SUPPLEMENTARY INFORMATION

Supplementary Figure 1 | Teratoma analysis of the fESC, ntESC, B-iPSC, and F-iPSC. Ectodermal epithelium (skin), Endodermal glandular (pancreas), Neuroectoderm (brain), Mesodermal stratified myoepithelium (muscle), and Ectodermal respiratory epithelium (Bronchi). Scale bar, 500µm.

Supplementary Figure 2 | Examples of differential DNA methylation (upper panels) and confirmation by bisulfite pyrosequencing (lower panels). The upper panel is a plot of p (percent methylation) value versus genomic location, where the curve represents averaged smoothed p values. The location of CpG dinucleotide (black tick marks on x axis), CpG density (smoothed black line) calculated across the region using a standard density estimator, location of CpG islands (orange line), as well as gene annotation indicating the transcript (thin outer gray line), coding region (thin inner gray line), exons (filled gray box) and gene transcription directionality on the y axis (sense marked as +, antisense as -) are also shown in the upper panels. The lower panel represents the degree of DNA methylation as measured by bisulfite pyrosequencing. The red box indicated on the x axis of the CpG density plot in the upper panels indicates the CpG sites that were measured. Examples are shown for **a**, Slc32a1, **b**, Cd37, **c**, Rest, and **d**, Kcnrg.

300

Supplementary Figure 5 | Overlap of DMRs with loci of genes showing fESC-specific gene expression (determined from compiled microarray data². Heat maps reflect expression values of fESC-specific genes in undifferentiated state (fESC D0; top 5% highly expressed genes; 554 genes) and after differentiation for 2 and 9 days (differentiated fESC day 2; dfESC D2 and day 9; dfESC D9). **a**, Red bars in the right three lanes indicate number of fESC-specific genes that overlap with DMRs (ntESC, n=5; B-iPSC, n=18; F-iPSC, n=114). **b**, Red bars in the right three lanes indicate number of fESC, n=12; NP-iPSC, n=16; Bl-iPSC, n=45).

Supplementary Figure 6 | DNA demethylation of promoters and gene expression on the selected pluripotent gene loci. a, Oct4 b, Nanog. Schematic structure of the promoters are shown on top, and methylation status of the CpG sites measured by bisulfite pyrosequencing with three independent samples of fESC, ntESC, B-iPSC, and F-iPSC are shown in middle graphs. Detection of Oct4 and Nanog gene expression by RT-PCR with three independent samples of fESC, ntESC, ntESC, B-iPSC are shown in middle graphs.

a

b

Supplementary Figure 7 | Chimera analysis of the fESC, ntESC, B-iPSC, and F-iPSC (refer to Fig. 1a). a, Organ chimerism. B6CBA-derived cells were injected into blastocysts and transferred to pseudopregnant mice (N=3 clones of each stem cell type). Organs from E12.5 embryo (B-iPSC, n=14; F-iPSC, n=8; ntESC, n=15; fESC, n=13) were analyzed by flow cytometry to determine % GFP+ cells. Fibroblasts (MEF) were cultured in vitro for a week before analysis. The F-iPSC show poor contribution to not only fibroblasts but also to the entire spectrum of tissues, thus suggesting poor incorporation into the blastocyst. *In vivo* chimerism does not obviously reflect lineage bias, but also represents a very different assay from the *in vitro* analysis. Germ cells are represented by SSEA1+ cells of the embryonic gonad. fESC and B-iPSC don't contain GFP markers, but ntESC and F-iPSC harbor GFP markers. Donor cells were discriminated by GFP+ marker from either donor cells or blastocyst. SSEA1+ cells from donor cells were indicated in the red box in the panels. Negative control: SSEA1 staining of heart cells from ntESC chimera mouse; Positive control: SSEA1 staining of gonad cells from GFP+ transgenic mouse.

Supplementary Figure 8 | Immunohistochemistry of NP-iPSC, NSC-NP-iPSC, and B-NP-iPSC for OCT4 and NANOG expression, as indicated. 4,6-Diamidino-2-phenylindole (DAPI) staining for total cell content. Fibroblasts surrounding pluripotent colonies serve as negative controls for immunohistochemistry staining. Scale bar, 200µm.

NSC-NP-iPSC chimera

Supplementary Figure 9 | Mouse chimerism and germ line transmission of the fESC, ntESC, B-NP-iPSC, and NSC-NP-iPSC (refer to Fig. 4a).

GEMM

GM

Supplementary Figure 10 | Hematopoietic colony formation by fESC, NSC-NP-iPSC, and B-NP-iPSC. a, Different sizes of GEMM and GM colonies in methylcellulose cultures of fESC, NSC-NP-iPSC, and B-NP-iPSC. (40X magnification). Scale bar, 500µm. **b,** Average cell number per colony among 20 randomly picked colonies from fESC, NSC-NP-iPSC, and B-NP-iPSC. Error bars = s.d.

