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Abstract

Purpose of this Review This review assesses the latest evidence linking short-chain fatty acids (SCFA) with host metabolic health
and cardiovascular disease (CVD) risk and presents the latest evidence on possible biological mechanisms.

Recent Findings SCFA have a range of effects locally in the gut and at both splanchnic and peripheral tissues which together
appear to induce improved metabolic regulation and have direct and indirect effects on markers of CVD risk.

Summary SCFA produced primarily from the microbial fermentation of dietary fibre appear to be key mediators of the beneficial
effects elicited by the gut microbiome. Not only does dietary fibre fermentation regulate microbial activity in the gut, SCFA also
directly modulate host health through a range of tissue-specific mechanisms related to gut barrier function, glucose homeostasis,
immunomodulation, appetite regulation and obesity. With the increasing burden of obesity worldwide, the role for gut
microbiota-generated SCFA in protecting against the effects of energy dense diets offers an intriguing new avenue for regulating
metabolic health and CVD risk.

Keywords Short-chain fatty acids - Gutmicrobiome - Fermentation - Glucose homeostasis - Blood pressure - Appetite regulation -

Obesity - Inflammation - Metabolic health - Cardiovascular disease

Introduction

Cardiovascular disease (CVD) is the leading cause of death
worldwide, accounting for one in three deaths in the USA [1].
Although significant declines in CVD mortality have been
observed in developed countries in the late twentieth century
[2, 3] owing largely to improvements in public health and
healthcare, the burden of CVD still remains high in low and
middle-income countries where over three out of four CVD
deaths worldwide occur [4]. Diet and lifestyle-related risk fac-
tors associated with CVD include smoking, physical inactiv-
ity, obesity, diabetes mellitus, dyslipidemia and hypertension.
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Recent declines in CVD mortality are however in danger of
being reversed with the increased prevalence of obesity. Since
the 1980s, the world has seen the prevalence of obesity double
and recent worldwide data suggests that there are now more
people overweight than underweight globally and in all re-
gions except parts of sub-Saharan Africa and Asia [5].
Looking ahead, in the UK alone, it is forecast that by 2050,
60% of males and 50% of females will be obese [6]. The
current and continuing burden of obesity in developed coun-
tries and the emerging burden in low and middle-income
countries pose a significant challenge to continued decline in
CVD mortality.

An emerging area of interest in metabolic health and its link
with CVD risk is the gut microbiome. The advent of high-
throughput metagenomic techniques has facilitated new in-
sights into the role of the gut microbiome in CVD risk [7].
Importantly, mechanistic insights into the causal pathways are
now emerging for microbially mediated production of metab-
olites that can have both beneficial and detrimental effects on
metabolic health and CVD risk [8]. For example, microbially
mediated trimethylamine production and subsequent hepatic
modification to trimethylamine N-oxide (TMAO) has
emerged as a strong microbiome-mediated risk factor for
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CVD [9-11]. Recent faecal microbial transplant work has
demonstrated that TMAO production can by modified by
targeting the gut microbiome [12¢] highlighting the potential
of the gut microbiome as a modifiable therapeutic target. The
possibilities for modulating gut microbiome activity through
dietary, biological or xenobiotic approaches makes this “or-
gan” an attractive target for a range of host health outcomes,
with potential for cost-effective individual and population
scale interventions. The primary function of the gut
microbiome is to process undigested material eluting from
the small intestine which includes undigested dietary
components and material secreted into the intestine (that
remains undigested) by the host including pancreatic se-
cretions, bile acids, mucins and material sloughed from
the small intestine through the normal passage of intesti-
nal contents. Of significant biological interest in metabol-
ic health is the role of dietary fibre and the primary prod-
ucts of their breakdown by the gut microbiota, the short-
chain fatty acids (SCFA).

