Supplementary Table S1 | Cannabinoid activity in animal models of cancer

MODEL	TUMOUR TYPE	EXPERIMENTAL SYSTEM	EFFECT	CANNABINOID	RECEPTOR	REFS
			ANTI-TUMOUR ACTIONS			
SYNGENEIC	TUMOURS					
Ectopic isografts	Lung carcinoma*	IM injection of cancer cells; IC mice	Decreased tumour size, increased survival time	Δ^9 -THC, Δ^8 -THC, CBN	n.d.	1
	Lymphoma	IP injection of cancer cells; IC mice	Decreased viable IP tumour cells, increased survival time (apoptosis)	Δ ⁹ -THC, CBD	CB2	2, 3
	Skin carcinoma*	SC injection of cancer cells; ID mice	Decreased tumour size (apoptosis and angiogenesis)	WIN 55212-2, JWH-133	CB1, CB2	4
	Melanoma	SC injection of cancer cells; ID and IC mice	Decreased tumour size (apoptosis, inhibition of proliferation and angiogenesis)	WIN 55212-2, JWH-133	CB1, CB2	5
	Breast carcinoma	SC injection of cancer cells; ID mice	Decreased tumour size (inhibition of proliferation, apoptosis)	∆⁰-THC, JWH- 133	CB2	6
Orthotopic isografts	Breast carcinoma	IMG injection of cancer cells; IC mice	Decreased tumour size, reduced lung metastases (inhibition of proliferation and invasiveness)	CBD, JWH-015	n.d.	7, 8
ALLOGENIC	C TUMOURS					
Ectopic xenografts	Glioma	SC injection of cancer cells; ID mice	Decreased tumour size (apoptosis, inhibition of angiogenesis, migration and invasiveness)	Δ ⁹ -THC, JWH- 133, WIN 55212- 2, CBD	CB1, CB2	9-19
	Thyroid epithelioma		Decreased tumour size (inhibition of proliferation, apoptosis)	MET-AEA, 2- AG, CBD	CB1, CB2	20-23
	Pancreatic carcinoma		Decreased tumour size	Δ ⁹ -THC, JWH- 133	CB2	24
	Breast carcinoma		Decreased tumour size (apoptosis, inhibition of proliferation and angiogenesis)	JWH-133, WIN 55212-2	CB1, CB2	25
	Lung carcinoma		Decreased tumour size (apoptosis, inhibition of proliferation, invasiveness and angiogenesis)	Δ ⁹ -THC, JWH- 133, WIN 55212- 2, CBD	CB1, CB2, TRPV1	26-29
	Lymphoma		Decreased tumour size (inhibition of proliferation, apoptosis)	MET-AEA	CB1, CB2	30
	Cholangio- carcinoma		Decreased tumour size (inhibition of proliferation, apoptosis)	AEA	GPR55	31-33
	Colon carcinoma		Decreased tumour size (apoptosis)	CB-13	CB1, CB2	34
	Rhabdomyo- sarcoma		Decreased tumour size (apoptosis)	HU-210	CB1	35
	Prostate carcinoma		Decreased tumour size (inihibition of proliferation, apoptosis)	JWH-015	CB2	36
	Oral carcinoma		Decreased tumour size (inhibition of proliferation)	AM-1241	CB2	37
	Hepatocellular carcinoma		Decreased tumour growth (apoptosis)	Δ ⁹ -THC, JWH- 015	CB2	38
	Transformed MEFs	SC injection of transformed cells; ID mice	Decreased tumour size (apoptosis)	Δ ⁹ -THC	CB1, CB2	11, 13
Orthotopic xenografts	Glioma	Intracerebral injection of cancer cells; rats	Decreased tumour size, increased survival (apoptosis)	Δ ⁹ -THC, WIN 55212-2	CB1, CB2	12
	Pancreatic carcinoma	Intrapancreatic injection of cancer cells; ID mice	Decreased tumour growth, reduced metastases (apoptosis)	WIN 55212-2	CB2	24
	Hepatocellular carcinoma	Intrahepatic injection of cancer cells; ID mice	Reduced hepatomegaly and ascites (apoptosis)	Δ ⁹ -THC, JWH- 015	CB2	38

