ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ascorbic Acid Enhances Tet-Mediated 5-Methylcytosine Oxidation and Promotes DNA Demethylation in Mammals

View Author Information
The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
§ Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
Department of Orthopaedic Surgery, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
University of Chinese Academy of Sciences, Beijing 100039, China
Cite this: J. Am. Chem. Soc. 2013, 135, 28, 10396–10403
Publication Date (Web):June 14, 2013
https://doi.org/10.1021/ja4028346
Copyright © 2013 American Chemical Society

    Article Views

    8826

    Altmetric

    -

    Citations

    470
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    DNA hydroxymethylation and its mediated DNA demethylation are critical for multiple cellular processes, for example, nuclear reprogramming, embryonic development, and many diseases. Here, we demonstrate that a vital nutrient ascorbic acid (AA), or vitamin C (Vc), can directly enhance the catalytic activity of Tet dioxygenases for the oxidation of 5-methylcytosine (5mC). As evidenced by changes in intrinsic fluorescence and catalytic activity of Tet2 protein caused by AA and its oxidation-resistant derivatives, we further show that AA can uniquely interact with the C-terminal catalytic domain of Tet enzymes, which probably promotes their folding and/or recycling of the cofactor Fe2+. Other strong reducing chemicals do not have a similar effect. These results suggest that AA also acts as a cofactor of Tet enzymes. In mouse embryonic stem cells, AA significantly increases the levels of all 5mC oxidation products, particularly 5-formylcytosine and 5-carboxylcytosine (by more than an order of magnitude), leading to a global loss of 5mC (∼40%). In cells deleted of the Tet1 and Tet2 genes, AA alters neither 5mC oxidation nor the overall level of 5mC. The AA effects are however restored when Tet2 is re-expressed in the Tet-deficient cells. The enhancing effects of AA on 5mC oxidation and DNA demethylation are also observed in a mouse model deficient in AA synthesis. Our data establish a direct link among AA, Tet, and DNA methylation, thus revealing a role of AA in the regulation of DNA modifications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the materials, methods, and experimental procedures as well as additional information as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 470 publications.

    1. Colton J. Treadway, Joshua A Boyer, Shiyue Yang, Hui Yang, Mengxi Liu, Zhijun Li, Meng Cheng, William F. Marzluff, Dan Ye, Yue Xiong, Albert S. Baldwin, Qi Zhang, Nicholas G. Brown. Using NMR to Monitor TET-Dependent Methylcytosine Dioxygenase Activity and Regulation. ACS Chemical Biology 2024, 19 (1) , 15-21. https://doi.org/10.1021/acschembio.3c00619
    2. Weizhi He, Xiaotong Yin, Chu Xu, Xiangyue Liu, Yue Huang, Caiguang Yang, Yanhui Xu, Lulu Hu. Ascorbic Acid Reprograms Epigenome and Epitranscriptome by Reducing Fe(III) in the Catalytic Cycle of Dioxygenases. ACS Chemical Biology 2024, 19 (1) , 129-140. https://doi.org/10.1021/acschembio.3c00567
    3. Umar Nishan, Irfan Ullah, Rukhsana Gul, Amir Badshah, Nawshad Muhammad, Naeem Khan, Mohibullah Shah, Muhammad Asad, Saifullah Afridi, Riaz Ullah, Essam A. Ali, Suvash Chandra Ojha. Paracetamol-Mediated Synthesis of Silver Nanoparticles and Their Functionalization with Ionic Liquid for the Colorimetric Biosensing of Ascorbic Acid. ACS Omega 2023, 8 (47) , 44931-44941. https://doi.org/10.1021/acsomega.3c06353
    4. Danni Wu, Yao Li, Cuiping Li, Shangwei Zhong, Baodong Liu, Haiying Hang, Hailin Wang. MDM2 Antagonist Nutlin-3 Stimulates Global DNA Hydroxymethylation by Enhancing p53–TET1 Signaling Axis. ACS Chemical Biology 2023, 18 (10) , 2240-2248. https://doi.org/10.1021/acschembio.3c00247