Formation and Primary Function of SCFA in Human
Health

A number of recent epidemiological studies have highlighted
the inverse association between dietary fibre intake and CVD
risk factors [13—18]. Non-digestible carbohydrates (NDC) are
an important fraction of dietary fibre and SCFA are the main
products of saccharolytic fermentation of NDC in the large
intestine. Acetate, propionate and butyrate are the primary
SCFA products and are produced in the approximate molar
ratio of 60:20:20 reaching a combined concentration of over
100 mM in the intestinal lumen, although circulating concen-
trations are much lower for propionate and butyrate especially
[19]. The balance between saccharolytic fermentation and
proteolytic fermentation is primarily related to dietary intake
and NDC availability to the microbiota. In elegant work, diet
switching experiments have demonstrated rapid changes in
microbial metabolic activity and diversity related to the pro-
tein, lipid and NDC (dietary fibre) content of the diet [20ee,
21]. Thus, the microbiome has become an attractive target
because of the ease of its modulation by diet, with the aim
of altering host response. SCFA play an important role in host
health beyond the recovery of energy from undigested food.
Butyrate plays an important role in orchestrating the integrity
of the large bowel and small intestinal barrier and supplying
energy to epithelial cells in the large intestine [22]. Recent
work has also demonstrated a role for butyrate in regulating
immune response through expansion of Treg cell populations
[23, 24] adding to a body of earlier work on the role of SCFA
in ameliorating the pro-inflammatory response of immune
cells to antigen stimulus (reviewed in [25]). Propionate largely
passes across the gut lumen, although a recent study suggests
arole for propionate in intestinal gluconeogenesis [26], where

it is almost quantitatively sequestrated in the liver where it
may act as a gluconeogenic substrate or be oxidised [27].
Some acetate is converted to butyrate by lumenal bacteria;
however, acetate largely escapes splanchnic extraction and is
available to peripheral tissues where it can be used for lipo-
genesis in adipose tissue or oxidised by muscle [28]. The role
of SCFA, including the tissue-specific metabolism of SCFA,
has recently been reviewed elsewhere [29]. The complex lu-
minal, splanchnic and peripheral cell-specific nature of SCFA
action and sequestration is illustrated in Fig. 1.

Role of SCFA in Metabolic and Cardiovascular Health

SCFA have a number of potential roles in modulating meta-
bolic health and CVD risk factors through direct and indirect
routes.

Blood Pressure Regulation Possibly the most direct route of
modulating CVD risk is SCFA modulation of systolic blood
pressure (SBP) and diastolic blood pressure (DBP). A recent
controlled trial in humans has demonstrated a potential adju-
vant effect of butyrate in the reduction of DPB through a
reduction in inflammation [30], and the abundance of
butyrate-producing bacteria has been inversely associated
with blood pressure and with plasminogen activator
inhibitor-1 levels in early pregnancy [31]. Indirect evidence
from dietary fibre studies, that should be treated with caution
as to the causal role of SCFA because of the pleiotropic effects
of dietary fibre, demonstrate that dietary fibre is associated
with reduction in BP in Type 1 diabetes (albeit at higher levels
of fibre consumption) [32]. A recent meta-analysis concluded
that all dietary fibre types when considered together reduced
BP (= 0.9 and — 0.7 mmHg for SBP and DBP, respectively)
although the effect size was greater for beta-glucan (—2.9 and
— 1.5 mmHg for SDP and DBP, respectively)-type fibres [33].
The mechanism by which dietary fibres elicit these effects
remain to be fully elucidated.

