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Abstract

Immunotherapies have led to substantial changes in cancer treatment and have been a persistently popular topic
in cancer research because they tremendously improve the efficacy of treatment and survival of individuals with
various cancer types. However, only a small proportion of patients are sensitive to immunotherapy, and specific
biomarkers are urgently needed to separate responders from nonresponders. Mismatch repair pathways play a vital
role in identifying and repairing mismatched bases during DNA replication and genetic recombination in normal
and cancer cells. Defects in DNA mismatch repair proteins and subsequent microsatellite instability-high lead to the
accumulation of mutation loads in cancer-related genes and the generation of neoantigens, which stimulate the
anti-tumor immune response of the host. Mismatch repair deficiency/microsatellite instability-high represents a
good prognosis in early colorectal cancer settings without adjuvant treatment and a poor prognosis in patients
with metastasis. Several clinical trials have demonstrated that mismatch repair deficiency or microsatellite instability-
high is significantly associated with long-term immunotherapy-related responses and better prognosis in colorectal
and noncolorectal malignancies treated with immune checkpoint inhibitors. To date, the anti-programmed cell
death-1 inhibitor pembrolizumab has been approved for mismatch repair deficiency/microsatellite instability-high
refractory or metastatic solid tumors, and nivolumab has been approved for colorectal cancer patients with
mismatch repair deficiency/microsatellite instability-high. This is the first time in the history of cancer therapy that
the same biomarker has been used to guide immune therapy regardless of tumor type. This review summarizes the
features of mismatch repair deficiency/microsatellite instability-high, its relationship with programmed death-ligand
1/programmed cell death-1, and the recent advances in predicting immunotherapy efficacy.
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In recent years, immunotherapy has become the focus of
the revamped cancer therapeutic paradigm. Immuno-
therapy has brought amazing and long-lasting tumor re-
mission for several common solid malignancies and
refractory malignancies [1–6]. Nonetheless, the extensive
clinical application of immunotherapies has been limited
because some tumors show relatively poor efficacy and
low response rates [1, 2]. Therefore, biomarkers are ur-
gently needed to distinguish the sensitive patients and to

predict therapeutic response. Ample evidence supports
programmed death-ligand 1 (PD-L1) or programmed
cell death-1 (PD-1) expression, tumor mutational burden
(TMB), numbers of tumor-infiltrating lymphocytes
(TILs), peripheral blood lymphocyte count, mismatch
repair deficiency (dMMR), and microsatellite instability-
high (MSI-H) as predictive biomarkers that guide the
clinical application of immune checkpoint blockade
(ICB) therapies [7]. Among many indicators, dMMR and
MSI-H show unique advantages. Tumors with dMMR or
MSI-H are sensitive to ICB, particularly to PD-1 and
PD-L1 inhibitors. It is worth emphasizing that dMMR or
MSI-H could identify responders regardless of tumor lo-
cation and tumor type, that is, they have the ability to
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guide different tumor immunotherapies in the same
manner. Subsequently, the US Food and Drug Adminis-
tration (FDA) approved the indication of ICB for all
dMMR/MSI-H solid tumors [8]. In this review, we elab-
orate on the expression of MMR/MSI in multiple
tumors, the predictive value of MMR/MSI-H in ICB
treatment, the relationship between MSI-H and other
predictor markers.

Mismatch repair proficiency/deficiency and
microsatellite instability
The DNA mismatch repair (MMR) system, which exists
extensively in organisms from prokaryotes to eukaryotes,
is a highly conserved repair mechanism in cellular evolu-
tion. MMR was first found as a causative germline alter-
ation in patients with Lynch syndrome in 1993 and was
termed a microsatellite [9–12]. The MMR system plays
key roles in identifying and repairing mismatched nucle-
otides during genetic recombination or as a result of
damage caused by external physical or chemical insults.
MMR guarantees genomic integrity and stability and
avoids insertions and deletions of abnormal DNA at
microsatellites. The MMR system comprises a series of

specific DNA mismatch repair enzymes and is usually
dependent on four key genes: mutL homologue 1
(MLH1), postmeiotic segregation increased 2 (PMS2),
mutS homologue 2 (MSH2), and mutS 6 (MSH6).
MLH1, PMS2, MSH2, and MSH6 proteins are mainly
detected through immunohistochemical methods in the
clinic. MSH2/MSH6 heterodimers are responsible for
binding to the initial DNA mismatched base errors (in-
cluding single-base mismatch and incorrect insertion or
deletion loop mismatch) by conformational changes, and
MLH1/PMS2 heterodimers are in charge of the excision
and synthesis of corrected DNA chains in the mismatch
site (see Fig. 1a). If one or more proteins are not
expressed or are dysfunctional, the status is called
dMMR; otherwise, the status is considered mismatch re-
pair proficient (pMMR). MLH1 and MSH2 play pivotal
roles in the process of MMR by dimerizing and interact-
ing with MSH6 and PMS2. The dysfunction of MLH1 or
MSH2 leads to the inactivation of MLH1/PMS2 or
MSH2/MSH6 and the degradation of PMS2 or MSH6
(see Fig. 1b). Lynch syndrome is a common hereditary
disease that is characterized by germline mutations in
MMR genes [13]. Lynch syndrome is associated with
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Fig. 1 The process of DNA mismatch repair
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multiple cancers, especially colon cancer and endomet-
rial cancer. A lack of MSH2, substantial mutations in the
MLH1 or MSH2 genes, MLH1-methylation inactivation,
and transcriptional silencing lead to Lynch syndrome
[14, 15]. Deletion mutations in MLH1 and MSH2 ac-
count for 42–50% and 33–39%; however, MSH6 and
PMS2 mutations account for only 7–18% and less than
7%, respectively [16–19]. A hypothesis that heterozygous
germline deletions in the epithelial cell adhesion mol-
ecule (EPCAM) gene as one factor that leads to MSH2
defects has been confirmed, and the addition of EPCAM
to the diagnostic panel for Lynch syndrome in MSH2-
defective tumors has been advised [19, 20].
The inactivation of MMR genes and MMR protein