    5. Xingrui Song, Xinyue Song, Weiyi Lai, Hailin Wang. Hyperactive DNA Cutting for Unbiased UHPLC–MS/MS Quantification of Epigenetic DNA Marks by Engineering DNase I Mutants. Analytical Chemistry 2022, 94 (50) , 17670-17676. https://doi.org/10.1021/acs.analchem.2c04485
    6. Rui Zhang, Weiyi Lai, Hailin Wang. Quantification of Epigenetic DNA Modifications in the Subchromatin Structure Matrix Attachment Regions by Stable Isotope Dilution UHPLC-MS/MS Analysis. Analytical Chemistry 2021, 93 (47) , 15567-15572. https://doi.org/10.1021/acs.analchem.1c04151
    7. Hui-Yu Pan, Yue Yu, Ting Cao, Ying Liu, Ying-Lin Zhou, Xin-Xiang Zhang. Systematic Profiling of Exosomal Small RNA Epigenetic Modifications by High-Performance Liquid Chromatography–Mass Spectrometry. Analytical Chemistry 2021, 93 (45) , 14907-14911. https://doi.org/10.1021/acs.analchem.1c03869
    8. Sushma Sappa, Debasis Dey, Babu Sudhamalla, Kabirul Islam. Catalytic Space Engineering as a Strategy to Activate C–H Oxidation on 5-Methylcytosine in Mammalian Genome. Journal of the American Chemical Society 2021, 143 (31) , 11891-11896. https://doi.org/10.1021/jacs.1c03815
    9. Ben-Zhan Zhu, Miao Tang, Chun-Hua Huang, Li Mao, Jie Shao. Mechanistic Study on Oxidative DNA Damage and Modifications by Haloquinoid Carcinogenic Intermediates and Disinfection Byproducts. Chemical Research in Toxicology 2021, 34 (7) , 1701-1712. https://doi.org/10.1021/acs.chemrestox.1c00158
    10. Jing Jin, Wenliang Ji, Lijuan Li, Gang Zhao, Wenjie Wu, Huan Wei, Furong Ma, Ying Jiang, Lanqun Mao. Electrochemically Probing Dynamics of Ascorbate during Cytotoxic Edema in Living Rat Brain. Journal of the American Chemical Society 2020, 142 (45) , 19012-19016. https://doi.org/10.1021/jacs.0c09011
    11. Anatoly Zhitkovich. Nuclear and Cytoplasmic Functions of Vitamin C. Chemical Research in Toxicology 2020, 33 (10) , 2515-2526. https://doi.org/10.1021/acs.chemrestox.0c00348
    12. Jiezhen Mo, Ziyu Liang, Meiling Lu, Hailin Wang. Protonation–Suppression-Free LC-MS/MS Analysis for Profiling of DNA Cytosine Modifications in Adult Mice. Analytical Chemistry 2020, 92 (11) , 7430-7436. https://doi.org/10.1021/acs.analchem.0c00962
    13. Bi-Feng Yuan. Assessment of DNA Epigenetic Modifications. Chemical Research in Toxicology 2020, 33 (3) , 695-708. https://doi.org/10.1021/acs.chemrestox.9b00372
    14. Ning Zhang, Wenchao Deng, Yao Li, Yangde Ma, Yan Liu, Xiangjun Li, Hailin Wang. Formic Acid of ppm Enhances LC-MS/MS Detection of UV Irradiation-Induced DNA Dimeric Photoproducts. Analytical Chemistry 2020, 92 (1) , 1197-1204. https://doi.org/10.1021/acs.analchem.9b04327
    15. Yunxiang Chen, Zewei Shao, Yi Yang, Shuwen Zhao, Ying Tao, Heliang Yao, Hongjie Luo, Xun Cao, Ping Jin. Electrons-Donating Derived Dual-Resistant Crust of VO2 Nano-Particles via Ascorbic Acid Treatment for Highly Stable Smart Windows Applications. ACS Applied Materials & Interfaces 2019, 11 (44) , 41229-41237. https://doi.org/10.1021/acsami.9b11142
    16. Wenji Li, Davit Sargsyan, Renyi Wu, Shanyi Li, Lujing Wang, David Cheng, Ah-Ng Kong. DNA Methylome and Transcriptome Alterations in High Glucose-Induced Diabetic Nephropathy Cellular Model and Identification of Novel Targets for Treatment by Tanshinone IIA. Chemical Research in Toxicology 2019, 32 (10) , 1977-1988. https://doi.org/10.1021/acs.chemrestox.9b00117
    17. Yue Yu, Fang Yuan, Xiao-Hui Zhang, Ming-Zhe Zhao, Ying-Lin Zhou, Xin-Xiang Zhang. Ultrasensitive Determination of Rare Modified Cytosines Based on Novel Hydrazine Labeling Reagents. Analytical Chemistry 2019, 91 (20) , 13047-13053. https://doi.org/10.1021/acs.analchem.9b03227
    18. Shangwei Zhong, Cuiping Li, Xiao Han, Xiangjun Li, Yun-Gui Yang, Hailin Wang. Idarubicin Stimulates Cell Cycle- and TET2-Dependent Oxidation of DNA 5-Methylcytosine in Cancer Cells. Chemical Research in Toxicology 2019, 32 (5) , 861-868. https://doi.org/10.1021/acs.chemrestox.9b00012
    19. Jun Xiong, Bi-Feng Yuan, Yu-Qi Feng. Mass Spectrometry for Investigating the Effects of Toxic Metals on Nucleic Acid Modifications. Chemical Research in Toxicology 2019, 32 (5) , 808-819. https://doi.org/10.1021/acs.chemrestox.9b00042