Supplementary Figure 11 | Residual DNA methylation at hematopoiesis-related loci. a, *Gcnt2* and **b**, *Gata2* genes show a greater degree of hypermethylation in BI-iPSC relative to fESC compared to B-iPSC vs fESC. Upper panels show CHARM plots, while lower panels represent the degree of DNA methylation (of the CpG sites indicated in the red box in the upper panels) as measured by bisulfite pyrosequencing.

Wnt3--chr11:103590761-103590949

Supplementary Figure 12 | DNA methylation at Wnt3. iPSCs that have higher hematopoietic potential (B-NPiPSC and NP-iPSC-TSA-AZA) show a greater degree of Wnt3 gene body methylation³ than the iPSCs that have lower hematopoietic potential (NSC-NPiPSC and NP-iPSC). Upper panel shows CHARM plots, while lower panel represents the degree of DNA methylation as measured by bisulfite pyrosequencing. The orange box indicated on the x axis of the CpG density plot in the upper panel marks the CpG sites that were measured by bisulfite pyrosequencing.

a

4 NP-iPSC Fold Expression NP-iPSC-TSA-AZA 3 2 1 Wnt3 (n=3) Wnt3a (n=3) Colony number per 100,000 cells d(E) <u>7</u>0 M b 60 GM <u>5</u>0 GEMM 40 <u>3</u>0 20 10 Wnt3a -+ + ÷ NSC-NP-iPSC **B-NP-iPSC NP-iPSC** (n=3) (n=3) (n=1)

Supplementary Figure 13 | Relationship of Wnt3/3a on hematopoietic potential of NP-iPSC and NSC-NP-iPSC. a, RNA from EBs differentiated for 3 days were harvested and analyzed by quantitative PCR, after normalization to β -actin. Numbers represent fold expression of NP-iPSC-TSA-AZA (red bar) relative to NP-iPSC (blue bar). b, Methylcellulose analysis of blood-forming potential of iPSCs with Wnt3a treatment (+) between day 2-4 of EB differentiation compared to non-treated EBs (-). Error bars = s.d.

Number of DMRs

a

Comparison

Number of DMRs

Methylation

	FEC VA FIDEC	5304	fESC>F-iPSC	1955
	IESC VS. F-IPSC	5304	fESC <f-ipsc< td=""><td>3349</td></f-ipsc<>	3349
	FEC VA B IDEC	604	fESC>B-iPSC	178
	IESC VS. B-IPSC	694	fESC <b-ipsc< th=""><th>516</th></b-ipsc<>	516
	fESC vo atESC	220	fESC>ntESC	173
	IESC VS. IIESC	229	fESC <ntesc< th=""><th>56</th></ntesc<>	56
		5303	F-iPSC>B-iPSC	2850
	F-IF3C V3. B-IF3C	5202	F-iPSC <b-ipsc< th=""><th>2352</th></b-ipsc<>	2352
	E-iPSC valuetESC	6255	F-iPSC>ntESC	4077
	1-1-50 V3. IILE50	0200	F-iPSC <ntesc< th=""><th>2178</th></ntesc<>	2178
	B-iBSC vs. ptESC	995	B-iPSC>ntESC	897
	B-IF 30 VS. IILESC	333	B-iPSC <ntesc< td=""><td>98</td></ntesc<>	98
	*area cutoff of 2.0.			
b	Comparison	Number of DMRs	Methylation	Number of DMRs
	BLIPSC vs. (ESC	1485	BI-iPSC>fESC	1423
	BHP30 V3. 1230	1400	BI-iPSC <fesc< th=""><th>62</th></fesc<>	62
	BI-iPSC vs.	2344	BI-iPSC>NP-iPSC	2326
	NP-iPSC	2044	BI-iPSC <np-ipsc< th=""><th>18</th></np-ipsc<>	18
	BLiPSC vs. ntESC	3053	BI-iPSC>ntESC	3000
	Driff de Vol Incoo	0000	BI-iPSC <ntesc< td=""><td>53</td></ntesc<>	53
	fESC vs. NP-iPSC	553	fESC>NP-iPSC	136
		000	fESC <np-ipsc< td=""><td>417</td></np-ipsc<>	417
	fESC vs. ntESC	679	fESC>ntESC	399
	1200 10.111200	0.0	fESC <ntesc< td=""><td>280</td></ntesc<>	280
	NP-lpsc vs. ntESC	571	NP-iPSC>ntESC	469
			NP-iPSC <ntesc< th=""><th>102</th></ntesc<>	102
	*area cutoff of 2.0.			
C	Comparison	Number of DMRs	Methylation	Number of DMRs
-	NP-iPSC vs.	107	NP-iPSC>NSC-NP-iPSC	46
	NSC-NP-iPSC	107	NSC-NP-iPSC>NP-iPSC	61
	NP-iPSC vs.	803	NP-iPSC>B-NP-iPSC	593
	B-NP-iPSC	605	B-NP-iPSC>NP-iPSC	210
	NP-iPSC <i>vs.</i>		NP-iPSC >NP-iPSC-TSA-AZA	626
	NP-iPSC-TSA-AZA	938	NP-iPSC-TSA-AZA >NP-iPSC	312
	NSC-NP-iPSC vs.		NSC-NP-iPSC >B-NP-iPSC	632
	B-NP-iPSC	688	B-NP-iPSC >NSC-NP-iPSC	56

* area cutoff of 2.0.