dysfunction may be the results of germline mutations or
spontaneous hypermutation alterations, which may in-
duce microsatellite instability (MSI). More than 100,000
areas of short tandem repetitive DNA sequences are the
diagnostic sites of MSI. Two mononucleotide repeats
(BAT25 and BAT26) and three dinucleotide repeats
(D5S346, D2S123, and D17S250) are the standard sites
in panels for MSI testing, as recommended by the Na-
tional Cancer Institute in 1998 [21–23]. If two or more
repeats are altered, the tumor is defined as MSI-H; if
only one mutated sequence is found, the tumor is con-
sidered to be microsatellite instability-low (MSI-L).
Otherwise, it is said to have microsatellite stability
(MSS). There is a high level of consistency (almost 90–
95%) between dMMR and MSI-H among many tumors;
therefore, these two terms are used almost interchange-
ably [24]. MSI-H or dMMR has been widely detected
and reported in Lynch syndrome-associated tumors,
usually in colorectal cancer (CRC) [12], gastrointestinal

adenocarcinoma [23], and endometrial cancer [25].
However, MSI-H or dMMR rarely appears in breast can-
cer [26], prostate cancer [27], and lung adenocarcinoma
[9]. MSI-H varies from 0–31.37% in 39 cancer types.
Endometrial carcinoma of the uterine corpus, colon
adenocarcinoma, and stomach adenocarcinoma rank in
the top 3 in terms of the prevalence of MSI-H, followed
by rectal adenocarcinoma, adrenocortical carcinoma,
and uterine carcinosarcoma. MSI-H has not been de-
tected in more than ten tumors, as shown in Table 1
[28–30]. The prevalence of MSI-H in these studies was
mostly derived from tissues of early-stage tumors [28–
30]. Le DT et al. reported that dMMR occurred more
often in early-stage tumors than in late-stage tumors
(stage IV) [30]. Venderbosch [31] also found that the in-
cidence of dMMR in metastatic CRC was 5%, which was
lower than that (19.72%) in early-stage CRC. MOSAIC,
MANTIS, and next-generation sequencing were used to
analyze MSI status [27–29], as sensitive standardized de-
tection of MSI is necessary.

The relationship between MMR and multiple
tumors
In this review, MMR gene expression of 12,821 samples
from 33 different tumors were pooled and analyzed
through The Cancer Genome Atlas (TCGA) database
(http://www.cbioportal.org/). Data from all TCGA co-
horts were combined to produce this PanCancer dataset.
Values of gene expression from the RNAseq experiment
shown in Fig. 2 are log2(x + 1) transformed RSEM
values. The expression of MMR genes is different in
many tumors and even in the same tumor. Generally,
the expression of MSH6 is almost always the highest,

Table 1 Prevalence of MSI-H in 39 cancer types

Cancer type MSI-H (%) Cancer type MSI-H (%) Cancer type MSI-H (%) Cancer type MSI-H (%)

UCEC 17.00–31.37 BRCA 0.00–1.53 PRAD 0.60–3.00 KICH 0.00

COAD 6.00–19.72 KIRC 1.47 LUAD 0.53–1.00 KIRP 0.00

STAD 9.00–19.09 OV 1.37–2.00 BLCA 0.49 LAML 0.00

READ 5.73 CHOL 1.35–3.00 NBL 0.45 NPC 0.00

ACC 4.35 THYM 0.81 LGG 0.39 PAAD 0–2.00

UCS 3.00–3.51 LIHC 0.80–3.00 CLL 0.30 PCPG 0.00

CESC 2.62–4.00 HNSC 0.78 GBM 0.25 TGCT 0.00

WT 2.44 SARC 0.78 AML 0.00 THCA 0.00–3.00

MESO 2.41 SKCM 0.00–0.64 CTCL 0.00 UVM 0.00–2.00

ESCA 1.63 LUSC 0.60 DLBC 0.00

Abbreviations: UCEC uterine corpus endometrial carcinoma, COAD colon adenocarcinoma, STAD stomach adenocarcinoma, READ rectal adenocarcinoma, ACC
adrenocortical carcinoma, UCS uterine carcinosarcoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, WT Wilms tumor, MESO
mesothelioma, ESCA esophageal carcinoma, BRCA breast carcinoma, KIRC kidney renal clear cell carcinoma, OV ovarian serous cystadenocarcinoma, CHOL
cholangiocarcinoma, THYM thymoma, LIHC liver hepatocellular carcinoma, HNSC head and neck squamous cell carcinoma, SARC sarcoma, SKCM skin cutaneous
melanoma, LUSC lung squamous cell carcinoma, PRAD prostate adenocarcinoma, LUAD lung adenocarcinoma, BLCA bladder carcinoma, NBL pediatric
neuroblastoma, LGG lower-grade glioma, CLL chronic lymphocytic leukemia, GBM glioblastoma multiforme, AML pediatric acute myeloid leukemia, CTCL cutaneous
T cell lymphoma, DLBC diffuse large B cell lymphoma, KICH kidney chromophobe, KIRP kidney renal papillary cell carcinoma, LAML acute myeloid leukemia, NPC
nasopharyngeal carcinoma, PAAD pancreatic adenocarcinoma, PCPG pheochromocytoma and paraganglioma, TGCT testicular germ cell tumor, THCA thyroid
carcinoma, UVM uveal melanoma
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while PMS2 expression is the lowest. MLH1 gene ex-
pression is observed more often in acute myeloid
leukemia, glioblastoma multiforme, and testicular germ
cell tumors. MSH6 and MSH2 are expressed more fre-
quently in acute myeloid leukemia, testicular germ cell
tumors and uterine carcinosarcoma. However, PMS2
gene expression in the kidney chromophobe and kidney
papillary cell carcinoma is higher than in other tumors
(see Fig. 2). The correlations among MLH1, PMS2,
MSH2, and MSH6 were also demonstrated using the
TCGA. Excellent positive correlations were observed
among the four MMR genes (all r > 0.97) (see Fig. 3).
The good correlations coincide with the heterodimeric
characteristic of these four genes.
The survival analysis based on the TCGA suggests a