    20. Jiannan Xiao, Jingjuan Liu, Meiying Liu, Guanfeng Ji, Zhiliang Liu. Fabrication of a Luminescence-Silent System Based on a Post-Synthetic Modification Cd-MOFs: A Highly Selective and Sensitive Turn-on Luminescent Probe for Ascorbic Acid Detection. Inorganic Chemistry 2019, 58 (9) , 6167-6174. https://doi.org/10.1021/acs.inorgchem.9b00420
    21. Mackenzie J. Parker, Peter R. Weigele, Lana Saleh. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes. Biochemistry 2019, 58 (6) , 450-467. https://doi.org/10.1021/acs.biochem.8b01185
    22. Chaoxing Liu, Xiaomeng Luo, Yuqi Chen, Fan Wu, Wei Yang, Yafen Wang, Xiong Zhang, Guangrong Zou, Xiang Zhou. Selective Labeling Aldehydes in DNA. Analytical Chemistry 2018, 90 (24) , 14616-14621. https://doi.org/10.1021/acs.analchem.8b04822
    23. Junfa Yin, Shaokun Chen, Ning Zhang, Hailin Wang. Multienzyme Cascade Bioreactor for a 10 min Digestion of Genomic DNA into Single Nucleosides and Quantitative Detection of Structural DNA Modifications in Cellular Genomic DNA. ACS Applied Materials & Interfaces 2018, 10 (26) , 21883-21890. https://doi.org/10.1021/acsami.8b05399
    24. Weiyi Lai, Cong Lyu, Hailin Wang. Vertical Ultrafiltration-Facilitated DNA Digestion for Rapid and Sensitive UHPLC-MS/MS Detection of DNA Modifications. Analytical Chemistry 2018, 90 (11) , 6859-6866. https://doi.org/10.1021/acs.analchem.8b01041
    25. Xiaoling Liu, Weiyi Lai, Ning Zhang, Hailin Wang. Predominance of N6-Methyladenine-Specific DNA Fragments Enriched by Multiple Immunoprecipitation. Analytical Chemistry 2018, 90 (9) , 5546-5551. https://doi.org/10.1021/acs.analchem.8b01087
    26. Huan Wang, Guiqiang Pu, Samrat Devaramani, Yanfeng Wang, Zhaofan Yang, Linfang Li, Xiaofang Ma, Xiaoquan Lu. Bimodal Electrochemiluminescence of G-CNQDs in the Presence of Double Coreactants for Ascorbic Acid Detection. Analytical Chemistry 2018, 90 (7) , 4871-4877. https://doi.org/10.1021/acs.analchem.8b00517
    27. Mengzhe Guo, Liyan Zhang, Yan Du, Wencheng Du, Dantong Liu, Cheng Guo, Yuanjiang Pan, Daoquan Tang. Enrichment and Quantitative Determination of 5-(Hydroxymethyl)-2′-deoxycytidine, 5-(Formyl)-2′-deoxycytidine, and 5-(Carboxyl)-2′-deoxycytidine in Human Urine of Breast Cancer Patients by Magnetic Hyper-Cross-Linked Microporous Polymers Based on Polyionic Liquid. Analytical Chemistry 2018, 90 (6) , 3906-3913. https://doi.org/10.1021/acs.analchem.7b04755
    28. Jun Xiong, Xiaona Liu, Qing-Yun Cheng, Shan Xiao, Lai-Xin Xia, Bi-Feng Yuan, and Yu-Qi Feng . Heavy Metals Induce Decline of Derivatives of 5-Methycytosine in Both DNA and RNA of Stem Cells. ACS Chemical Biology 2017, 12 (6) , 1636-1643. https://doi.org/10.1021/acschembio.7b00170
    29. Ruichuan Yin, Jiezhen Mo, Jiayin Dai, and Hailin Wang . Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II). ACS Chemical Biology 2017, 12 (6) , 1494-1498. https://doi.org/10.1021/acschembio.7b00261
    30. Baodong Liu, Xiaoling Liu, Weiyi Lai, and Hailin Wang . Metabolically Generated Stable Isotope-Labeled Deoxynucleoside Code for Tracing DNA N6-Methyladenine in Human Cells. Analytical Chemistry 2017, 89 (11) , 6202-6209. https://doi.org/10.1021/acs.analchem.7b01152
    31. Shangwei Zhong, Zhe Li, Ting Jiang, Xiangjun Li, and Hailin Wang . Immunofluorescence Imaging Strategy for Evaluation of the Accessibility of DNA 5-Hydroxymethylcytosine in Chromatins. Analytical Chemistry 2017, 89 (11) , 5702-5706. https://doi.org/10.1021/acs.analchem.7b01428
    32. Junfa Yin, Tian Xu, Ning Zhang, and Hailin Wang . Three-Enzyme Cascade Bioreactor for Rapid Digestion of Genomic DNA into Single Nucleosides. Analytical Chemistry 2016, 88 (15) , 7730-7737. https://doi.org/10.1021/acs.analchem.6b01682
    33. Shuo Liu, Ji Jiang, Lin Li, Nicholas J. Amato, Zi Wang, and Yinsheng Wang . Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine. Environmental Science & Technology 2015, 49 (19) , 11923-11931. https://doi.org/10.1021/acs.est.5b03386