Supplementary Table 1 | . DMRs by CHARM analysis. a, fESC, ntESC, B-iPSC, and F-iPSC (refer to Fig. 1a), **b,** fESC, ntESC, NP-iPSC, and BI-iPSC (refer to Fig. 4a upper schema), **c,** NP-iPSC, NSC-NP-iPSC, NP-iPSC-TSA-AZA, and B-NP-iPSC (refer to Fig. 4a lower schema).

Rank	Gene	Function	Reference
1	Kcnrg		
2	Mast1		
3	Mab21L1	Osteogenetic differentiation	4
4	Atbf1	Myb mediated hematopoietic growth regulation	5
5	Hand1	Cardiac development	6
6	Zfp423	Enhance Hematopoietic activity	7
7	Pcdhga10	protocadherin	8
8	Dlx1	Hematopoietic development with BMP4	9
9	Pim1	Hematopoietic proliferation	10
10	Efnb2	Developmental events, especially in the nervous system and in erythropoiesis	11
11	Asns	Hematopoietic proliferation	12
12	Tradd	programmed cell death	13
13	Ebf2	Osteogenetic differentiation	14
14	Slc13a4	Sodium/sulfate cotransporter	15
15	Osr2	Osteogenetic development	16
16	lgsf4c	Immunoglobulin superfamily	17
17	Meis1	Definitive hematopoiesis	18
18	CD37	T cell B cell interaction and proliferation	19 20
19	Slc38a4		
20	Pcdhga12	Protocadherin	8
21	Pcdhga7	Protocadherin	8
22	Map2k7	Hematopoietic growth	21
23	Sall4	Bmi-1 mediated hematpoietic self-renewal	22
24	Pcdhgb6	Protocadherin	8

Supplementary Table 2 | Top 24 Differentially Methylated Regions (DMRs) between B-iPSC and F-iPSC. Blood-related genes are shaded in red; bone-related genes are shaded in light brown.

aff1	ccnk	gas7	irf1	irf8	myc	runx1	sp4	zfp36l1
arhgap17	elf1	hhex	irf2	klf6	nfe2l2	runx3	stat1	
bcl3	etv3	ifnar2	irf5	lyl1	rbl1	sirt7	stat6	
bcor	fli1	ikbkb	irf7	mtpn	rela	smad2	zfp182	

Supplementary Table 3 | Hematopoiesis-related transcription factors that are differentially methylated in F-iPSC vs B-iPSC (Fig. 1a), NP-iPSC vs BI-iPSC (Fig. 4a upper schema), and/or NSC-NP-iPSC vs B-NP-iPSC (Fig. 4a lower schema).

	Methylation	DN3 > MPP ^{FL-} (496)	DN3 < MPP ^{FL-} (237)	GMP > MPP ^{FL} (177)	GMP < MPP ^{FL-} (567)	DN3 > GMP (706)	DN3 < GMP (207)
DMRs between B-iPSC and fESC (B6/CBA; B-iPSC	B-iPSC > fESC (516)	10	3	7	2	5	3
derived from Kit+, lineage-negative myeloid marrow precursors)	B-iPSC < fESC (178)	2	1	0	5	0	0
DMRs between BI-iPSC and fESC	BI-iPSC > fESC (1423)	20	13	6	20	31	6
(B6/129; BI-iPSC derived from B lymphocytes)	BI-iPSC < fESC (62)	0	0	0	0	0	0

DN3 is T cell lineage committed

GMP is myeloid lineage committed

Flk2 is the multipotent progenitor

Supplementary Table 4 | Comparison of DMRs that distinguish MPP^{FL-} from DN3, MPP^{FL-} from GMP, and DN3 from GMP, with two groups of blood-derived iPSC (B-iPSC and BI-iPSC) compared to fESC. Multiple comparisons were made to ascertain any correlation in the direction of DNA methylation changes from the two sets of data. MPP (multipotent progenitors), CLP (common lymphoid progenitors), CMP (common myeloid progenitors), GMP (granulocyte/monocyte progenitors), and DN3 (thymocyte progenitors).