significant association between the expression of MMR
genes and prognosis in several tumors. In general,
dMMR is correlated with an improved median overall
survival (mOS) in most tumors other than head and
neck cancer and pancreatic cancer. MLH1− is a prog-
nostic factor in esophageal carcinoma and liver hepato-
cellular carcinoma (P = 0.049, 0.039, respectively), and
MSH2− is correlated with improved mOS of bladder
urothelial carcinoma, liver hepatocellular carcinoma,
prostate adenocarcinoma, and sarcoma (P = 0.029,
0.002, 0.011, and 0.001, respectively). The mOS of the
MSH6− group is prolonged compared with that of the
MSH6+ group in patients with bladder urothelial carcin-
oma (P = 0.015). Except for pancreatic cancer, PMS2−

patients exhibit no survival benefit in most cancers (see
Additional file 1: Figure S1). A comprehensive analysis
indicated that mOS was improved only in esophageal
carcinoma and liver hepatocellular carcinoma patients
with four MMR gene deficiencies (P = 0.049 and 0.001,
respectively) (see Additional file 2: Figure S2).

The predictive value of dMMR/MSI-H in multiple
tumors
A strong clinical relationship is observed between MMR
status and CRC. dMMR/MSI-H occurs in up to 15% of
sporadic colon cancers [32]. Several clinicopathological
variables, such as proximal tumor location, advanced age
(> 65 years), poor differentiation, diploid DNA content,
and the BRAF V600E mutation were found to be associ-
ated with the prevalence of MSI-H [32]. MLH1 dysfunc-
tion is responsible for most tumors in sporadic CRC
patients with dMMR because its transcriptional promoter
gene is silenced due to CpG island hypermethylation. The
prognostic and predictive values of MMR in CRC are dif-
ferent in early-stage and late-stage. Most results indicated
that dMMR is a positive prognostic factor in early-stage
(II/III) rather than late-stage (IV) [30, 31, 33–36]. Ribic et
al. [33] observed that patients with MSI-H had significant
increased a 5-year survival rate compared with the MSI-L
or MSS counterparts with stage II or stage III CRC who
did not receive fluorouracil-based adjuvant chemotherapy
(88.0% versus 66.4%, P = 0.004), but the 5-year survival
rate of the former group was not significantly increased in

Fig. 2 Expression of mismatch repair proteins in 33 tumors
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patients who received adjuvant chemotherapy (70.7% ver-
sus 75.5%, P = 0.66). Guastadisegni [34] demonstrated that
the odds ratio (OR) for OS associated with MSI-H was 0.6
(P < 0.0001) in patients with stages I–IV and 0.65 (P <
0.0001) in patients with stages II–III CRC and that the OR
for disease-free survival (DFS) was 0.58 (P < 0.0001). They
pooled the data and showed that MSS patients treated
with 5-fluorouracil had a better prognosis but that the
benefit was not obvious for MSI-H CRC patients (OR
0.52, 95% CI 0.4–0.6, P < 0.0001 versus OR 0.69, 95% CI
0.3–1.5, P = 0.10). Sargent et al. [35] also concluded that
patients with stages II–III CRC with pMMR exhibited im-
proved DFS (hazard ratio [HR] 0.67, 95% CI 0.48–0.93, P
= 0.02) resulting from adjuvant therapy compared with
those who underwent surgery alone. Regarding the pre-
dictive value of MMR status to the response to adjuvant
irinotecan- or oxaliplatin-based treatment in stage III
CRC patients is contradictory [37–40]. MSI-H or dMMR
has a good prognostic predictive value in early-stage CRC
settings without adjuvant chemotherapy and plays a nega-
tive predictive role for adjuvant fluorouracil-based chemo-
therapy in patients with resected CRC. However, the value
of dMMR/MSI-H in metastatic CRC (mCRC) is opposite
to that of early-stage CRC. A meta-analysis confirmed that
mCRC patients with dMMR had poorer survival com-
pared with pMMR patients, which might be due to a
BRAF V600E mutation. The median progressive-free sur-
vival (mPFS) was 6.2 months in dMMR patients and 7.6

months in pMMR patients (HR 1.33, P = 0.001), while the
mOS was 13.6months and 16.8months, respectively (HR
1.35, P = 0.001) [31]. The study of Mayo Clinic showed
that mCRC patients with MSI-H had earlier disease recur-
rence (12.9months vs. 20.9months, P = 0.034) and poorer
OS (28.1months vs. 37.4months, P = 0.99) than MSS pa-
tients [36]. Detection of a BRAF V600E mutation is rec-
ommended in sporadic MSI tumors with silenced MLH1,
as the presence of a BRAF V600E mutation strongly sug-
gests that the etiology of the disease is sporadic [41].
The predictive value of dMMR was also investigated in

other tumors. dMMR has been demonstrated in 20–40%
of endometrial cancers [25, 42], but data on its prognos-
tic value are controversial [25, 43, 44]. A meta-analysis
including 23 studies found no association between OS
(HR 2.0, P = 0.11) or DFS (HR 1.31, P = 0.66) and
dMMR [45] in endometrial cancer. MSI frequency or
dMMR expression in ovarian tumors varied from 5–13%
[46–48] in MSI patients and from 2–29% in dMMR pa-
tients [49]. dMMR as a positive predictive biomarker for
survival or response in ovarian cancers has not been
confirmed [50, 51]. In gastric cancer (GC), MSI-H has
been identified in approximately 10–20% of tumors, and
patients with MSI-H demonstrate an improved survival
compared with patients with MSS [52, 53]. However,
data on the predictive value of MSI for GC patients
treated with fluorouracil-based chemotherapy are con-
flicting [54, 55]. In a study on melanoma, the expression

Fig. 3 Correlation of MLH1, PMS2, MSH2, and MSH6 expression in 12,821 tumor samples
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of MSI was increased when the disease progressed from
benign to malignant and then to metastatic [56]. Related
studies in other tumors are few in number and limited,
and therefore, evidence of the prognostic value is
insufficient.