    34. Xiaohua Zhu, Tingbi Zhao, Zhou Nie, Yang Liu, and Shouzhuo Yao . Non-Redox Modulated Fluorescence Strategy for Sensitive and Selective Ascorbic Acid Detection with Highly Photoluminescent Nitrogen-Doped Carbon Nanoparticles via Solid-State Synthesis. Analytical Chemistry 2015, 87 (16) , 8524-8530. https://doi.org/10.1021/acs.analchem.5b02167
    35. Xingyu Lu, Boxuan Simen Zhao, and Chuan He . TET Family Proteins: Oxidation Activity, Interacting Molecules, and Functions in Diseases. Chemical Reviews 2015, 115 (6) , 2225-2239. https://doi.org/10.1021/cr500470n
    36. Yang Tang, Shu-Jian Zheng, Chu-Bo Qi, Yu-Qi Feng, and Bi-Feng Yuan . Sensitive and Simultaneous Determination of 5-Methylcytosine and Its Oxidation Products in Genomic DNA by Chemical Derivatization Coupled with Liquid Chromatography-Tandem Mass Spectrometry Analysis. Analytical Chemistry 2015, 87 (6) , 3445-3452. https://doi.org/10.1021/ac504786r
    37. Ruichuan Yin, Jiezhen Mo, Meiling Lu, and Hailin Wang . Detection of Human Urinary 5-Hydroxymethylcytosine by Stable Isotope Dilution HPLC-MS/MS Analysis. Analytical Chemistry 2015, 87 (3) , 1846-1852. https://doi.org/10.1021/ac5038895
    38. Liang Zhang, Weizhong Chen, Lakshminarayan M. Iyer, Jennifer Hu, Gloria Wang, Ye Fu, Miao Yu, Qing Dai, L. Aravind, and Chuan He . A TET Homologue Protein from Coprinopsis cinerea (CcTET) That Biochemically Converts 5-Methylcytosine to 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxylcytosine. Journal of the American Chemical Society 2014, 136 (13) , 4801-4804. https://doi.org/10.1021/ja500979k
    39. Dandan Zou, Dapeng Zhang, Shengquan Liu, Bailin Zhao, and Hailin Wang . Interplay of Binding Stoichiometry and Recognition Specificity for the Interaction of MBD2b Protein and Methylated DNA Revealed by Affinity Capillary Electrophoresis Coupled with Laser-Induced Fluorescence Analysis. Analytical Chemistry 2014, 86 (3) , 1775-1782. https://doi.org/10.1021/ac4036636
    40. Shao-Ting Wang, Wei Huang, Wei Lu, Bi-Feng Yuan, and Yu-Qi Feng . TiO2-Based Solid Phase Extraction Strategy for Highly Effective Elimination of Normal Ribonucleosides before Detection of 2′-Deoxynucleosides/Low-Abundance 2′-O-Modified Ribonucleosides. Analytical Chemistry 2013, 85 (21) , 10512-10518. https://doi.org/10.1021/ac4025297
    41. Yu-Jung Tseng, Yuki Kageyama, Rebecca L. Murdaugh, Ayumi Kitano, Jong Hwan Kim, Kevin A. Hoegenauer, Jonathan Tiessen, Mackenzie H. Smith, Hidetaka Uryu, Koichi Takahashi, James F. Martin, Md Abul Hassan Samee, Daisuke Nakada. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-44718-0
    42. Kinga Linowiecka, Jolanta Guz, Tomasz Dziaman, Olga Urbanowska–Domańska, Ewelina Zarakowska, Anna Szpila, Justyna Szpotan, Aleksandra Skalska-Bugała, Paweł Mijewski, Agnieszka Siomek-Górecka, Rafał Różalski, Daniel Gackowski, Ryszard Oliński, Marek Foksiński. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-56326-5
    43. Xilan Yu, Shanshan Li. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biological Reviews 2024, 99 (3) , 878-900. https://doi.org/10.1111/brv.13049
    44. Tiffany Leesang, Peter Lyon, Joey Pinzone, Luisa Cimmino. Micronutrient regulation of the DNA methylome. Frontiers in Epigenetics and Epigenomics 2024, 2 https://doi.org/10.3389/freae.2024.1409355
    45. Xiangyue Liu, Weizhi He, Lulu Hu. Exploring transient global transcriptional changes induced by ascorbic acid revealed via atKAS-seq profiling. Functional & Integrative Genomics 2024, 24 (2) https://doi.org/10.1007/s10142-024-01349-4
    46. Wei-Ying Meng, Zi-Xin Wang, Yunfang Zhang, Yujun Hou, Jian-Huang Xue. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes. Journal of Biological Chemistry 2024, 300 (4) , 106791. https://doi.org/10.1016/j.jbc.2024.106791