Metabolic Regulation An area where the role of SCFA is
gaining much interest is their effects in obesity and metabolic
regulation (glucose and lipid homeostasis). Epidemiological
and robust animal data demonstrates an inverse relationship
between dietary fibre intake and adiposity and weight gain.
Recent studies are beginning to provide insight into the role of
SCFA. Acetate plays a role in central appetite regulation [34],
and increasing production in the distal colon may be more
effective than the proximal colon, promoting fat oxidation,
improved glucose homeostasis and inflammatory status
[35¢]. The role of acetate in energy homeostasis and substrate
metabolism has recently been reviewed elsewhere [36]. Our
recent work using an inulin propionate ester to target deliver to
the large intestine has demonstrated in controlled human trials
that propionate directly attenuates appetite and food intake
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Fig. 1 Overview of the mechanisms of action of SCFA in metabolic
health and CVD. Acetate produced in microbial fermentation in the gut
largely escapes first-pass metabolism in the liver. It can contribute acetyl
units to lipogenesis in the cytosol of hepatocytes and adipocytes but its
primary site of oxidation is peripheral muscle. It can also regulate adipose
tissue lipolysis and can act on central appetite regulation. Propionate acts
locally in the gut on enteroendocrine L-cells to stimulate release of the
anorexigenic gut hormones PYY and GLP-1. Propionate is largely
absorbed across the intestine and sequestrated primarily in the liver
where it can be oxidised or used in gluconeogenesis. Butyrate is largely

[37], influences food choice [38], improves pancreatic func-
tion [39] and modulates hepatic lipid accretion [40]. Oral pro-
pionate has also been shown to increase fat oxidation in
humans [41]. Acute oral, but not intravenous, butyrate has
been shown to reduce food intake and improve glucose and
lipid profiles via a gut-brain neural circuit in animals [42]. In
overweight/obese men, colonic infusions of SCFA appear to
increase fat oxidation, energy expenditure and PYY release,
and decrease adipose tissue lipolysis [43]. Inulin, a fructo-
oligosaccharide prebiotic NDC which is readily fermented
producing SCFA, has demonstrated beneficial effects on adi-
posity [44] substrate metabolism [45], insulin sensitivity [46]
and appetite regulation [47-49] although the effects seen in
humans are inconsistent and may be related to the levels of
inulin intake [50]. A recent meta-analysis tentatively conclud-
ed that inulin-type fructans elicit a beneficial effect on lipid
profiles and glucose metabolism [51].
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oxidised at the gut epithelium where it plays a central role in orchestrating
the tight junction protein complexes to control gut barrier function. It also
plays role in regulating inflammatory cell populations and function
through receptor-mediated and histone deacetylation mechanisms. All
three SCFA potentially play a role in blood pressure regulation; acetate
and propionate through a complex interplay involving renin production
mediated through OIft78 and counter-regulation through FFAR3 and
butyrate through attenuation of angiotensin II-induced expression of
renal prorenin receptors and renin

Gut Barrier Function Perhaps the most intriguing role for
SCFA that may have the greatest impact on host metabolic
health is their importance in orchestrating the epithelial barrier
to maintain gut integrity and prevent the translocation of bac-
terial pro-inflammatory molecules across the gut wall. Of the
SCFA produced in the colon, current evidence points towards
a key regulatory role for butyrate. A plethora of animal studies
have promoted a key role for butyrate in maintaining epithelial
integrity [52, 53] and restoring normal barrier function in
challenge models of disease [54—57] primarily through or-
chestration of the tight junction proteins which govern
paracellular permeability and solute transport through the
channels between intestinal cells [58]. The consequence of
maintaining an optimal gut barrier is preventing the transloca-
tion of microbial cell wall components, like lipopolysaccha-
ride, which are strongly pro-inflammatory. An additional piv-
otal role for butyrate is the induction of mucin production
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which creates a physical barrier between luminal bacterial and
epithelial cells [59]. Interestingly, in a recent human study
examining gut permeability in hypertension, markers of in-
creased gut permeability and LPS were elevated in hyperten-
sive individuals and a strong correlation was observed be-
tween gut permeability and SBP [60+]. The study was only
able to demonstrate a protective role for butyrate however in
an associated mouse model experiment. Inulin, which is rap-
idly fermented to SCFA, improves intestinal function in mice
[61] but improvements in barrier function were not observed
in humans [62] which create uncertainty about translation of
findings from animals to humans.