Cut AREA: 5	Genes	DMRs in B6/CBAF1	mouse (refer to Fig.	1a)
Number of Common target		fESC vs ntESC	fESC vs B-iPSC	fESC vs F-iPSC
7 Core factor	47	0	0	11
6 Core factor	100	0	1	25
5 Core factor	124	0	1	24
4 Core factor	227	0	2	42
3 Core factor	427	0	0	56
2 Core factor	901	0	4	143
1 Core factor	2350	2	16	332
0 Core factor	9686	14	79	1077
Total DMRs	13862	16	103	1710
-	-	-		
Cut AREA: 5	Genes	DMRs in B6/129F1 r	nouse (refer to Fig. 4	a upper schema)
Number of Common target		fESC vs ntESC	fESC vs NP-iPSC	fESC vs BI-iPSC
7 Core factor	47	0	0	1
6 Core factor	100	2	2	3
5 Core factor	124	0	0	3
4 Core factor	227	1	2	7
3 Core factor	427	4	3	11
2 Core factor	901	6	6	22
1 Core factor	2350	13	13	49
0 Core factor	9686	34	53	189
Tatal DMDa	42062	60	79	285

Supplementary Table 5 | DMRs and pluripotency network genes defined by fESC core factor co-occupancy. Correlation between seven core factor co-occupancy on their target genes²³ and DMRs generated from each comparison set were tested to define the functionally linked DMRs in pluripotent network genes. Core factors tested in this analysis are Nanog, Sox2, Oct4, Klf4, Dax1, Nac1, and Zfp281, and the number of DMRs found in each gene set defined by target cooccupancy (by 7 TFs to 0 TF) is shown.

from the gonadal ridge of chimeric embryos, as determined by flow cytometry is indicated as "Yes (gonad)". β symbol in donor tissue expression level or demethylation level. Blank indicates "not determined". "Yes" indicates "confirmed". Germ cell transmission was embryo complementation is indicated "4N complementation"; detection of donor-marked SSEA1+ presumptive germ cells isolated determined as follows: Birth of marked pups from mating of chimeric animals is indicated "Yes"; birth of pups following tetraploid Supplementary Table 6 | List of pluripotent stem cells and their characterization. A "xxx" represents a relative degree of type indicates "carries beta thal deletion".

cell line	Tissue	donor tissue type	passage	teratoma	Oct4	Nonog	Oct4	Nanog	imunohisto-	chimera	germ cell transmission	
	donor		number	formation	transcription	transcription	promoter	promoter	chemistry			
	stain						demethylatio	n demethylatic	on Oct4/Nanog			
ESC												
fESC-A	B6CBAF1	blastocyst	3~7	XXX								_
fESC-B	B6CBAF1	blastocyst	3~7	XXX								
fESC-C	B6CBAF1	blastocyst	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes	
ESC-D	B6CBAF1	blastocyst	3~7	XXX								
fESC-E	B6CBAF1	blastocyst	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes	
fESC-F	B6CBAF1	blastocyst	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes	
ESC-G	B6CBAF1	blastocyst	3~7	XXX								
fESC-I	B6CBAF1	blastocyst	3~7	XXX								
fESC-PGEEE2-1	B6129F1	blastocyst	3~6	XXX						Yes	Yes	
fESC-PGEEE2-2	B6129F1	blastocyst	3~6	XXX						Yes	Yes	
ESC-V6.5	B6129F1	blastocyst	9~11	XXX		XXX	XXX	XXX		Yes	Yes (4n complementation)	
ntESC												
ntESC-B1	B6CBAF1	fibroblast B	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes	
ntESC-B3	B6CBAF1	fibroblast B	3~7	XXX								
ntESC-F1	B6CBAF1	fibroblast B	3~7	XXX								
ntESC-O	B6CBAF1	fibroblast B	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes	
ntESC-V1	B6CBAF1	fibroblast B	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes	
ntESC-V2	B6CBAF1	fibroblast B	3~7	XXX								
ntESC-V3	B6CBAF1	fibroblast B	3~7	XXX								
ntESC-NGFP	B6129F1	embrynic fibroblast	=	XXX						Yes	Yes (4n complementation)	
ntESC-LN1	B6D2F1	B cell	5~8	XXX						Yes	Yes (4n complementation)	
ntESC-LN2	B6129F1	T cell	5~8	XXX						Yes	Yes (4n complementation)	
ntESC-LN3	B6129F1	T cell	5~8	XXX						Yes	Yes (4n complementation)	
ntESC-Rag2	B6129F1	fibroblast	5~8	XXX						Yes	Yes (4n complementation)	
ntESC-V6.5NSCB1	B6129F1	neural stem cell	5~8	XXX						Yes	Yes (4n complementation)	
ntESC-V6.5NSCB2	B6129F1	neural stem cell	5~8	XXX						Yes	Yes (4n complementation)	