    47. Ting Jiang, Qian Zhou, Kang-Kang Yu, Shan-Yong Chen, Kun Li. Identification and quantification of N 6 -methyladenosine by chemical derivatization coupled with 19 F NMR spectroscopy. Organic & Biomolecular Chemistry 2024, 22 (13) , 2566-2573. https://doi.org/10.1039/D4OB00169A
    48. Edita Kriukienė, Miglė Tomkuvienė, Saulius Klimašauskas. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chemical Society Reviews 2024, 53 (5) , 2264-2283. https://doi.org/10.1039/D3CS00858D
    49. Hishyar A. Najeeb, Timi Sanusi, Gerald Saldanha, Karen Brown, Marcus S. Cooke, George DD. Jones. Redox modulation of oxidatively-induced DNA damage by ascorbate enhances both in vitro and ex-vivo DNA damage formation and cell death in melanoma cells. Free Radical Biology and Medicine 2024, 213 , 309-321. https://doi.org/10.1016/j.freeradbiomed.2024.01.019
    50. Xiaoshan Peng, Han Li, Dapeng Wang, Lu Wu, Jiacai Hu, Fuping Ye, Binafsha Manzoor Syed, Deye Liu, Jingshu Zhang, Qizhan Liu. Intrauterine arsenic exposure induces glucose metabolism disorders in adult offspring by targeting TET2-mediated DNA hydroxymethylation reprogramming of HNF4α in developing livers, an effect alleviated by ascorbic acid. Journal of Hazardous Materials 2024, 465 , 133405. https://doi.org/10.1016/j.jhazmat.2023.133405
    51. Angela Mungala Lengo, Ibrahim Mohamed, Jean-Claude Lavoie. Glutathione Supplementation Prevents Neonatal Parenteral Nutrition-Induced Short- and Long-Term Epigenetic and Transcriptional Disruptions of Hepatic H2O2 Metabolism in Guinea Pigs. Nutrients 2024, 16 (6) , 849. https://doi.org/10.3390/nu16060849
    52. Shouying Li, Zhuoran Li, Mengjie Wu, Yang Zhou, Wenli Tang, Huan Zhong. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. Science of The Total Environment 2024, 911 , 168690. https://doi.org/10.1016/j.scitotenv.2023.168690
    53. Sharna J. Coker, Mary J. Berry, Margreet C. M. Vissers, Rebecca M. Dyson. Maternal Vitamin C Intake during Pregnancy Influences Long-Term Offspring Growth with Timing- and Sex-Specific Effects in Guinea Pigs. Nutrients 2024, 16 (3) , 369. https://doi.org/10.3390/nu16030369
    54. Camila C. Portugal. Ascorbate and its transporter SVCT2: The dynamic duo's integrated roles in CNS neurobiology and pathophysiology. Free Radical Biology and Medicine 2024, 212 , 448-462. https://doi.org/10.1016/j.freeradbiomed.2023.12.040
    55. Luca Guarnera, Babal K. Jha. TET2 mutation as prototypic clonal hematopoiesis lesion. Seminars in Hematology 2024, 61 (1) , 51-60. https://doi.org/10.1053/j.seminhematol.2024.01.013
    56. Valeria Leon Kropf, Caraugh J. Albany, Anna Zoccarato, Hannah L. H. Green, Youwen Yang, Alison C. Brewer, . TET3 is a positive regulator of mitochondrial respiration in Neuro2A cells. PLOS ONE 2024, 19 (1) , e0294187. https://doi.org/10.1371/journal.pone.0294187
    57. Muafia Akbar, Nauman Sadiq, Memoona Shakoor, Muhammad Shafique, Anum Tahir, Muhammad Zahid, Ghulam Mustafa. Fabrication of molecularly imprinted polymer‐based interdigital sensor for L‐ascorbic acid. Surface and Interface Analysis 2024, 56 (1) , 43-51. https://doi.org/10.1002/sia.7266
    58. Junko Maeda, Atsushi Nagai, Yasushi Aizawa, Takamitsu A. Kato. Palmitoyl ascorbic acid glucoside enhanced cell survival with post irradiation treatment. Biochemical and Biophysical Research Communications 2024, 694 , 149386. https://doi.org/10.1016/j.bbrc.2023.149386
    59. Xiao-Jie Zhang, Bin-Bin Han, Zhen-Yu Shao, Rui Yan, Juan Gao, Ting Liu, Zi-Yang Jin, Weiyi Lai, Zhi-Mei Xu, Chao-Han Wang, Fengjuan Zhang, Chan Gu, Yin Wang, Hailin Wang, Colum P. Walsh, Fan Guo, Guo-Liang Xu, Ya-Rui Du. Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation. Nature Structural & Molecular Biology 2024, 31 (1) , 42-53. https://doi.org/10.1038/s41594-023-01125-1
    60. Hisato Kondoh. Molecular Basis of Cell Reprogramming into iPSCs with Exogenous Transcription Factors. 2024, 193-218. https://doi.org/10.1007/978-3-031-39027-2_11