dMMR/MSI-H predicts the efficacy of anti-PD-1/
PD-L1 immunotherapy
Anti-PD-1/PD-L1 immunotherapies have led to tremen-
dous success in treating certain cancers, such as melan-
oma, non-small cell lung cancer (NSCLC), mCRC, renal
cell carcinoma, bladder cancer, head and neck squamous
cell carcinoma, classical Hodgkin’s lymphoma, and Mer-
kel cell carcinoma [1–6, 57–63]. However, only a small
fraction of patients with these malignancies are sensitive
to ICB therapies. For patients with NSCLC or metastatic
melanoma [1, 2, 60], only 15.2–20% of patients who re-
ceived single ICB therapy achieved objective response
and 33.2–49% of patients obtained disease control. The
precise recognition of targeted patients has always been
the common goal of the researchers. Recent works sug-
gest that MMR status could serve as a candidate bio-
marker and predict the responses of patients with solid
tumors to ICB, irrespective of cancer type. Impressive
results of pembrolizumab in patients with dMMR or
MSI-H tumors after progression from prior chemother-
apies have been shown in the KEYNOTE-016, 164, 012,
028, and 158 trials [8]. 149 patients with 15 different
MSI-H or dMMR tumors were enrolled in the five trials.
Patients with MSI-H/dMMR non-CRC were prospect-
ively enrolled in single-arm trials (KEYNOTE-016, 158)
or retrospectively identified in multi-cohort trials (KEY-
NOTE-012, 028) or in patients with one of 10 rare
tumor types (KEYNOTE-158). 28 patients with CRC and
30 patients with non-CRC were included in KEYNOTE-
016 trial, and 61 patients with CRC were enrolled in the
initial interim analysis of KEYNOTE-164 trials. There
were 6, 5, and 19 patients enrolled in KEYNOTE-012,
028, and 158 trials, respectively. Patients received pem-
brolizumab at 200mg intravenously every 3 weeks in
KEYNOTE-164, 158, and at 10mg/kg intravenously every
2 weeks in KEYNOTE-028, 016, and 012 for 2 years until
rapid disease progression or severe toxicity. The summa-
rized results showed the overall response rate (ORR) was
39.6% (95% CI 31.7–47.9); moreover, the duration of
response ranged from 1.6 to 27months, with 78% of re-
sponses sustaining longer than 6months [8, 64]. Pembro-
lizumab led to a durable response and survival benefits in
patients with dMMR chemotherapy-refractory progressive
metastatic tumors. Based on the above results, in 2017,
the FDA accelerated the approval of pembrolizumab as a
second- or higher-line choice for the treatment of patients
with unresectable or metastatic dMMR/MSI-H solid tu-
mors, irrespective of tumor type or site. This approval for

a drug indication is noteworthy because it is the first time
that one biomarker defined an indication regardless of the
primary tumor site. However, further clinical trials consist-
ing of sufficient number of patients and adequate follow-
up are necessary to verify the efficacy of pembrolizumab
in patients with dMMR/MSI-H.
As the partial published results of the KEYNOTE-016

trial, 41 patients were enrolled and assigned to the CRC
with dMMR (11 patients), CRC with pMMR (21 pa-
tients), and non-CRC with dMMR (9 patients) groups.
The outcome showed that the immune-related ORR and
PFS rates were 40% and 78% in dMMR CRC patients,
71% and 67% in dMMR non-CRC patients, and 0% and
11% in pMMR cancers. Both the mPFS and mOS were
not reached in dMMR CRC patients in contrast to the
2.2 and 5.0 months observed in pMMR CRC patients
[65]. The KEYNOTE-164 and 158 trials both reported the
positive evidence to support the FDA approval of pembro-
lizumab. The relative update data are showed in the fol-
lowing description. Sixty-three patients with unresectable
locally advanced or metastatic dMMR/MSI-H CRC after
the failure of prior fluoropyrimidine-, oxaliplatin-, and
irinotecan-based chemotherapy were enrolled in the
KEYNOTE-164 trial, and 77 patients with any advanced
MSI-H solid tumors after one or more prior regimen, ex-
cept CRC, were enrolled in the KEYNOTE-158 trial. Both
trials indicated similar objective response rates (ORRs)
(32% and 37.7%), mPFS (4.1months and 4.3 months), and
6-month OS rates (87% and 73%) [66, 67]. In the
KEYNOTE-164 trial, the 12-month PFS rate was 41% and
the 12-month OS rate was 76%.
The efficacy of nivolumab was also investigated in pa-

tients with dMMR/MSI-H tumors. The open-label, mul-
ticenter, phase II study CheckMate 142 evaluated the
efficacy of nivolumab in 74 mCRC patients with dMMR/
MSI-H tumors that progressed during or after one-line
conventional chemotherapy. Patients received 3 mg/kg
nivolumab intravenously every 2 weeks until progressive
disease, unacceptable toxicity, or others. In all, 31.1% of
patients achieved an objective response, 69% of pa-
tients had disease control for more than 12 weeks,
and the PFS and OS rates at 12 months were 50%
and 73%, respectively. The medium duration of re-
sponses was not reached until a median follow-up of
12 months [68]. Based on this meaningful and durable
clinical benefit, nivolumab was approved by the FDA
as a new treatment option for mCRC patients with
MSI-H or dMMR who had disease progression after
chemotherapy with fluoropyrimidine, oxaliplatin, and
irinotecan.
dMMR/MSI-H also predict the efficacy of ICB com-

bined therapy. Studies have confirmed that the efficacy
of nivolumab combined with ipilimumab is better than
that of nivolumab alone in small cell lung cancer (SCLC)
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and melanoma [69, 70]. In the nivolumab plus ipilimu-
mab cohort of the CheckMate 142 trial, 119 mCRC pa-
tients with dMMR/MSI-H who progressed after two or
more prior therapies were enrolled. The results showed
that the ORR was 55% and that the DCR for more than
12 weeks was 80%; the 12-month PFS rate was 71%, and
the corresponding OS rate was 85% regardless of PD-L1
expression, BRAF/KRAS mutation status, or clinical his-
tory of Lynch syndrome (see Table 2) [71]. A preliminary
result from H-J J Lenz et al. demonstrated that nivolu-
mab plus low-dose ipilimumab had an inspiring and
promising benefit as a first-line therapy for mCRC
patients with dMMR/MSI-H. The ORR and DCR were
60% (27/45) and 84% (38/45), respectively. The PFS rate
was 78%, and the OS rate was 83% at 12 months [72]. M
Chalabi et al. conducted an exploratory phase II trial to
investigate nivolumab plus ipilimumab as a neoadjuvant
therapy in resectable, early-stage colon cancers with
dMMR and pMMR. Seven dMMR and 8 pMMR pa-
tients were enrolled. A major pathological response was
observed in 100% of the dMMR patients, but no