	Tissue	donor tissue type	passage	teratoma	Oct4	Nonog	Oct4	Nanog	imunohisto-	chimera	germ cell transmission
	donor		number	formation	transcription	transcription	promoter	promoter	chemistry		
	stain						demethylation	demethylation	Oct4/Nanog		
	B6CBAF1	fibroblast B	3~7	XXX	XXX	XX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	fibroblast B	3~7	XXX	XXX	XX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	fibroblast B	3~7	XXX	XXX	XX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	fibroblast B	3~7	XXX							
	B6CBAF1	fibroblast B	3~7	XXX							
	B6CBAF1	fibroblast B	3~7	XXX							
	R6CRAF1	fibrobilast B	3~7	A A A							
	BACRAF1	fibroblast R	2.7								
	Decrove1										
	BOUBAFI	nematopoettic cell	20	XXX							•
	B6CBAF1	hematopoeitic cell 3	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	hematopoeitic cell 3	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	hematopoeitic cell B	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	hematopoeitic cell 8	3~7	XXX	XXX	XXX	XXX	XXX	XXX	Yes	Yes (gonad)
	B6CBAF1	hematomoeitic cell B	3~7	XXX							
	B6CBAF1	hematomoeitic cell B	3~7	XXX							
	RACRAF1	hematoroneitic cell B	7.25	***							
	DACTOAT	homotopositio coll R									
	DOUBALI	nematopoettic cell p	~ ~	XXX							
	B6129F1	B cell	6~8	XXX		XXX	XXX	XXX	XXX	Yes	Yes
	B6129F1	B cell	6~8	XXX		XXX	XXX	XXX	XXX	Yes	Yes
	B6129F1	B cell	6~8	XXX		XXX	XXX	XXX	XXX	Yes	Yes
	B6129F1	B cell	6~8	XXX		XXX					
	B6129F1	B cell	6~8	XXX		XXX					
	B6129F1	B cell	e~8 6	XXX		XXX					
	E41001	eneral economitar call	0 9	A A A	A A A	A A A				Vac	Vac
	D6170F1	neural progeniter cen	0~0 C	V V V	VVV				VVV	8	8
	1167100	neural progeniter cell	C~7	XXX		XXX					
	B6129F1	neural progeniter cell	2~5	XXX		XXX					
	B6129F1	neural progeniter cell	2~5	XXX		XXX					
	B6129F1	neural progeniter cell	2~5	XXX		XXX					
	B6129F1	neural progeniter cell	2~5	XXX		XXX					
	B6129F1	neural progeniter cell	2~5	XXX		XXX					
	B6129F1	NPiPS-neural stem cell	2~5	XXX		XXX			XXX	Yes	
	B6129F1	NPiPS-neural stem cell	2~5	XXX		XXX					
	B6129F1	NPiPS-neural stem cell	2~5	XXX		XXX					
	B6129F1	NPiPS-neural stem cell	2~5	XXX		XXX					
	B6129F1	NPiPS-neural stem cell	2~5	XXX		XXX					
	B6120F1	NPiPS-neural stem cell	2~5	XXX		XXX					
41	D410011	NDiDS and stam add	2								
	D0123F1		2 4	V V V		~~~					
	B0129F1	NPtPS-neural stem cell	2~3	XXX		XXX					
3	B6129F1	NPiPS-neural stem cell	2~3	XXX		XXX					
	B6129F1	NPiPS-blood linage	2~5	XXX		XXX			XXX	Yes	
	B6129F1	NPiPS-blood linage	2~5	XXX		XXX					
	B6129F1	NPiPS-blood linage	2~5	XXX		XXX					
	B6129F1	NPiPS-blood linage	2~5	XXX		XXX					
	D4100F1	NPiPC blood linear	5.0	4 A A A							
	D012211	INFIT 3-01000 midge	727	VVV		~~~					
	B0129F1	NP1PS-DIOOG IIIJage	C~7	XXX		XXX					