    61. David Heber. Epigenetics and Modification of Gene Expression in Metabolism. 2024, 61-76. https://doi.org/10.1016/B978-0-443-15315-0.00009-2
    62. Maryam Ghahremani-Nasab, Azizeh Rahmani Del Bakhshayesh, Naeimeh Akbari-Gharalari, Ahmad Mehdipour. Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor. Journal of Biological Engineering 2023, 17 (1) https://doi.org/10.1186/s13036-023-00380-6
    63. Kevin C. L. Cheng, Jennifer M. Frost, Francisco J. Sánchez-Luque, Marta García-Canãdas, Darren Taylor, Wan R. Yang, Branavy Irayanar, Swetha Sampath, Hemalvi Patani, Karl Agger, Kristian Helin, Gabriella Ficz, Kathleen H. Burns, Adam Ewing, José L. García-Pérez, Miguel R. Branco. Vitamin C activates young LINE-1 elements in mouse embryonic stem cells via H3K9me3 demethylation. Epigenetics & Chromatin 2023, 16 (1) https://doi.org/10.1186/s13072-023-00514-6
    64. Aurora Taira, Kimmo Palin, Anna Kuosmanen, Niko Välimäki, Outi Kuittinen, Outi Kuismin, Eevi Kaasinen, Kristiina Rajamäki, Lauri A. Aaltonen. Vitamin C boosts DNA demethylation in TET2 germline mutation carriers. Clinical Epigenetics 2023, 15 (1) https://doi.org/10.1186/s13148-022-01404-6
    65. Jaywon Lee, Dongin Lee, Hwang-Phill Kim, Tae-You Kim, Duhee Bang. EBS-seq: enrichment-based method for accurate analysis of 5-hydroxymethylcytosine at single-base resolution. Clinical Epigenetics 2023, 15 (1) https://doi.org/10.1186/s13148-023-01451-7
    66. Xinchao Zhang, Yue Zhang, Chaofu Wang, Xu Wang. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01537-x
    67. Ruochen Liu, Erhu Zhao, Huijuan Yu, Chaoyu Yuan, Muhammad Nadeem Abbas, Hongjuan Cui. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01528-y
    68. Alyssa Chang, Kathleen A. Martin, Monica Colvin, Lavanya Bellumkonda. Role of ascorbic acid in cardiac allograft vasculopathy. Clinical Transplantation 2023, 37 (12) https://doi.org/10.1111/ctr.15153
    69. Noga Ussishkin, Daphna Nachmani. A Bloody Feast—Nutritional Regulation of Hematopoiesis. Experimental Hematology 2023, 127 , 1-7. https://doi.org/10.1016/j.exphem.2023.08.004
    70. Robert Kaplánek, Zdeněk Kejík, Jan Hajduch, Kateřina Veselá, Kateřina Kučnirová, Markéta Skaličková, Anna Venhauerová, Božena Hosnedlová, Róbert Hromádka, Petr Dytrych, Petr Novotný, Nikita Abramenko, Veronika Antonyová, David Hoskovec, Petr Babula, Michal Masařík, Pavel Martásek, Milan Jakubek. TET protein inhibitors: Potential and limitations. Biomedicine & Pharmacotherapy 2023, 166 , 115324. https://doi.org/10.1016/j.biopha.2023.115324
    71. Qi Wu, Zhipeng Hu, Zhiwei Wang, Yanjia Che, Min Zhang, Sihao Zheng, Kai Xing, Xiaohan Zhong, Yuanyang Chen, Feng Shi, Shun Yuan. Glut10 restrains neointima formation by promoting SMCs mtDNA demethylation and improving mitochondrial function. Translational Research 2023, 260 , 1-16. https://doi.org/10.1016/j.trsl.2023.05.001
    72. Di Huang, Junhui Liang, Jie Yang, Chunrun Yang, Xin Wang, Tianyu Dai, Thorsten Steinberg, Changzhong Li, Fei Wang. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. Tissue Engineering Part B: Reviews 2023, 29 (5) , 558-573. https://doi.org/10.1089/ten.teb.2022.0226
    73. Sharna J. Coker, Rebecca M. Dyson, Carlos C. Smith-Díaz, Margreet C. M. Vissers, Mary J. Berry. Effects of Low Vitamin C Intake on Fertility Parameters and Pregnancy Outcomes in Guinea Pigs. Nutrients 2023, 15 (19) , 4107. https://doi.org/10.3390/nu15194107
    74. Kamui Tanaka, Akiyo Suda, Motonari Uesugi, Shiroh Futaki, Miki Imanishi. Xanthine derivatives inhibit FTO in an l -ascorbic acid-dependent manner. Chemical Communications 2023, 59 (72) , 10809-10812. https://doi.org/10.1039/D3CC02484A
    75. Zhe Li, Yun Ren, Xuan Li, Wenwen Wang. KDM2A interacts with estrogen receptor α to promote bisphenol A and S-induced breast cancer cell proliferation by repressing TET2 expression. Ecotoxicology and Environmental Safety 2023, 262 , 115132. https://doi.org/10.1016/j.ecoenv.2023.115132
