Skip to main content

Advertisement

Log in

LILRB receptor-mediated regulation of myeloid cell maturation and function

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The leukocyte immunoglobulin-like receptor (LILR) family comprises a set of paired immunomodulatory receptors expressed among human myeloid and lymphocyte cell populations. While six members of LILR subfamily A (LILRA) associate with membrane adaptors to signal via immunoreceptor tyrosine-based activating motifs (ITAM), LILR subfamily B (LILRB) members signal via multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). Ligand specificity of some LILR family members has been studied in detail, but new perspective into the immunoregulatory aspects of this receptor family in human myeloid cells has been limited. LILRB receptors and the murine ortholog, paired immunoglobulin-like receptor B (PIRB), have been shown to negatively regulate maturation pathways in myeloid cells including mast cells, neutrophils, dendritic cells, as well as B cells. Our laboratory further demonstrated in mouse models that PIRB regulated functional development of myeloid-derived suppressor cell and the formation of a tumor-permissive microenvironment. Based on observations from the literature and our own studies, our laboratory is focusing on how LILRs modulate immune homeostasis of human myeloid cells and how these pathways may be targeted in disease states. Integrity of this pathway in tumor microenvironments, for example, permits a myeloid phenotype that suppresses antitumor adaptive immunity. This review presents the evidence supporting a role of LILRs as myeloid cell regulators and ongoing efforts to understand the functional immunology surrounding this family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANGPTL:

Angiopoietin-like

BCR:

B cell receptor

BST2:

Bone marrow stromal cell Ag 2

Btk:

Bruton’s tyrosine kinase

DAG:

Diacylglycerol

DCs:

Dendritic cells

ERK:

Extracellular signal-regulated kinase

FHC:

Free heavy chain

HIV:

Human immunodeficiency virus

HLA:

Human leukocyte antigen

IP3:

Inositol triphosphate

ITAM:

Immunoreceptor tyrosine-based activating motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

KIR:

Killer cell inhibitory receptor

LAT:

Linker for activation of T cells

LILR:

Leukocyte immunoglobulin-like receptor

LILRA:

Leukocyte immunoglobulin-like receptor subfamily A

LILRB:

Leukocyte immunoglobulin-like receptor subfamily B

MAG:

Myelin-associated glycoprotein

MAPK:

Mitogen-activated protein kinase

MDSC:

Myeloid-derived suppressor cell

MHC-I:

Major histocompatibility complex I

NF-κB:

Nuclear factor-κB

NFAT:

Nuclear factor of activated T cells

NK:

Natural killer

OMgp:

Oligodendrocyte–myelin glycoprotein

PI3K:

PI3-kinase

Syk:

Spleen tyrosine kinase

TCR:

T cell receptor

References

  1. Samaridis J, Colonna M (1997) Cloning of novel immunoglobulin superfamily receptors expressed on human myeloid and lymphoid cells: structural evidence for new stimulatory and inhibitory pathways. Eur J Immunol 27:660–665. doi:10.1002/eji.1830270313

    Article  CAS  PubMed  Google Scholar 

  2. Volz A, Wende H, Laun K, Ziegler A (2001) Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex. Immunol Rev 181:39–51

    Article  CAS  PubMed  Google Scholar 

  3. Katz HR (2006) Inhibition of inflammatory responses by leukocyte Ig-like receptors. Adv Immunol 91:251–272. doi:10.1016/S0065-2776(06)91007-4

    Article  CAS  PubMed  Google Scholar 

  4. Mori Y, Tsuji S, Inui M et al (2008) Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol 181:4742–4751

    Article  CAS  PubMed  Google Scholar 

  5. Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC (2016) Inhibitory leukocyte immunoglobulin-like receptors: immune checkpoint proteins and tumor sustaining factors. Cell Cycle 15:25–40. doi:10.1080/15384101.2015.1121324

    Article  CAS  PubMed  Google Scholar 

  6. Kim-Schulze S, Seki T, Vlad G, Scotto L, Fan J, Colombo PC, Liu J, Cortesini R, Suciu-Foca N (2006) Regulation of ILT3 gene expression by processing of precursor transcripts in human endothelial cells. Am J Transplant 6:76–82. doi:10.1111/j.1600-6143.2005.01162.x