response was observed in pMMR patients [73]. However,
these trials were somewhat limited by the lack of ran-
dom grouping and small sample size, and thus, further
investigation is urgent and necessary (see Table 3).
Why does dMMR reflect the efficacy of immunother-

apy? Le DT et al. reported that an average of 1782 som-
atic mutations per tumor and 578 potential neoantigens
were found in dMMR tumors, compared with 73 muta-
tions and 21 neoantigens in pMMR tumors by exome
sequencing (P = 0.007). Higher numbers of somatic mu-
tations and neoantigens were correlated with better
responses and longer PFS. Furthermore, dMMR tumors
have a dense infiltration of CD8+ TILs, which induce a
better and more durable response [65]. In view of the
abovementioned results, routine testing of the MMR sta-
tus should be considered in the clinic regardless of
tumor origin, which might bring an unexpected benefit
to the patients with dMMR/MSI-H tumors. In summary,
dMMR/MSI-H tumors treated with ICB demonstrate a
durable response and a sustained survival benefit, and
the combination of ICB therapies could further improve

Table 2 The relationship between ICB and dMMR/MSI-H

Author/year Cancer type N Protocol Results PFS OS

Le DT [65]
2015

dMMR CRC 41 Pembrolizumab 10 mg/kg,
q14d, 20 weeks

ORR 40% 20-week PFS, 78%;
mPFS: NR

mOS: NR

pMMR CRC ORR 0% 20-week PFS, 11%;
mPFS: 2.2 months

mOS, 5.0 months

dMMR
non-CRC

ORR 71% 20-week PFS, 67%;
mPFS: 5.4 months

mOS: NR

pMMR CRC 25 ORR 0%
DCR16%

mPFS, 2.4 months mOS, 6 months

Le DT [30]
2017

12 tumors
with dMMR

86 Pembrolizumab 10 mg/kg,
q14d, 2 years

ORR 53%
DCR 66%

12-month PFS, 64%
24-month PFS, 53%;
mPFS: NR

12-month OS, 76%
24-month OS, 64%;
mOS: NR

Diaz LA [66]
2017

Multiple types
of solid tumors

77 Pembrolizumab 200 mg, q3w, 35 cycles ORR 38%
DCR 58%

6-month PFS, 45%
mPFS, 4.3 months

6-month OS, 73%;
mOS: NR

D Le [67]
2018

MMR/
dMMR CRC

63 Pembrolizumab 200 mg,
q3w, 35 cycles

ORR 28%
DCR 51%

6-month PFS, 43%
12-month PFS, 41%;
mPFS, 4.1 months

6-month OS, 87%
12-month OS, 76%;
mOS: NR

Overman MJ [68]
2017

dMMR/
MSI-H mCRC

74 Nivolumab 3 mg/kg, q2w,
until PD

ORR 31%
DCR 69%
(≥ 12 weeks)

12-month PFS, 50%
mPFS, 14.3 months

12-month OS, 73%;
mOS: NR

Overman MJ [71]
2018

dMMR/
MSI-H mCRC

119 Nivolumab 3 mg/kg + ipilimumab
1 mg/kg, q3w, 4 doses, followed
by nivolumab 3 mg/kg, q2w, until PD

ORR 55%
DCR 80%

9-month PFS, 76%
12-month PFS, 71%;
mPFS: NR

9-month OS, 87%
12-month OS, 85%;
mOS: NR

H-J J Lenz [72]
2018

dMMR/
MSI-H mCRC

45 Nivolumab 3 mg/kg, q2w +
ipilimumab 1 mg/kg, q6w, until
PD (as first-line treatment)

ORR 60%
DCR 84%

12-month PFS, 78%;
mPFS: NR

12-month OS: 83%;
mOS: NR

M Chalabi [73]
2018

dMMR early-
stage CC
pMMR early-
stage CC

7
8

Nivolumab 3 mg/kg, d1, d15 +
ipilimumab 1 mg/kg, d1

mPR 100%
mPR 0%

NA NA

Abbreviations: dMMR mismatch repair deficient, CRC colorectal cancer, mCRC metastatic colorectal cancer, CC colon cancers, pMMR mismatch repair proficient, ORR
objective response rate, PFS progression-free survival, mPFS median progression-free survival, NR not reached (the responses were durable and the results were
not reached until the end of follow-up), mOS median overall survival, DCR disease control rate, OS overall survival, mCRC metastatic colorectal cancer, MSI-H
microsatellite instability-high, PD disease progression, mPR major pathological response, NA not available
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outcomes in these patients. The survival benefit remains
to be explored in patients with refractory metastatic can-
cers. Table 3 shows the ongoing clinical trials evaluating
ICB therapies in dMMR/MSI-H tumors. dMMR tumors
are more frequent in early-stage cancers than in meta-
static cancers, and therefore, the efficacy of immuno-
therapy in early-stage tumors is worthy of further
investigation.

Relationship between dMMR/MSI-H and other
immune biomarkers
PD-1/PD-L1 checkpoints have important functions in
maintaining immune-tolerance and preventing effective
antitumor immunity. The numbers of PD-1+ TILs are
significantly different among various cancer types and
range from 0% in extraskeletal myxoid chondrosarcomas
and uterine sarcoma to 93% in ovarian cancer [49, 74].