    76. Jun Liu, Suji Min, Dongchan Kim, Jihyun Park, Eunchae Park, Shanshan Pei, Youngil Koh, Dong-Yeop Shin, Ja Min Byun, Myunggon Ko, Sung-Soo Yoon, Junshik Hong. Pharmacological GLUT3 salvage augments the efficacy of vitamin C-induced TET2 restoration in acute myeloid leukemia. Leukemia 2023, 37 (8) , 1638-1648. https://doi.org/10.1038/s41375-023-01954-5
    77. Changpeng Li, Jingcai He, Fei Meng, Fuhui Wang, Hao Sun, Huizhong Zhang, Linna Dong, Mengdan Zhang, Qiaoran Xu, Lining Liang, Yuan Li, Tingting Yang, Meiai He, Tao Wang, Jiechun Lin, Jiaqi Sun, Qiuling Huang, Lin Guo, Xiaofei Zhang, Shijuan Mai, Hui Zheng. Nuclear localization of TET2 requires β-catenin activation and correlates with favourable prognosis in colorectal cancer. Cell Death & Disease 2023, 14 (8) https://doi.org/10.1038/s41419-023-06038-x
    78. Cuiping Li, Mengfan Pang, Yaping Li, Lirong Han, Yajiao Fan, Xuelian Xin, Xian Zhang, Ning Zhang, Yan Qin. Protective effect of vitamin C against tetrachlorobenzoquinone-induced 5-hydroxymethylation-dependent apoptosis in HepG2 cells mainly via the mitochondrial apoptosis pathway. Ecotoxicology and Environmental Safety 2023, 260 , 115097. https://doi.org/10.1016/j.ecoenv.2023.115097
    79. Thomas Kietzmann. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biology 2023, 63 , 102753. https://doi.org/10.1016/j.redox.2023.102753
    80. Voja Pavlovic, Milan Ciric, Milan Petkovic, Mladjan Golubovic. Vitamin C and epigenetics: A short physiological overview. Open Medicine 2023, 18 (1) https://doi.org/10.1515/med-2023-0688
    81. Katterine Salazar, Nery Jara, Eder Ramírez, Isabelle de Lima, Javiera Smith-Ghigliotto, Valentina Muñoz, Luciano Ferrada, Francisco Nualart. Role of vitamin C and SVCT2 in neurogenesis. Frontiers in Neuroscience 2023, 17 https://doi.org/10.3389/fnins.2023.1155758
    82. Dianfa Fan, Xiyu Liu, Zhen Shen, Pan Wu, Liping Zhong, Faquan Lin. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomedicine & Pharmacotherapy 2023, 162 , 114695. https://doi.org/10.1016/j.biopha.2023.114695
    83. Kamalnath S. Rajagopalan, Sara Kazeminia, Logan M. Glasstetter, Rahele A. Farahani, Xiang-Yang Zhu, Hui Tang, Kyra L. Jordan, Alejandro R. Chade, Amir Lerman, Lilach O. Lerman, Alfonso Eirin. Metabolic Syndrome Induces Epigenetic Alterations in Mitochondria-Related Genes in Swine Mesenchymal Stem Cells. Cells 2023, 12 (9) , 1274. https://doi.org/10.3390/cells12091274
    84. Inkyung Jung, Jungeun An, Myunggon Ko. Epigenetic Regulators of DNA Cytosine Modification: Promising Targets for Cancer Therapy. Biomedicines 2023, 11 (3) , 654. https://doi.org/10.3390/biomedicines11030654
    85. Ching-Fu Tu, Shu-Hui Peng, Chin-kai Chuang, Chi-Hong Wong, Tien-Shuh Yang. — Invited Review — Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm. Animal Bioscience 2023, 36 (2) , 339-349. https://doi.org/10.5713/ab.22.0389
    86. Agnieszka Gęgotek, Elżbieta Skrzydlewska. Ascorbic acid as antioxidant. 2023, 247-270. https://doi.org/10.1016/bs.vh.2022.10.008
    87. Yadong Wang, Xujun Wang, Jun Lu. Ten-Eleven-Translocation Genes in Cancer. 2023, 363-373. https://doi.org/10.1007/978-3-031-45654-1_11
    88. John P. Brabson, Tiffany Leesang, Yoon Sing Yap, Jingjing Wang, Minh Q. Lam, Byron Fang, Igor Dolgalev, Daniela A. Barbieri, Victoria Strippoli, Carolina P. Bañuelos, Sofia Mohammad, Peter Lyon, Sana Chaudhry, Dane Donich, Anna Swirski, Evan Roberts, Ivelisse Diaz, Daniel Karl, Helena Gomes Dos Santos, Ramin Shiekhattar, Benjamin G. Neel, Stephen D. Nimer, Ramiro E. Verdun, Daniel Bilbao, Maria E. Figueroa, Luisa Cimmino. Oxidized mC modulates synthetic lethality to PARP inhibitors for the treatment of leukemia. Cell Reports 2023, 42 (1) , 112027. https://doi.org/10.1016/j.celrep.2023.112027
    89. Aleksandra Górska, Agnieszka Markiewicz-Gospodarek, Zuzanna Chilimoniuk, Piotr Kuszta, Katarzyna Czarnek. The Effects of the Action of Chromium, Aluminum, Nickel and Iron on Human Fibroblast and Stem Cell Cultures. Teka Komisji Prawniczej PAN Oddział w Lublinie 2022, 15 (2) , 131-151. https://doi.org/10.32084/tkp.5143