Cono	Drimor				Chromosomal	Coordinates		
Gene	Pliller	Sequence $(5 \rightarrow 5)$	Chr	CG1	CG2	CG3	CG4	CG5
Pou5f1 (Oct4)	Forward Reverse Nested forward Nested reverse Sequencing1 (F) Sequencing2 (F)	GTTGTTTTGTTTTGGTTTTGGATAT CAAAAAACCTTCATTTTCAACCTT TGAGGAGTGGTTTTAGAAATAATTG /5Biosg/AATCCTCTCACCCCTACCTTAAAT TGAGGAGTGGTTTTAGAAATAATTG GAGGGTGTAGTGTTAATAGGTTTTG	chr17	35113732	35113827	35113839	35113863	
Nanog	Forward Reverse Nested forward Nested reverse Sequencing 1 (F) Sequencing 2 (F)	GTAATAGAGAAAAATTTGTTTTAAAATTAA CTACAAACATAAAAAAATCAAACCT TTTAAGTAGGATATAGGTTTTTTT /5Biosg/ACTACCAAAATCTCTATTTATACAC TTTAAGTAGGATATAGGTTTTTTT TTTAATGTGAAGAGTAAGTA	chr6	122672685	122672696	122672753	122672775	
Cd37	Forward Reverse Nested forward Nested reverse Sequencing (F)	AGATGTGAGTTTTTGTAGGGAGTGTATA CATATTCTTAATCCCTAAACCCCCAT TTTAGTTGGGAGAAAAAGAGTTTATTAAA /5Biosg/CAAACCTAACTACACACCTACACC TTTTTAGTATTTGGGTTTTGTTTT	chr7	45103657	45103659	45103673	45103681	
Kcnrg	Forward Reverse Nested forward Nested reverse Sequencing (F)	TAATTTTGTATGGAGAGTTTGGTTTG CCCCAATTATATTTAATTACCTTCAC TTTGTAGAAGTAAAGGAGTGTGGATA /5Biosg/TCACTACAATAACTCCTATAAAAAAAA TGGTAGATGTTTTAGTAGGGTTTTAG	chr14	60638814	60638820	60638828	60638848	60638857
Rest	Forward Reverse Nested forward Nested reverse Sequencing (F)	TGGGAGATAATTATTTTTAGAAAGTGA TCCCAAACTTTAACCTATTTCTCTACA TTGATTTTAAAGGGTTGGAAAATAT /5Biosg/AAAACTTAACCTTAAAACTCCTACA AAGTTTTAGTTGTTTTAGAAATA	chr5	78343105	78343120	78343135	78343140	
Slc32a1	Forward Reverse Nested forward Nested reverse Sequencing (F)	TTTGGTTGTATTTTTAGGAATTATT AAAAACAACCCCCAAATAACC TTGTGAGGATTTTTATATTTTTTT /5Biosg/ACCAAACCCAAAAACTCAACTAAT TTTTTTGATTTAATATTTAGA	chr2	158305089	158305106	158305128		
Oct4	Forward Reverse	AGCTGCTGAAGCAGAAGAGGATCATCTCATT GTTGTCGGCTTCCTCCA	QPCR Primer					
Nanog	Forward Reverse	AACCAAAGGATGAAGTGCAAGCGGTCCAAG TTGGGTTGGTCCAAGTCT	QPCR Primer					
Actin	⊢orward Reverse	GGAGGAGCAATGATCTTGA	Primer					

/5Biosg/ = 5' biotin added, F = forward

Supplementary Table 7 | Primer sequences used for bisulfite pyrosequencing and rtPCR. The chromosomal coordinates for the locations of CpG sites interrogated in the bisulfite pyrosequencing are based on the UCSC Genome Browser Mouse Feb. 2006 Assembly (mm8).

		He	matopo	<u>ietic Tra</u>	nscripti	on Facto	ors		
aff1	ankfy1	arhgap17	atf3	batf	bcl3	bcor	ccnk	creb1	creg1
dazap2	dmtf1	dpf2	dr1	elf1	elk4	etv3	fli1	gas7	gmeb1
hhex	htatip2	ifi204	ifnar2	ikbkb	ikbkg	ikzf1	ikzf3	ints12	irf1
irf2	irf5	irf7	irf8	klf6	limd1	lyl1	mtpn	myb	myc
nfatc1	nfe2l2	nfkb1	nfkbie	nfya	nmi	ostf1	papola	papolg	pcbd2
plagl2	rab8a	rab8b	rbl1	rcor1	rel	rela	runx1	runx3	sertad1
sirt7	smad2	sp4	stat1	stat4	stat5a	stat6	tal1	tceb3	tnfaip3
zfp182	zfp36	zfp36l1	zfp426						

Supplementary Table 8 | List of Hematopoietic Transcription Factors (Cahan and Daley, unpublished), applied in the gene enrichment analysis in Fig. 3b and Supplementary Fig. 3c.

Г

		Fibroblast Sp	pecific Genes		
1110012d08rik	1110036o03rik	1200002n14rik	1200009f10rik	1300014i06rik	1810037c20rik
2310038h17rik	2310047d13rik	2610034b18rik	2810022l02rik	2810055f11rik	2900026a02rik
3110032g18rik	9030425e11rik	9130005n14rik	9430028l06rik	9930013l23rik	a130022j15rik
abca1	abi3bp	aco1	acvr1	acvrl1	adam12
adam19	adam33	adam9	adamts1	adamts10	adamts12
adamts5	adamtsl1	adamtsl5	adcy4	adm	aebp1
agtr1a	ai597468	akap2	aldh1l2	alg14	angptl2
ankrd1	antxr1	aqp1	arfgap1	arhgap28	arhgef19
arsj	asah2	atf5	atp11a	avpr1a	aw061290
aw548124	axl	b4galt4	bag2	bambi	bc029169
bc035537	bgn	bicc1	bicd2	bmp1	bmp5
bmper	boc	c130021i20rik	c1qtnf2	c1qtnf3	c1qtnf5
c1qtnf6	c1s	c2	calcoco1	calu	capn6
cask	casp12	cav1	cbr2	ccdc102a	ccdc68
cd248	cd276	cdc16	cdc42ep1	cdc42ep2	cdh11
cdkn1c	cdkn2b	cdon	cebpb	cfh	cgnl1
chac1	chmp2b	chrdl1	ckap4	cldn1	clec11a
clec14a	clic4	cnn1	col11a1	col14a1	col15a1
col16a1	col1a1	col1a2	col27a1	col2a1	col5a1
col5a3	col6a1	col6a2	col7a1	col8a1	col8a2
col9a1	col9a2	colec12	copz2	ср	cpa6
cpne8	cpxm1	cpxm2	cpz	crabp1	crabp2
creb3	creb3l2	crim1	crim2	crispld2	crlf1
csf1	cspg4	ctdspl	cthrc1	ctps	ctsl
cxcl12	cxcl14	cxcl5	cyp1b1	cyp26b1	cyr61
d10ertd610e	d4bwg0951e	dab2	dcn	ddr2	dkk2
dkk3	dmpk	dpysl3	dysf	e130203b14rik	e430002g05rik
ebf1	ebf2	ece1	ednra	efemp2	efna4
efna5	efnb1	egfr	ehd2	eln	emid2
emp2	emx2	en1	entpd2	epha3	ephb2
ephx1	errfi1	evi1	ext1	eya4	fads3
fap	farp2	fat4	fbln1	fbln2	fbln5
fbn1	fbn2	fbxl7	fbxo17	fcgrt	fez2
fgf18	fgf2	fgfr2	fgfrl1	fhl2	figf
fkbp10	fkbp14	flrt2	flt1	fmod	fn1
fndc3b	fosl1	foxc1	foxc2	foxd1	frmd6
frs2	fst	fstl3	fzd1	fzd2	fzd6
fzd8	gadd45g	gal3st4	galntl4	gas1	gas6
gata6	gdnf	ggcx	ghr	gjb2	glce
gli3	glis1	glis3	glt8d2	gm106	gng11