The positive rates of membranous PD-L1 expression
vary from 50–97% in NSCLC, bladder carcinoma, renal
cell carcinoma, endometrial cancer, melanoma, and sar-
comas, but its expression is less than 10% in liver cancer
and is absent in Merkel cell carcinoma [74]. PD-L1+ ex-
pression has been used as common stratification factor
in many clinical trials and used as an important bio-
marker to guide the ICB therapy in clinical practice [61,
75–80]. PD-L1+ expression is closely related to dMMR/
MSI-H status. Both Gatalica and Inaguma reported that
the proportion of PD-L1+ expression in dMMR/MSI-H
CRC was significantly higher than in pMMR/MSS CRC
[74, 81]. Kim ST et al. reported that PD-L1+ expression
was 38.9% in MLH1/MSH2-negative solid tumors com-
pared with 15.2% in pMMR tumors [82]. In other stud-
ies, the PD-L1+ rate varied from 12.1–35.2% in pMMR
GC and from 46.7–60.0% in dMMR GC (P < 0.01) [83,

Table 3 Ongoing clinical trials evaluating ICB therapies in dMMR/MSI-H tumors

Clinical trial Phase Drug treatment Drugs Tumor type Current
status

NCT03150706 II Avelumab Anti-PD-L1 mAb Previously treated dMMR/MSI-H
or POLE-mutated mCRC

Ongoing

NCT03435107 II Durvalumab Anti-PD-L1 mAb Previously treated dMMR/MSI-H
or POLE-mutated mCRC

Ongoing

NCT02983578 II Durvalumab (MEDI4736) + AZD9150 Anti-PD-L1 mAb +
Antisense STAT3

dMMR CRC, NSCLC, and
advanced pancreatic cancer

Ongoing

NCT02997228 III Atezolizumab + mFOLFOX6 + bevacizumab
versus mFOLFOX6 + bevacizumab versus
atezolizumab

Anti-PD-L1 mAb dMMR mCRC Ongoing

NCT02912559 III Atezolizumab + standard chemotherapy*
versus standard chemotherapy*

Anti-PD-L1 mAb dMMR stage III resected CRC Ongoing

NCT03257163 II Pembrolizumab + capecitabine +
radiation therapy

Anti-PD-1 mAb dMMR and Epstein-Barr virus
positive GC

Ongoing

NCT02563002 III Pembrolizumab versus standard therapy** Anti-PD-1 mAb dMMR/MSI-H stage IV CRC Not
recruiting

NCT03236935 Ib Pembrolizumab + L-NMMA Anti-PD-1 mAb +
nitric oxide synthase inhibitor

dMMR/MSI-H cancer, melanoma,
NSCLC, HNSCC, classic HL, and
urothelial carcinoma

Ongoing

NCT03607890 II Nivolumab + relatlimab Anti-PD-1 mAb + anti-
LAG-3 mAb

MSI-H solid tumors refractory
to prior PD-(L)1 therapy

Not
recruiting

NCT02992964 I/II Nivolumab Anti-PD-1 mAb Pediatric patients with
hypermutant cancers,
including biallelic MMR
syndrome

Ongoing

NCT03241745 II Nivolumab Anti-PD-1 mAb dMMR/MSI-H/hypermutated
uterine cancer

Ongoing

NCT02060188 II Nivolumab versus nivolumab + ipilimumab
or nivolumab + ipilimumab + cobimetinib
or nivolumab + BMS-986016 or nivolumab
+ daratumumab

Anti-PD-1 mAb + Anti-
CTLA-4 mAb + MEK inhibitor +
anti-LAG-3 mAb + anti-CD38 mAb

dMMR/pMMR/MSI-H/
MSI-L/MSS CRC

Ongoing

Abbreviations: ICBs immune checkpoint blockades, PD-L1 programmed death-ligand 1, mAb monoclonal antibody, dMMR mismatch repair deficient, pMMR
mismatch repair proficient, MSI-H microsatellite instability-high, MSI-L microsatellite instability-low, MSS microsatellite stable, CTLA-4 cytotoxic T-lymphocyte protein
4, mCRC metastatic colorectal cancer, CRC colorectal cancer, NSCLC non-small cell lung cancer, GC gastric cancer, HNSCC head and neck squamous cell carcinoma,
HL Hodgkin lymphoma, mFOLFOX 6 denotes fluorouracil plus leucovorin calcium and oxaliplatin
*Standard chemotherapy denotes fluorouracil plus leucovorin calcium and oxaliplatin
**Standard therapy denotes mFOLFOX6 or mFOLFOX6 plus bevacizumab, or mFOLFOX6 plus cetuximab, or FOLFIRI, or FOLFIRI plus bevacizumab, or FOLFIRI plus
cetuximab (FOLFIRI denotes irinotecan plus leucovorin and fluorouracil)
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84] (see Table 4). Lee SJ et al. [85] showed that the ex-
pression of PD-L1, lymphocyte-activation gene 3
(LAG3), and indolamine 2′3′-dioxygenase 1 (IDO1) in
TILs was 68.6%, 13.5%, and 28.1%, respectively, in 89 pa-
tients with MSI-H colon cancer. A higher number of mu-
tations in DNA coding sequences in MSI-H tumors have
more potential to stimulate the host to generate neoanti-
gens and trigger immune activation [65, 81]. Llosa NJ et
al. indicated that the levels of PD-1, PD-L1, CTLA-4,
LAG3, and IDO1 have been found to be significantly up-
regulated to balance the activated immune response in
MSI-H tumors compared with MSS tumors [86]. There-
fore, blocking the interaction between PD-1/PD-L1 and
other immune negative regulatory pathways may increase
activation of Th1 cytotoxic immune responses and signifi-
cantly enhance the ability of the host to kill cancer cells,
especially in dMMR/MSI-H tumors [87].
TMB is another promising predictor for anti-PD-1/PD-

L1 immunotherapy compared to dMMR/MSI-H, and the
relevant content has been widely studied in lung cancer
[88–92], melanoma [93], bladder cancer [94], and others.
The exploratory subgroup analyses in the CheckMate 026
trial demonstrated that patients with previously untreated
stage IV or recurrent NSCLC obtained significant ORR
and mPFS benefits from nivolumab than platinum-based
chemotherapy in the high TMB (TMB ≥ 243 mutations)
group (ORR 47% vs 28%; mPFS 9.7months vs 5.8 months)
. No significant clinical benefit was observed in regards to
ORR or PFS in the low (0 < TMB < 100 mutations) or
medium TMB (100 ≤ TMB < 243 mutations) group [88].
In the CheckMate 568 trial, the ORR was 4%, 10%, 44%,
and 39% when the TMB cutoffs were < 5, < 10, ≥ 10, and