    90. Karthikeyan Pethusamy, Ashikh Seethy, Ruby Dhar, Abhibroto Karmakar, Shilpi Chaudhary, Sameer Bakhshi, Jayanth Kumar Palanichamy, Anita Chopra, Shyam S. Chauhan, Subhradip Karmakar. Loss of TET2 with reduced genomic 5-hmC is associated with adverse-risk AML. Leukemia & Lymphoma 2022, 63 (14) , 3426-3432. https://doi.org/10.1080/10428194.2022.2126278
    91. Yue Xiong, Han Yeong Kaw, Lizhong Zhu, Wei Wang. Genotoxicity of quinone: An insight on DNA adducts and its LC-MS-based detection. Critical Reviews in Environmental Science and Technology 2022, 52 (23) , 4217-4240. https://doi.org/10.1080/10643389.2021.2001276
    92. Emanoela Lundgren Thá, Viviana Stephanie Costa Gagosian, Andrezza Di Pietro Micali Canavez, Desiree Cigaran Schuck, Carla Abdo Brohem, Daniela Fiori Gradia, Rilton Alves de Freitas, Karin Braun Prado, Marta Margarete Cestari, Márcio Lorencini, Daniela Morais Leme. In vitro evaluation of the inhalation toxicity of the cosmetic ingredient aluminum chlorohydrate. Journal of Applied Toxicology 2022, 42 (12) , 2016-2029. https://doi.org/10.1002/jat.4371
    93. Kahlilia C. Morris-Blanco, Anil K. Chokkalla, TaeHee Kim, Saivenkateshkomal Bhatula, Mario J. Bertogliat, Alexis B. Gaillard, Raghu Vemuganti. High-Dose Vitamin C Prevents Secondary Brain Damage After Stroke via Epigenetic Reprogramming of Neuroprotective Genes. Translational Stroke Research 2022, 13 (6) , 1017-1036. https://doi.org/10.1007/s12975-022-01007-6
    94. Qian-Qian Han, Peng-Fei Wu, Yi-Heng Li, Yu Cao, Jian-Guo Chen, Fang Wang. SVCT2–mediated ascorbic acid uptake buffers stress responses via DNA hydroxymethylation reprogramming of S100 calcium-binding protein A4 gene. Redox Biology 2022, 58 , 102543. https://doi.org/10.1016/j.redox.2022.102543
    95. Marta Starczak, Maciej Gawronski, Aleksandra Wasilow, Pawel Mijewski, Ryszard Olinski, Daniel Gackowski. Dynamic changes in genomic 5-hydroxymethyluracil and N6-methyladenine levels in the Drosophila melanogaster life cycle and in response to different temperature conditions. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-22490-9
    96. Jing Zheng, Yan Liu, Hailin Wang. Toxicity of environmental pollutants for mitochondrialDNA alteration. Chinese Science Bulletin 2022, 67 (35) , 4170-4179. https://doi.org/10.1360/TB-2022-0614
    97. Florestan Courant, Gwenola Bougras-Cartron, Caroline Abadie, Jean-Sébastien Frenel, Pierre-François Cartron. Modulation of DNA Methylation/Demethylation Reactions Induced by Nutraceuticals and Pollutants of Exposome Can Promote a C > T Mutation in the Breast Cancer Predisposing Gene PALB2. Epigenomes 2022, 6 (4) , 32. https://doi.org/10.3390/epigenomes6040032
    98. Cayla Boycott, Megan Beetch, Tony Yang, Katarzyna Lubecka, Yuexi Ma, Jiaxi Zhang, Lucinda Kurzava Kendall, Melissa Ullmer, Benjamin S. Ramsey, Sandra Torregrosa-Allen, Bennett D. Elzey, Abigail Cox, Nadia Atallah Lanman, Alisa Hui, Nathaniel Villanueva, Aline de Conti, Tao Huan, Igor Pogribny, Barbara Stefanska. Epigenetic aberrations of gene expression in a rat model of hepatocellular carcinoma. Epigenetics 2022, 17 (11) , 1513-1534. https://doi.org/10.1080/15592294.2022.2069386
    99. Qiwen Guo, Siyuan Liu, Xinpeng Men, Zhe Chen, Lei Yao, Geming Wang, Hongyang Zhao, Zhidong Lin, Qian Wu. Sensitive determination of ascorbic acid, dopamine and uric acid by glassy carbon electrodes modified with β-cyclodextrin and graphene oxide. Journal of Materials Science: Materials in Electronics 2022, 33 (30) , 23566-23579. https://doi.org/10.1007/s10854-022-09116-6
    100. Yu-Yang Yi, Shu-Bao Zhang, Hao Chen, Hao-Wei Xu, Shan-Jin Wang. Ascorbic acid promotes nucleus pulposus cell regeneration by regulating proliferation during intervertebral disc degeneration. The Journal of Nutritional Biochemistry 2022, 108 , 109099. https://doi.org/10.1016/j.jnutbio.2022.109099
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect