestinal cancer. BMC Syst Biol. 2014;8:1–21.

    Article  Google Scholar 

  67. Zielinska D, Kolozyn-Krajewska D. Food-origin lactic acid bacteria may exhibit probiotic properties: review. BioMed Res Int. 2018;. https://doi.org/10.1155/2018/5063185.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pala V, Sieri S, Berrino F, et al. Yogurt consumption and risk of colorectal cancer in the Italian European Prospective Investigation into Cancer and Nutrition cohort. Int J Cancer. 2011;129:2712–2719. https://doi.org/10.1002/ijc.26193.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang K, Dai H, Liang W, Zhang L, Deng Z. Fermented dairy foods intake and risk of cancer. Int J Cancer. 2018;. https://doi.org/10.1002/ijc.31959.

    Article  PubMed  PubMed Central  Google Scholar 

  70. de Paula Melo AF, Mendonça MC, Rosa-Castro RDM. The protective effects of fermented kefir milk on azoxymethane-induced aberrant crypt formation in mice colon. Tissue Cell. 2018;52:51–56. https://doi.org/10.1016/j.tice.2018.03.013.

    Article  CAS  Google Scholar 

  71. Nielsen B, Gurakan GC, Unlu G. Kefir: a multifaceted fermented dairy product. Probiotics Antimicro Prot. 2014;6:123–135. https://doi.org/10.1007/s12602-014-9168-0.

    Article  CAS  Google Scholar 

  72. Sanders ME. How do we know when something called “probiotic” Is really a probiotic? A guideline for consumers and health care professionals. Funct Food Rev. 2009;1:3–12. https://doi.org/10.2310/6180.2009.00002.

    Article  Google Scholar 

  73. Biagioli M, Laghi L, Carino A, et al. Metabolic variability of a multispecies probiotic preparation impacts on the anti-inflammatory activity. Front Pharmacol. 2017;8:1–10. https://doi.org/10.3389/fphar.2017.00505.

    Article  CAS  Google Scholar 

  74. Anderson RC, Cookson AL, Mcnabb WC, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:1–11.

    Article  Google Scholar 

  75. Uccello M, Malaguarnera G, Basile F, et al. Potential role of probiotics on colorectal cancer prevention. BMC Surg. 2012;12:1–8.

    Article  Google Scholar 

  76. Wan LYM, Chen ZJ, Shah NP, El-Nezami H. Modulation of intestinal epithelial defense responses by probiotic bacteria modulation of intestinal epithelial defense responses by probiotic bacteria. Crit Rev Food Sci Nutr. 2015;. https://doi.org/10.1080/10408398.2014.905450.

    Article  Google Scholar 

  77. Zhu Q, Jin Z, Wu W, et al. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS ONE. 2014;9:e90849. https://doi.org/10.1371/journal.pone.0090849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brisbin JT, Gong J, Orouji S, et al. Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin Vac Immunol. 2011;18:1447–1455.

    Article  CAS  Google Scholar 

  79. Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B. Bifidobacterium infantis strains with and without a combination of Oligofructose and Inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol. 2006;6:1–10. https://doi.org/10.1186/1471-230X-6-31.

    Article  CAS  Google Scholar 

  80. Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Farrokhi AS, Darabi N. Probiotics importance and their immunomodulatory properties. J Cell Physiol. 2018;. https://doi.org/10.1002/jcp.27559.

    Article  PubMed  Google Scholar 

  81. Nowak A, Paliwoda A, Blasiak J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: a review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr. 2018;. https://doi.org/10.1080/10408398.2018.1494539.

    Article  PubMed  Google Scholar 

  82. Afify AEMR, Romeilah RM, Sultan SIM, Hussein MM. Antioxidant activity and biological evaluations of probiotic bacteria strains. Int J Acad Res. 2012;4:131–139.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support provided by Fundação do Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, processes APQ-01332-16, APQ-01895-16, PPM-00687-17, and PPM-00077-18), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, processes 303972/2017-3, 423594/2018-4, 305093/2017-7, and MCTIC 408503/2018-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES, finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

PGAB, SCPDL, MCGP, RDN, and RVG conceived the study. PGAB and RVG collected all data and analyzed and interpreted the data. PGAB drafted the manuscript. All authors commented on drafts of the paper. All authors have approved the final draft of the manuscript.

Corresponding author

Correspondence to Reggiani Vilela Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasiel, P.G.d.A., Dutra Luquetti, S.C.P., Peluzio, M.d.C.G. et al. Preclinical Evidence of Probiotics in Colorectal Carcinogenesis: A Systematic Review. Dig Dis Sci 65, 3197–3210 (2020). https://doi.org/10.1007/s10620-020-06062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06062-3

Keywords

Navigation