≥ 15 mut/Mb in NSCLC patients treated with nivolumab
plus ipilimumab as a first-line therapy. Subsequently,
TMB ≥ 10 mut/Mb was regarded as the criteria to differ-
entiate the high TMB and low TMB cohorts in the Check-
Mate 227 trial [89]. The prospective phase III trial
confirmed that nivolumab plus ipilimumab resulted in a
significantly longer PFS and higher ORR only in high
TMB patients with stage IV or recurrent NSCLC com-
pared with chemotherapy (mPFS 7.2months vs 5.5
months; ORR 45.3% vs 26.9%) [90]. According to the
abovementioned trials, the National Comprehensive Cancer
Network guidelines firstly recommended that TMB was an
emerging biomarker to identify patients with NSCLC for
nivolumab or nivolumab plus ipilimumab in version 1 of
2019 [80]. The CheckMate 032 trial demonstrated better
clinical benefit in high TMB (TMB ≥ 248 mutations) pa-
tients with SCLC [91]. Robert M. Samstein et al. reported
that higher TMB was significantly associated with better
OS in 1662 patients treated with either anti-CTLA-4 or
anti-PD-1 therapies in diverse cancer types. These studies
provided robust evidence for the predictive power of TMB
in guiding the application of ICB [95]. TMB is commonly
detected through tissue, and blood detection is the substi-
tute due to the lack of tissue. Gandara et al. showed that
high blood-based TMB (bTMB ≥ 16 mut/Mb) levels were
positively associated with improved PFS and OS in NSCLC
patients treated with atezolizumab versus docetaxel as a
second-line or more-line choice [92]. More recently, Zhijie
Wang et al. found that bTMB can be well estimated and
measured by a cancer gene panel (CGP) named NCC-
GP150 in patients with NSCLC. In clinical validation, 50
patients with NSCLC with high bTMB (≥ 6mut/Mb) was

Table 4 The relationship between PD-L1 and dMMR/pMMR

Author/year Tumor N PD-L1+ (%) dMMR (%) PD-L1+ in
dMMR
tumors (%)

PD-L1+ in
pMMR
tumors (%)

P The impact of PD-L1 or
dMMR on survival

Gatalica Z [74]
2014

CC 87 20.7 31.0 38.0 13.0 0.02 NA

Inaguma S [83]
2016

CRC 506 NA NA 44.7 6.8 < 0.01 NA

Inaguma S [83]
2016

GC 180 NA NA 46.7 12.1 < 0.01 NA

Kim ST [82]
2017

Advanced GI,
GU, and others

430 16.5 in all, 28.6 in
melanoma,
22.4 in GC, 20.9 in CRC,
12.5 in BTC, 7.1 in GU,
6.7 in HCC, 0.0 in
pancreatic cancer and
sarcoma

4.5 in all
7.1 in GC
6.7 in HCC
4.4 in CRC

38.9 15.2 < 0.01 P = 0.535 in GC
P = 0.231 in mCRC
P = 0.508 in sarcoma

Mills AM [26]
2018

Breast
carcinoma

245 12.0 in all
32.0 in TNDC

0.04 100.0 NA NA NA

Wang L [84]
2018

GC 550 37.3 8.2 60.0 35.2 < 0.01 NA

Abbreviations: N number, PD-L1 programmed death-ligand 1, dMMR mismatch repair deficient, pMMR mismatch repair proficient, NA not available, CC colon
cancer, CRC colorectal cancer, GC gastric cancer, GI gastrointestinal cancer, GU genitourinary cancer, BTC biliary tract cancer, HCC hepatocellular carcinoma, mCRC
metastatic colorectal cancer, TNDC triple negative ductal carcinoma
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associated with prolonged mPFS and higher ORR than pa-
tients with low bTMB (< 6mut/Mb) (mPFS not reach vs
2.9m; ORR 39.3% vs 9.1%) when treated with anti-PD-1/
PD-L1 therapies [96] (see Table 5).
Compared with dMMR/MSI-H or PD-1/PD-L1

expression, the TMB is emerging as a more accurate,

comprehensive, and compelling potential biomarker that
could predict the efficacy of ICB therapy. However, there
is no consensus on the measuring of TMB status [95]. In
several studies, most patients with MSI-H had high
TMB levels; however, not all patients with high TMB
levels had dMMR/MSI-H status or high PD-L1

Table 5 TMB predicts the efficacy of ICB therapy

Clinical trial Phase Drug TMB (mut/Mb) Tumor N Response PFS OS

CheckMate026 [88] III Nivolumab H ≥ 243 NSCLC 47 ORR 47% *mPFS, 9.7 moths 1-year OS, 64%;
mOS, 18.3 months

Platinum-
based CT

60 ORR 28% *mPFS, 5.8 months 1-year OS, 60%;
mOS, 18.8 months

Nivolumab L 0 to 99 and M
100 to 242

111 ORR 23% mPFS, 4.1 months 1-year OS, 54%;
mOS, 12.7 months

Platinum-
based CT

94 ORR 33% mPFS, 6.9 months 1-year OS, 53%;
mOS, 13.2 months

CheckMate568 [89] II Nivolumab +
ipilimumab

< 5,
5–10,
10–15,
≥ 15

NSCLC 288 ORR 4%, ORR 10%,
ORR 44%, ORR 39%

NA NA

CheckMate227 [90] III Nivolumab +
ipilimumab

≥ 10 NSCLC 139 ORR 45.3%
1-year DoR 68%

*1-year PFS, 42.6%
*mPFS, 7.2 months

NA

Platinum
doublet CT

160 ORR 26.9%
1-year DoR 25%

*1-year PFS, 13.2%
*mPFS, 5.5 months

Nivolumab +
ipilimumab

< 10 mPFS, 3.2 months

Platinum
doublet CT

mPFS, 5.5 months

CheckMate 032
[91]