Supplementary Table 9 | List of Fibroblast Specific Genes (Cahan and Daley, unpublished), applied in the gene enrichment analysis in Fig. 3b.

		Fibroblast Sp	pecific Genes		
gng12	gng8	golga3	gpc1	gpc6	gpr124
gpr176	gpr180	gpx3	gpx7	grb10	grem1
grem2	gulp1	h1f0	has2	hcfc1r1	hebp2
heyl	hgf	hhat	hic1	hist1h1c	hist1h2bc
hist2h3c1	hoxa11	hoxa2	hoxb2	hoxb6	hoxc8
hoxd10	hoxd8	hoxd9	hs2st1	hspa12b	hspa1b
hspb8	htra3	id3	igf1	igf2	igf2r
igfbp3	igfbp4	il13ra1	il1r1	il6st	il7
ilk	irx1	irx2	irx3	irx5	islr
itfg3	itga1	itga8	itgb5	kazald1	kcne4
kcnj8	kctd11	kctd12b	kdelr3	lama2	lama4
laptm4a	lect1	lepre1	leprel1	leprel2	lgals7
lgr5	lhfp	Imcd1	lmod1	lox	loxl1
loxl2	loxl3	loxl4	Irp1	lrp6	Irrc15
Irrc41	Irrc58	ltbp1	ltbp2	ltbp3	ly6a
Izts2	maf	mamdc2	marcks	masp1	matn2
matn4	mcam	meox1	meox2	mertk	mfap2
mfap4	mfap5	mfge8	mgst1	mical2	mid2
mkx	mmp11	mmp14	mmp2	morc4	mr1
mrc2	mrgprf	msrb3	msx1	msx2	mtmr11
mxra8	mylk	nab2	nbl1	ncbp2	nenf
net1	nexn	nfatc4	nfil3	nfix	nkd1
nkd2	npnt	npr2	npr3	nr2f2	nt5e
ntn4	nuak1	nudt6	nxn	oaf	oat
olfml1	olfml2a	olfml2b	ormdl3	osbpl5	osmr
osr1	p4ha2	p4ha3	рарра	pard6g	pbxip1
pcdh18	pcdh7	pcdhb22	pcyox1	pde3a	pdgfd
pdgfra	pdgfrb	pdgfrl	pdia5	pdpn	pdzd11
pdzrn3	pgf	pgm5	phlda3	phldb1	plagl1
plekhf1	plekhh2	pmp22	podn	ppic	prelp
prkcdbp	prkg1	prrx2	prss23	prss35	pthr1
ptk7	ptpla	ptpn9	ptrf	ptx3	qpctl
rassf8	rbms3	rcn1	rcn3	reck	rerg
rgs3	rhobtb3	rhoj	rhoq	rin2	rnase4
rnd3	ror1	ror2	rspo3	samd4	scara3
scara5	scarf2	scube2	SCX	scyl1	sdc4
sdpr	sec22b	sema3c	sema3d	sepn1	serpina3n
serpinf1	sfrp2	sfrp4	sgcd	six5	slc10a6
slc16a4	slc2a10	slc35f5	slc39a13	slco2a1	slit3
smad1	smad3	smad5	smad6	smo	smoc2