Gut Microbial Function Recent evidence from animal studies
suggest that soluble dietary fibre reduces TMA and TMAO
metabolism by 40.6 and 62.6%, respectively, which was asso-
ciated with increased SCFA production and reduced serum
lipids and cholesterol [63]. In contrast, inulin supplementation
in humans had no effect on fasting or post-prandial TMAO
levels [64], indicating the challenges in translating findings
from animals to humans and the complexity of the role of
different dietary fibres on microbial activity.

Mechanistic Insights into The Role of SCFA
in Metabolic and Cardiovascular Health

SCFA Are Ligands for Several Receptors A number of now de-
orphaned G protein coupled receptors have been identified for
which SCFA act as natural ligands [65, 66]. Free fatty acids
receptors (FFAR) 2 and 3, which have higher affinity for ac-
etate and propionate, are expressed in the intestine, adipose
tissue, pancreas and a number of immune cell subtypes.
GPR109A has higher affinity for butyrate and may play a role
in inflammatory pathways in the intestine [67]. Olfactory re-
ceptor 78 (OIlfr78) receptors have higher affinity for acetate
and propionate and are localised in autonomic nerves in the
heart and gut, in the smooth muscle cells of arteries and in
renal juxtaglomerular cells [68¢]. SCFA also function as his-
tone deacetylase inhibitors (HDACs). Histone acetylation is a
key regulator of transcription factor activation and down-
stream gene expression through regulation of chromatin
structure.

Blood Pressure The role of SCFA in the regulation of blood
pressure has been examined, mainly in animal models.
Acetate and propionate appear to regulate blood pressure in
a complex interplay involving induction of renin production
through OIfr78 and counter-regulation through FFAR3.
Evidence from knock out models suggests that propionate
induces release of renal renin and a rise in BP through
OIfr78 but can also induce a reduction in BP that appears
FFAR3 dependent [68, 69]. In rats, butyrate has been shown
to lower BP by attenuating angiotensin II-induced expression

of renal prorenin receptors and renin [70]. However, given the
low circulating concentration of butyrate in humans [71],
whether this pathway is physiologically relevant requires fur-
ther research to elucidate. Circulating concentrations of propi-
onate and butyrate in humans are generally < 10 umol/L [71]
whereas in animal studies concentrations examined vary from
physiological < 10 umol/L [70] to supra-physiological > 0.1—
10 mmol/L concentrations [68¢].

Gut Barrier Function SCFA and butyrate in particular have
long been recognised as important substrates for maintaining
a healthy gut. Butyrate is the preferred substrate for
colonocytes. More recently, a role for SCFA in regulating
epithelial integrity through co-ordinated regulation of tight
junction proteins which regulate the intracellular molecular
highway between the lumen and hepatic portal system has
been postulated. Hyperglycaemia and increased gut perme-
ability are associated with translocation of bacteria and/or
their cell wall components which trigger an inflammatory cas-
cade that has been associated with obesity and insulin resis-
tance [72¢]. In mice, butyrate can also act on nucleotide-
binding oligomerization domain-like receptors (NLRs), key
modulators of inflammation in an FFAR2 dependent manner
to regulate key components of the tight junction complex [73].
Work in cell models has revealed a possible role for p38
MAPK [74], IL-10 receptor mediated [75] and
AMPK/intracellular ATP [76] regulation of claudin proteins
by butyrate. Intriguingly, the involvement of FFAR2 in this
pathway opens up a role for other SCFA in regulating barrier
function also [77]. In a high-fat diet-induced steatohepatitis
mouse model, butyrate was observed to attenuate
steatohepatitis through improvement in high-fat diet-induced
intestinal mucosa damage, upregulation of zonulin and re-
duced endotoxin levels [78]. These improvements were asso-
ciated with downregulation of endotoxin-associated genes
(TLR4 and Myd88) and expression of pro-inflammatory
genes (MCP-1, TNF-«, IL-1, IL-2, IL-6 and IFN-y) in the
liver. Given the emerging critical role of maintaining a com-
petent physical barrier in the gut between the luminal bacteria
and the host immune system, well-designed human studies are
warranted to elucidate the role of SCFA in gut barrier function.