Exploratory Nivolumab +
ipilimumab

H ≥ 248 SCLC 26 ORR 46.2% 1-year PFS, 30.3%
mPFS, 7.8 months

1-year OS, 62.4%;
mOS, 22.0 months

Nivolumab 47 ORR 21.3% 1-year PFS, 21.2%
mPFS, 1.4 months

1-year OS, 35.2%;
mOS, 5.4 months

Nivolumab +
ipilimumab

M 143 to 247 25 ORR 16.0% 1-year PFS, 8.0%
mPFS, 1.3 months

1-year OS, 19.6%;
mOS, 3.6 months

Nivolumab 44 ORR 6.8% 1-year PFS, 3.1%
mPFS, 1.3 months

1-year OS, 26.0%;
mOS, 3.9 months

Nivolumab +
ipilimumab

L 0 to 143 27 ORR 22.2% 1-year PFS, 6.2%;
mPFS, 1.5 months

1-year OS, 23.4%;
mOS, 3.4 months

Nivolumab 42 ORR 4.8% 1-year PFS, NC;mPFS,
1.3 months

1-year OS, 2.1%;
mOS, 3.1 months

POPlAR [92] Training Atezolizumab H-bTMB ≥ 16 NSCLC 25 NA *mPFS, 4.2 months *mOS, 13.0
months

Docetaxel 38 *mPFS, 2.9 months *mOS, 7.4 months

OAK [92] Validation Atezolizumab H-bTMB ≥ 16 NSCLC 77 ORR 21% *PFS (HR 0.65, 95%
CI 0.47–0.92; P = 0.013)

*mOS, 13.5
months

Docetaxel 81 ORR 10% *mOS, 6.8 months

Atezolizumab bTMB < 16 NSCLC 216 ORR 13% PFS (HR 0.98, 95%
CI 0.80–1.2)

OS (HR 0.65, 95%
CI 0.52–0.81)

Docetaxel 209 ORR 12%

Zhijie W et al. [96] Anti-PD-1/PD-
L1 therapies

bTMB ≥ 6
bTMB < 6

NSCLC 28
22

*ORR 39.3%
*ORR 9.1%

*mPFS: NR
*mPFS, 2.9 months

Abbreviations: N number, ICBs immune checkpoint blockades, PD-L1 programmed death ligand 1, PD-1 programmed death-1, CTLA-4 cytotoxic T lymphocyte
antigen-4, mAb monoclonal antibody, NSCLC non-small cell lung cancer, SCLC small-cell lung cancer, CT chemotherapy, ORR objective response rate, DoR duration
of response, PFS progression-free survival, mPFS median progression-free survival, OS overall survival, mOS median overall survival, TMB tumor mutation burden, H
high, M medium, L low, bTMB blood-based tumor mutation burden, mut mutation, mut/Mb mutation per megabase, Ref reference, vs versus, NR not reached, NA
not available
*Denotes the difference was statistically significant
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expression [88, 97, 98]. Rizvi H et al. indicated that there
was no correlation between PD-L1 and TMB status in
patients with NSCLC treated with ICB (r = 0.1915, P =
0.08). Patients with high-TMB and positive PD-L1 ex-
pression had the highest rate of durable clinical benefit
than that with only one or neither variable presence
(50% vs. 18.2–35.5%) [98]. Fabrizio DA et al. demon-
strated that 99.7% of CRC patients with MSI-H had high
TMB status (6.3–746.9 mut/Mb); meanwhile, 97.0% of
CRC patients with MSS were low TMB (0.0–10.8 mut/
Mb) in a large population. Although there was a high
consistency between MSI-H and high TMB status in
CRC, 2.9% (163/5702) of patients with MSS were still
considered as high TMB [97]. Zachary R et al. analyzed
100,000 human cancer genomes to reveal the landscape
of TMB and found that nearly 83% of tumor samples
with MSI-H showed high TMB status (TMB > 20 mut/
Mb), whereas only 16% of tumor samples with high
TMB was MSI-H and nearly 84% were classified as MSS
[99]. ICB therapy is not recommended for patients with
MSI-L/MSS, but these patients might have high TMB
and could still benefit from ICB therapy [99]. The co-
occurrence of high TMB and MSI-H varied among di-
verse cancer types, and they usually come together in
gastrointestinal cancers, but are rarely consistent in lung
cancer or melanoma in which the presence of high TMB
is common [99]. Comprehensive analysis of dMMR/
MSI-H, PD-L1, and TMB or a multivariable predictive
model composed of 9 exome parameters (the DNA re-
pair pathway status, the WNT pathway status, the num-
ber of TCR clones, the number of neoantigens, the
HLA*A*1 and HLA*A*24 status, and the fractions of sig-
natures 1A, 1B, and 6) resulted in greater predictive
power and may allow for the optimal usage of ICB ther-
apy [88, 98, 100, 101].

Conclusions and prospects
Immunotherapy has dramatically changed the thera-
peutic landscape of multiple tumors and has boosted en-
thusiasm regarding cancer treatment. Recent positive
results from clinical trials of ICB therapies alone or in
combination for “difficult-to-treat” dMMR/MSI-H tu-
mors have led to great hope for immunotherapy applica-
tion in this specific population. dMMR/MSI-H has been
approved by the FDA as an indication of ICB for meta-
static cancers, irrespective of the cancer types, presum-
ably due to the enhanced immune response through the
presence of increased somatic mutations and “nonself”
neoantigens in these tumors. The novel use of ICB ther-
apies as first-line or neoadjuvant treatments in dMMR/
MSI-H tumors may have the potential to expand the in-
dications. dMMR/MSI-H has its unique advantages
compared with PD-L1, TMB, TILs, and other new pre-
dictors. Despite encouraging results of ICB by

recognizing dMMR/MSI-H, only a fraction of patients
typically have the dMMR/MSI-H features, and some
sensitive patients still cannot be distinguished. Compre-
hensive analysis of multiple markers will provide the op-
timal strategy to identify sensitive patients to ICB
therapy in the near future.
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