    Article  CAS  PubMed  Google Scholar 

  7. McIntire RH, Sifers T, Platt JS, Ganacias KG, Langat DK, Hunt JS (2008) Novel HLA-G-binding leukocyte immunoglobulin-like receptor (LILR) expression patterns in human placentas and umbilical cords. Placenta 29:631–638. doi:10.1016/j.placenta.2008.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang F, Zheng J, Kang X, Deng M, Lu Z, Kim J, Zhang C (2015) Inhibitory leukocyte immunoglobulin-like receptors in cancer development. Sci China Life Sci 58:1216–1225. doi:10.1007/s11427-015-4925-1

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima H, Samaridis J, Angman L, Colonna M (1999) Human myeloid cells express an activating ILT receptor (ILT1) that associates with Fc receptor gamma-chain. J Immunol 162:5–8

    CAS  PubMed  Google Scholar 

  10. Mocsai A, Ruland J, Tybulewicz VL (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387–402. doi:10.1038/nri2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  CAS  PubMed  Google Scholar 

  12. Colonna M, Samaridis J, Cella M et al (1998) Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 160:3096–3100

    CAS  PubMed  Google Scholar 

  13. Jones DC, Kosmoliaptsis V, Apps R et al (2011) HLA class I allelic sequence and conformation regulate leukocyte Ig-like receptor binding. J Immunol. 186:2990–2997. doi:10.4049/jimmunol.1003078

    Article  CAS  PubMed  Google Scholar 

  14. Shiroishi M, Tsumoto K, Amano K et al (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 100:8856–8861. doi:10.1073/pnas.1431057100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng J, Umikawa M, Cui C et al (2012) Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 485:656–660. doi:10.1038/nature11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arnold V, Cummings JS, Moreno-Nieves UY, Didier C, Gilbert A, Barre-Sinoussi F, Scott-Algara D (2013) S100A9 protein is a novel ligand for the CD85j receptor and its interaction is implicated in the control of HIV-1 replication by NK cells. Retrovirology 10:122. doi:10.1186/1742-4690-10-122

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuroki K, Furukawa A, Maenaka K (2012) Molecular recognition of paired receptors in the immune system. Front Microbiol 3:429. doi:10.3389/fmicb.2012.00429

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deng M, Lu Z, Zheng J et al (2014) A motif in LILRB2 critical for Angptl2 binding and activation. Blood 124:924–935. doi:10.1182/blood-2014-01-549162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ (2013) Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science 341:1399–1404. doi:10.1126/science.1242077

    Article  CAS  PubMed  Google Scholar 

  20. Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–970. doi:10.1126/science.1161151

    Article  CAS  PubMed  Google Scholar 

  21. Willcox BE, Thomas LM, Bjorkman PJ (2003) Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 4:913–919. doi:10.1038/ni961

    Article  CAS  PubMed  Google Scholar 

  22. Allen RL, Raine T, Haude A, Trowsdale J, Wilson MJ (2001) Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol 167:5543–5547

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Hatano H, Shaw J, Olde Nordkamp M, Jiang G, Li D, Kollnberger S (2015) The leukocyte immunoglobulin-like receptor family member LILRB5 binds to HLA-Class I heavy chains. PLoS One 10:e0129063. doi:10.1371/journal.pone.0129063

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ryu M, Chen Y, Qi J, Liu J, Fan Z, Nam G, Shi Y, Cheng H, Gao GF (2011) LILRA3 binds both classical and non-classical HLA class I molecules but with reduced affinities compared to LILRB1/LILRB2: structural evidence. PLoS One 6:e19245. doi:10.1371/journal.pone.0019245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tavano B, Galao RP, Graham DR, Neil SJ, Aquino VN, Fuchs D, Boasso A (2013) Ig-like transcript 7, but not bone marrow stromal cell antigen 2 (also known as HM1.24, tetherin, or CD317), modulates plasmacytoid dendritic cell function in primary human blood leukocytes. J Immunol 190:2622–2630. doi:10.4049/jimmunol.1202391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurosaki T (1997) Molecular mechanisms in B cell antigen receptor signaling. Curr Opin Immunol 9:309–318

    Article  CAS  PubMed  Google Scholar 

  27. Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA (2013) Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 138:294–309. doi:10.1016/j.pharmthera.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  28. Niiro H, Clark EA (2002) Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2:945–956. doi:10.1038/nri955

    Article  CAS  PubMed  Google Scholar 

  29. Dietrich J, Cella M, Colonna M (2001) Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. J Immunol 166:2514–2521

    Article  CAS  PubMed  Google Scholar 

  30. Saverino D, Fabbi M, Ghiotto F et al (2000) The CD85/LIR-1/ILT2 inhibitory receptor is expressed by all human T lymphocytes and down-regulates their functions. J Immunol 165:3742–3755