Supplementary Table 9 | List of Fibroblast Specific Genes-Continued

		Fibroblast Sp	ecific Genes		
smpd2	smtn	snai1	snai2	sned1	sorbs3
sox4	spg20	sphk1	spon2	spsb1	sqrdl
sspn	st5	stard13	stau1	steap1	sulf1
svep1	tagIn	tbc1d19	tbx18	tbx2	tcf21
tcf7l2	tenc1	tfpi2	tgfb1i1	tgfb2	tgfb3
tgfbr3	tgm2	thbd	thbs1	thbs2	timp2
tll1	tm9sf3	tmbim1	tmcc3	tmem119	tmem159
tmem16a	tmem16k	tmem176a	tmem176b	tmem5	tmem65
tmem86a	tmem98	tmtc4	tnc	tnfaip1	tnfrsf12a
tnmd	tnn	tnxb	tpm1	tspan31	tspan6
twist1	twist2	ube2r2	unc5b	vasn	vcam1
vegfa	vnn1	wipi1	wisp1	wnt5a	yipf5
zcchc5	zfand3	zfhx4	zfp275	zfp449	zfp503
zfp521	zfp637	zfp647	zfp9		

Supplementary Table 9 | List of Fibroblast Specific Genes-Continued

Reference

1. Cahan, P., Li, H., Collins, J.J. & Daley, Q.G. Tissue-specific gene expression and autoregulatory loops. *manuscript in preparation* (2010).

2. Perez-Iratxeta, C. et al. Study of stem cell function using microarray experiments. *FEBS Lett* 579, 1795-1801 (2005).

3. Ball, M.P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. *Nat Biotechnol* 27, 361-368 (2009).

4. Kim, Y.J. et al. The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation. *J Cell Physiol.* 211, 253-260. (2007).

5. Kaspar, P. et al. Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. *J Biol Chem* 274, 14422-14428 (1999).

6. Riley, P., Anson-Cartwright, L. & Cross, J.C. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. *Nat Genet* 18, 271-275 (1998).

7. Miyazaki, K. et al. Enhanced expression of p210BCR/ABL and aberrant expression of Zfp423/ZNF423 induce blast crisis of chronic myelogenous leukemia. *Blood.* 113, 4702 -4710. Epub 2009 Feb 4720. (2009).

8. Kirov, G. et al. Variation in the protocadherin gamma A gene cluster. *Genomics* 82, 433-440 (2003).

9. Chiba, S. et al. Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. *Proc Natl Acad Sci U S A.* 100, 15577-15582. Epub 12003 Dec 15511. (2003).

10. Hu, Y.L., Passegue, E., Fong, S., Largman, C. & Lawrence, H.J. Evidence that the Pim1 kinase gene is a direct target of HOXA9. *Blood* 109, 4732-4738 (2007).

11. Sakano, S. et al. Characterization of a ligand for receptor protein-tyrosine kinase HTK expressed in immature hematopoietic cells. *Oncogene* 13, 813-822 (1996).

12. Iwamoto, S., Mihara, K., Downing, J.R., Pui, C.H. & Campana, D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. *J Clin Invest.* 117, 1049-1057. Epub 2007 Mar 1022. (2007).

13. Hsu, H., Xiong, J. & Goeddel, D.V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. *Cell* 81, 495-504 (1995).

14. Kieslinger, M. et al. EBF2 regulates osteoblast-dependent differentiation of osteoclasts. *Dev Cell.* 9, 757-767. (2005).

15. Markovich, D., Regeer, R.R., Kunzelmann, K. & Dawson, P.A. Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4). *Biochem Biophys Res Commun* 326, 729-734 (2005).

16. Kawai, S., Yamauchi, M., Wakisaka, S., Ooshima, T. & Amano, A. Zinc-finger transcription factor odd-skipped related 2 is one of the regulators in osteoblast proliferation and bone formation. *J Bone Miner Res.* 22, 1362-1372. (2007).

17. Borland, G. et al. alphavbeta5 integrin sustains growth of human pre-B cells through an RGD-independent interaction with a basic domain of the CD23 protein. *J Biol Chem* 282, 27315-27326 (2007).

18. Azcoitia, V., Aracil, M., Martinez, A.C. & Torres, M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. *Dev Biol* 280, 307-320 (2005).

19. Knobeloch, K.P. et al. Targeted inactivation of the tetraspanin CD37 impairs T-celldependent B-cell response under suboptimal costimulatory conditions. *Mol Cell Biol.* 20, 5363-536 9. (2000).

20. van Spriel, A.B. et al. A regulatory role for CD37 in T cell proliferation. *J Immunol.* 172,

21. Sasaki, T. et al. The stress kinase mitogen-activated protein kinase kinase (MKK)7 is a negative regulator of antigen receptor and growth factor receptor-induced proliferation in hematopoietic cells. *J Exp Med* 194, 757-768 (2001).

22. Yang, J. et al. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. *Proc Natl Acad Sci U S A* 104, 10494-10499 (2007).

23. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S.H. An extended transcriptional network for pluripotency of embryonic stem cells. *Cell.* 132, 1049-1061. (2008).

2953-2961. (2004).