Appetite Regulation and Energy Intake SCFA have been sug-
gested to protect against diet-induced obesity by reducing ap-
petite and energy intake. However, a number of studies have
reported that incorporating SCFA into the diet of rodents has no
effect on food intake [26, 79]. Similarly, in humans, directly
incorporating propionate into the diet had no effect on energy
intake at an ad libitum test meal or over the 24-h period fol-
lowing consumption [80]. Oral SCFA are rapidly absorbed
from the upper gastrointestinal tract, thus may not markedly
raise concentrations in the gut lumen. This would appear to be
important for SCFA to promote an effect on appetite regulation.
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A recent study by Li et al. reported a reduction in energy
intake following intragastric administration of butyrate but not
through intravenous administration of butyrate [42]. This dis-
parity in results may be due to the fact that intragastric admin-
istration allows butyrate to reach its natural site of production
in the gut lumen and therefore interact with intestinal recep-
tors, which is not achieved with peripheral administration.
Using a targeted approach to delivering propionate to the large
intestine, we have demonstrated that propionate induces ap-
petite regulation, reduced food intake and prevent weight gain
in humans [37].

The available rodent and human studies therefore suggest
that oral SCFA supplementation does not modulate appetite
responses, whilst delivering SCFA to more distally in the gut
may reduce energy intake. The SCFA receptors FFAR2 and
FFAR3 are co-expressed in glucagon-like peptide 1 (GLP-1)
and peptide YY (PYY) expressing cells [65], leading to the
suggestion that SCFAs might reduce energy intake via stimu-
lating the release of these anorectic hormones. Several studies
using in vitro models of enteroendocrine cell lines have inves-
tigated this effect of SCFAs on gut hormone release [81].
These reports highlight that SCFAs can stimulate anorectic
gut hormone release via FFAR2. It has also been suggested
that high levels of SCFA in the lower gut could modulate
energy intake via gut-brain neural circuits. For example, De
Vadder et al. reported that elevated colonic propionate produc-
tion could induce vagal signalling in the gut or portal vein via
FFAR3 [26]. Similarly, Li et al. found that the decrease in food
intake following intragastric administration of butyrate in
mice was blocked after vagotomy [42].

In summary, studies that have targeted delivery of SCFA to
the GI tract have shown reductions in energy intake, which
may be related to the anorectic gut hormone release and/or
direct neural gut-brain signalling via FFAR2 and FFAR3 re-
ceptors. SCFA may also modulate body weight and obesity by
increasing energy expenditure. Indeed, a number of studies
have reported that both acute and chronic administration of
SCFAs promotes energy expenditure in rodents [42, 82, 83].
Available studies in humans have also shown that colonic [43]
and oral SCFA [41] supplementation raises rates of energy
expenditure. It has consistently been reported that the increase
in energy expenditure stimulated by SCFA is associated with a
promotion in whole-body lipid oxidation [41, 43, 79]. The
increase in energy expenditure and lipid oxidation by SCFA
administration has been postulated to be due to stimulation of
sympathetic nervous system (SNS) activity, via FFAR3
expressed at the level of the sympathetic ganglion [84], an
increase in brown adipose tissue (BAT) activity [42] and via
suppression of PPARYy in peripheral tissues, which
upregulates lipid oxidation [79].