    Article  CAS  PubMed  Google Scholar 

  31. Naji A, Menier C, Morandi F et al (2014) Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J Immunol 192:1536–1546. doi:10.4049/jimmunol.1300438

    Article  CAS  PubMed  Google Scholar 

  32. Maeda A, Scharenberg AM, Tsukada S, Bolen JB, Kinet JP, Kurosaki T (1999) Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1. Oncogene 18:2291–2297. doi:10.1038/sj.onc.1202552

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Meng F, Chu CL, Takai T, Lowell CA (2005) The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B. Immunity 22:235–246. doi:10.1016/j.immuni.2005.01.004

    Article  PubMed  Google Scholar 

  34. Lu HK, Rentero C, Raftery MJ, Borges L, Bryant K, Tedla N (2009) Leukocyte Ig-like receptor B4 (LILRB4) is a potent inhibitor of FcgammaRI-mediated monocyte activation via dephosphorylation of multiple kinases. J Biol Chem 284:34839–34848. doi:10.1074/jbc.M109.035683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park M, Raftery MJ, Thomas PS, Geczy CL, Bryant K, Tedla N (2016) Leukocyte immunoglobulin-like receptor B4 regulates key signalling molecules involved in FcgammaRI-mediated clathrin-dependent endocytosis and phagocytosis. Sci Rep 6:35085. doi:10.1038/srep35085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu D, Qu CK (2008) Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 13:4925–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Young NT, Waller EC, Patel R, Roghanian A, Austyn JM, Trowsdale J (2008) The inhibitory receptor LILRB1 modulates the differentiation and regulatory potential of human dendritic cells. Blood 111:3090–3096. doi:10.1182/blood-2007-05-089771

    Article  CAS  PubMed  Google Scholar 

  38. Tenca C, Merlo A, Merck E et al (2005) CD85j (leukocyte Ig-like receptor-1/Ig-like transcript 2) inhibits human osteoclast-associated receptor-mediated activation of human dendritic cells. J Immunol 174:6757–6763

    Article  CAS  PubMed  Google Scholar 

  39. Chang CC, Ciubotariu R, Manavalan JS et al (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243. doi:10.1038/ni760

    Article  CAS  PubMed  Google Scholar 

  40. Lichterfeld M, Kavanagh DG, Williams KL et al (2007) A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells. J Exp Med 204:2813–2824. doi:10.1084/jem.20061865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beinhauer BG, McBride JM, Graf P et al (2004) Interleukin 10 regulates cell surface and soluble LIR-2 (CD85d) expression on dendritic cells resulting in T cell hyporesponsiveness in vitro. Eur J Immunol 34:74–80. doi:10.1002/eji.200324550

    Article  CAS  PubMed  Google Scholar 

  42. Vlad G, Piazza F, Colovai A, Cortesini R, Della Pietra F, Suciu-Foca N, Manavalan JS (2003) Interleukin-10 induces the upregulation of the inhibitory receptor ILT4 in monocytes from HIV positive individuals. Hum Immunol 64:483–489

    Article  CAS  PubMed  Google Scholar 

  43. Banchereau J, Zurawski S, Thompson-Snipes L et al (2012) Immunoglobulin-like transcript receptors on human dermal CD14+ dendritic cells act as a CD8-antagonist to control cytotoxic T cell priming. Proc Natl Acad Sci USA 109:18885–18890. doi:10.1073/pnas.1205785109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cella M, Dohring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M (1997) A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 185:1743–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown DP, Jones DC, Anderson KJ, Lapaque N, Buerki RA, Trowsdale J, Allen RL (2009) The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and along with LILRB2 (ILT4), is upregulated in response to Salmonella infection. BMC Immunol 10:56. doi:10.1186/1471-2172-10-56

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pereira S, Zhang H, Takai T, Lowell CA (2004) The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. J Immunol 173:5757–5765

    Article  CAS  PubMed  Google Scholar 

  47. Nakayama M, Underhill DM, Petersen TW, Li B, Kitamura T, Takai T, Aderem A (2007) Paired Ig-like receptors bind to bacteria and shape TLR-mediated cytokine production. J Immunol 178:4250–4259

    Article  CAS  PubMed  Google Scholar 

  48. Torii I, Oka S, Hotomi M, Benjamin WH Jr, Takai T, Kearney JF, Briles DE, Kubagawa H (2008) PIR-B-deficient mice are susceptible to Salmonella infection. J Immunol 181:4229–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Munitz A, Cole ET, Beichler A et al (2010) Paired immunoglobulin-like receptor B (PIR-B) negatively regulates macrophage activation in experimental colitis. Gastroenterology 139:530–541. doi:10.1053/j.gastro.2010.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T, Chen SH (2011) Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34:385–395. doi:10.1016/j.immuni.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beyer M, Mallmann MR, Xue J et al (2012) High-resolution transcriptome of human macrophages. PLoS One 7:e45466. doi:10.1371/journal.pone.0045466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Held W, Mariuzza RA (2008) Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat Rev Immunol 8:269–278. doi:10.1038/nri2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ho LH, Uehara T, Chen CC, Kubagawa H, Cooper MD (1999) Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptor PIR-B. Proc Natl Acad Sci USA 96:15086–15090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Masuda A, Nakamura A, Maeda T, Sakamoto Y, Takai T (2007) Cis binding between inhibitory receptors and MHC class I can regulate mast cell activation. J Exp Med 204:907–920. doi:10.1084/jem.20060631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. de Goeje PL, Bezemer K, Heuvers ME et al (2015) Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer. Oncoimmunology 4:e1014242. doi:10.1080/2162402X.2015.1014242

    Article  PubMed  PubMed Central  Google Scholar 

  56. Orsini G, Legitimo A, Failli A, Ferrari P, Nicolini A, Spisni R, Miccoli P, Consolini R (2014) Quantification of blood dendritic cells in colorectal cancer patients during the course of disease. Pathol Oncol Res 20:267–276. doi:10.1007/s12253-013-9691-4

    Article  CAS  PubMed  Google Scholar 

  57. Vlad G, Suciu-Foca N (2012) Induction of antigen-specific human T suppressor cells by membrane and soluble ILT3. Exp Mol Pathol 93:294–301. doi:10.1016/j.yexmp.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  58. Vlad G, Cortesini R, Suciu-Foca N (2008) CD8+ T suppressor cells and the ILT3 master switch. Hum Immunol 69:681–686. doi:10.1016/j.humimm.2008.08.286

    Article  CAS  PubMed  Google Scholar 

  59. Suciu-Foca N, Feirt N, Zhang QY et al (2007) Soluble Ig-like transcript 3 inhibits tumor allograft rejection in humanized SCID mice and T cell responses in cancer patients. J Immunol 178:7432–7441

    Article  CAS  PubMed  Google Scholar 

  60. Kim-Schulze S, Scotto L, Vlad G, Piazza F, Lin H, Liu Z, Cortesini R, Suciu-Foca N (2006) Recombinant Ig-like transcript 3-Fc modulates T cell responses via induction of Th anergy and differentiation of CD8+ T suppressor cells. J Immunol 176:2790–2798

    Article  CAS  PubMed  Google Scholar 

  61. Lin A, Zhang X, Ruan YY, Wang Q, Zhou WJ, Yan WH (2011) HLA-F expression is a prognostic factor in patients with non-small-cell lung cancer. Lung Cancer 74:504–509. doi:10.1016/j.lungcan.2011.04.006

    Article  PubMed  Google Scholar 

  62. Benevolo M, Mottolese M, Tremante E et al (2011) High expression of HLA-E in colorectal carcinoma is associated with a favorable prognosis. J Transl Med 9:184. doi:10.1186/1479-5876-9-184

    Article  PubMed  PubMed Central  Google Scholar 

  63. Silva TG, Crispim JC, Miranda FA et al (2011) Expression of the nonclassical HLA-G and HLA-E molecules in laryngeal lesions as biomarkers of tumor invasiveness. Histol Histopathol 26:1487–1497. doi:10.14670/HH-26.1487

    CAS  PubMed  Google Scholar 

  64. de Kruijf EM, Sajet A, van Nes JG et al (2010) HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 185:7452–7459. doi:10.4049/jimmunol.1002629