Glucose Homeostasis SCFA have important effects on glucose
homeostasis through a range of mechanisms. As previously
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described, improved gut barrier function reduces inflamma-
tion and oxidative stress promoting improved insulin sensitiv-
ity (reviewed in [85]). In dietary fibre supplementation studies
in humans, increased plasma propionate has been associated
with a reduction in post-prandial insulin [86] and improved
glucose homeostasis [37] through improved pancreatic 3-cell
function [39] although supplementation with resistant starch
observed improvements in glucose homeostasis that appeared
to be independent of circulating SCFA and were explained by
decreased free fatty acid output [87]. Acetate and butyrate
may also play a role in maintaining (3-cell function through
their action on cytotoxic T cells, mediated via B-cells and
direct action of SCFA on regulatory T cell populations [88].

Obesity SCFA protect against diet-induced obesity through a
number of mechanisms. SCFA produced in the colon stimu-
late FFAR 2/3 on enteroendocrine L-cells in the colon leading
to release of the anorexigenic gut hormones GLP-1 and PYY
[81, 89]. The role of acetate in appetite regulation, adiposity
and weight gain is controversial. Frost et al. demonstrated that
acetate induced central appetite regulation and reduced food
intake in mice protecting against diet-induced weight gain
[34]. More recently, Perry et al. have demonstrated that acetate
has the opposite effect, leading to increased glucose-
stimulated insulin secretion, increased ghrelin secretion, hy-
perphagia and obesity in mice [90]. These conflicting results
require further work to decipher but may be associated with
metabolic status and site of acetate administration [36].

Using a targeted approach to delivering propionate to the
large intestine, we have demonstrated that propionate induces
appetite regulation, reduced food intake and prevent weight
gain in humans that may in part be explained by increased
GLP-1 and PYY [37]. In mice, SCFA have been shown to
decrease PPARYy expression and activity leading to increased
expression of mitochondrial uncoupling protein 2 and in-
creased AMP-to-ATP ratio, stimulating oxidative metabolism
in the liver and adipose tissue via AMPK [79]. Butyrate may
also play a role in preventing diet-induced obesity through
increasing energy expenditure by activating of (33 adrenergic
receptor mediated lipolysis in white adipose tissue [82] and
through activation of the adiponectin-mediated pathway and
stimulation of mitochondrial function in the skeletal muscle
[91].In a type 2 diabetes mouse model, butyrate—a potent
HDAC inhibitor—attenuated myocyte apoptosis, reduced
production of reactive oxygen species and increased an-
giogenesis through MKK3/p38/PRAK activation [92].
Accumulation of fat in the liver is associated with im-
paired hepatic insulin sensitivity and is associated with
type 2 diabetes [93]. In humans [40] and mice [94], pro-
pionate has been associated with preventing hepatic lipid
accumulation through suppression of genes involved in
fatty acid synthesis and potentially through competition
for intracellular co-enzyme A stores.



Curr Nutr Rep (2018) 7:198-206

203

Conclusions and Future Perspectives

There is quite compelling evidence from animal models that
SCFA can play an important role in regulating metabolic
health and mitigating CVD risk. However, careful interpreta-
tion of the evidence is necessary particularly when using glob-
al genetic knockout models because of the tissue-specific na-
ture of expression of receptors for SCFA. Furthermore,
cognisance must be made of the physiologically relevant con-
centrations that various tissues are exposed to. Whilst oral
supplementation or gavage with SCFA is practical and attrac-
tive for animal studies, this is generally not how SCFA appear
in the gut in humans. The site and rate of SCFA production in
the gut may be critical to the physiological consequences and
therefore modelling human physiology is important to correct-
ly interpreting animal studies. Better still, well-controlled hu-
man intervention studies are needed to develop a strong evi-
dence base if the research and clinical community are to be
convinced of the beneficial role SCFA play in human health.
With emerging effects around the importance of SCFA for the
regulation of barrier function and inflammation, it is critical
that we understand the relevance of these effects for disease
mitigation because there are relatively inexpensive options to
intervene at the population level. The role of SCFA in manag-
ing adiposity and body weight gain is well documented in
animals and the emergent role of SCFA in appetite regulation
and obesity in humans also presents an exciting opportunity to
intervene at a population level to tackle perhaps the most
pressing health issue of our time—obesity.
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