    Article  PubMed  Google Scholar 

  65. Fan X, Wang Y, Zhang C, Liu X, Qian Z, Jiang T (2016) Human leukocyte antigen-G overexpression predicts poor clinical outcomes in low-grade gliomas. J Neuroimmunol 294:27–31. doi:10.1016/j.jneuroim.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  66. Lepin EJ, Bastin JM, Allan DS et al (2000) Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur J Immunol 30:3552–3561. doi:10.1002/1521-4141(200012)30:12<3552:AID-IMMU3552>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  67. Allard M, Oger R, Vignard V et al (2011) Serum soluble HLA-E in melanoma: a new potential immune-related marker in cancer. PLoS One 6:e21118. doi:10.1371/journal.pone.0021118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang W, Liang S, Wu J, Horuzsko A (2008) Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+ Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation 86:1125–1134. doi:10.1097/TP.0b013e318186fccd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liang S, Ristich V, Arase H, Dausset J, Carosella ED, Horuzsko A (2008) Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6–STAT3 signaling pathway. Proc Natl Acad Sci USA 105:8357–8362. doi:10.1073/pnas.0803341105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shakhawat A, Shaikly V, Elzatma E, Mavrakos E, Jabeen A, Fernandez N (2010) Interaction between HLA-G and monocyte/macrophages in human pregnancy. J Reprod Immunol 85:40–46. doi:10.1016/j.jri.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  71. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, Lodish HF (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12:240–245. doi:10.1038/nm1342

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF (2008) Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111:3415–3423. doi:10.1182/blood-2007-11-122119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu X, Yu X, Xie J et al (2015) ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget 6:21004–21015. doi:10.18632/oncotarget.4217

    Article  PubMed  PubMed Central  Google Scholar 

  74. Carbone C, Piro G, Fassan M et al (2015) An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis. Oncotarget 6:13822–13834. doi:10.18632/oncotarget.2635

    Article  PubMed  Google Scholar 

  75. Wang L, Geng T, Guo X, Liu J, Zhang P, Yang D, Li J, Yu S, Sun Y (2015) Co-expression of immunoglobulin-like transcript 4 and angiopoietin-like proteins in human non-small cell lung cancer. Mol Med Rep 11:2789–2796. doi:10.3892/mmr.2014.3029

    CAS  PubMed  Google Scholar 

  76. Gao L, Ge C, Fang T, Zhao F, Chen T, Yao M, Li J, Li H (2015) ANGPTL2 promotes tumor metastasis in hepatocellular carcinoma. J Gastroenterol Hepatol 30:396–404. doi:10.1111/jgh.12702

    Article  CAS  PubMed  Google Scholar 

  77. Wang PF, Li HL, Qi X, Yao K, Han S, Liu N, Yang YK, Li SW, Yan CX (2016) Clinical significance of angiopoietin-like protein 3 expression in patients with glioblastoma. Neoplasma 63:93–98. doi:10.4149/neo_2016_011

    Article  CAS  PubMed  Google Scholar 

  78. Takai T (2005) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:433–440. doi:10.1111/j.1365-2567.2005.02177.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maeda A, Kurosaki M, Kurosaki T (1998) Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor gamma chain. J Exp Med 188:991–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T (2002) Impaired dendritic cell maturation and increased T(H)2 responses in PIR-B(-/-) mice. Nat Immunol 3:542–548. doi:10.1038/ni801

    Article  CAS  PubMed  Google Scholar 

  81. Kim S, Poursine-Laurent J, Truscott SM et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713. doi:10.1038/nature03847

    Article  CAS  PubMed  Google Scholar 

  82. Anfossi N, Andre P, Guia S et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342. doi:10.1016/j.immuni.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  83. Davidson CL, Li NL, Burshtyn DN (2010) LILRB1 polymorphism and surface phenotypes of natural killer cells. Hum Immunol 71:942–949. doi:10.1016/j.humimm.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  84. Sloane DE, Tedla N, Awoniyi M, Macglashan DW Jr, Borges L, Austen KF, Arm JP (2004) Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 104:2832–2839. doi:10.1182/blood-2004-01-0268

    Article  CAS  PubMed  Google Scholar 

  85. Tedla N, Bandeira-Melo C, Tassinari P, Sloane DE, Samplaski M, Cosman D, Borges L, Weller PF, Arm JP (2003) Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proc Natl Acad Sci USA 100:1174–1179. doi:10.1073/pnas.0337567100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Marcia Meseck for editing the manuscript. This work was supported in part by grants from the National Cancer Institute to S.-H. Chen (R01CA109322, R01CA127483, and R01 CA 208703) and to P.-Y. Pan (R01CA140243 and R01 CA188610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hsia Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

This paper is a Focussed Research Review based on a presentation given at the conference Regulatory Myeloid Suppressor Cells: From Basic Discovery to Therapeutic Application which was hosted by the Wistar Institute in Philadelphia, PA, USA, 16th–19th June, 2016. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Touw, W., Chen, HM., Pan, PY. et al. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 66, 1079–1087 (2017). https://doi.org/10.1007/s00262-017-2023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2023-x

Keywords

Navigation