CHEMICALL	Y-INDUCED CAR	RCINOGENESIS				
	Colon cancer	Azoxymethane treatment; C57BL/6 mice	Decreased aberrant crypt foci (apoptosis)	HU-210	n.d.	39
GENETICALI	LY-ENGINEERED					
	Colorectal cancer	Apc ^{Min/+} mice	Reduced number of tumours (apoptosis)	R-1	CB1	40
	Breast cancer	Heterozygous PyMT mice	Increased tumour latency, decreased tumour size (apoptosis, inhibition of proliferation, angiogenesis, migration and invasiveness)	JWH-133	CB2	8, 25
		MMTV-neu mice	Inhibition of tumour generation, decreased tumour size, reduced lung metastases (apoptosis, inhibition of proliferation and angiogenesis)	Δ ⁹ -THC, JWH- 133	CB2	6
MODELS OF	METASTASIS					
Intravenous injection of tumour cells	Lung carcinoma	Mouse cells: paw injection, IC mice Human cells: tail vein injection, ID mice	Reduced lung metastases (inhibition of invasiveness)	Δ ⁹ -THC, JWH- 133, WIN 55212- 2, CBD, MET- AEA	CB1, CB2, TRPV1	21, 26, 27, 41
	Breast carcinoma	Mouse cells: paw and tail vein injection, IC mice Human cells: paw and tail vein injection; IC mice	Reduced lung metastases (inhibition of proliferation, adhesion, migration and invasion)	JWH-133, WIN 55212-2, MET- AEA, CBD	CB1, CB2	7, 23, 25, 42, 43
	Melanoma	Mouse cells: paw injection, IC mice	Reduced lung and liver metastases	WIN 55212-2	n.d.	5
Originated from an orthotopic xenograft	Pancreatic cancer	Orthotopic xenograft; ID mice	Reduced spleen, liver, diaphragm, intestine and stomach metastases (apoptosis)	Δ ⁹ -THC, JWH- 133	CB2	24
Derived from a primary tumour	Breast cancer	MMTV-neu mice, Orthotopic isograft	Reduced lung metastases (inhibition of proliferation and invasiveness)	Δ ⁹ -THC, JWH- 133, CBD	CB2	6, 7
			PRO-TUMOUR ACTIONS			
SYNGENEIC				0		
Ectopic isografts	Lung carcinoma*	SC injection of cancer cells; IC mice	Increased tumour size (inhibition of anti-tumour immune response)	Δ^9 -THC, MET- AEA	CB2	44, 45
	Breast carcinoma		Increased tumour size (inhibition of anti-tumour immune response)	Δ ⁹ -THC	CB2	46
	METASTASIS			19 mm G	(T) 4	
Originated from an ectopic isograft	Breast carcinoma	Ectopic isograft; IC mice	Increased number and size of lung metastases (inhibition of anti-tumour immune response)	Δ ⁹ -THC	CB2	24, 46
0						

The table shows the different animal models of cancer in which the indicated cannabinoids have been proved to have pro- or anti-tumour effects. The membrane receptors involved in these actions are also specified. Note, nonetheless, that not all the indicated effects are produced by all the agonists, and that not all the indicated agonists are capable of activating (all) the indicated receptor(s).

*Although the cancer cell line used was of mouse origin, it was not injected in strictly syngeneic mice but in a different mouse strain.

IM, intramuscular; SC, subcutaneous; IMG, intramammary gland; IC, immunocompetent; ID, immunodeficient; MEFs, mouse embryonic fibroblasts; n.d., not determined. CB₁, cannabinoid receptor 1; CB2, cannabinoid receptor 2; TRPV1, transient receptor potential cation channel 1; GPR55, G protein-coupled receptor 55. Δ^9 -THC (Δ^9 -tetrahydrocannabinol), Δ^{-8} -THC ($^{-8}$ Atetrahydrocannabinol), CBN (cannabinol), WIN 55212-2, MET-AEA (methanandamide), 2-AG (2-arachidonoylglicerol), CB-13 and HU-210 are CB1/CB2-mixed agonists; JWH-133, JWH-015 and AM-1241 are CB2-selective agonists and R-1 is a CB₁-selective agonist. CBD (cannabidiol) does not bind to either CB1 or CB2 receptors with significant affinity.

REFERENCES

- 1. Munson, A.E., Harris, L.S., Friedman, M.A., Dewey, W.L. & Carchman, R.A. Antineoplastic activity of cannabinoids. *J Natl Cancer Inst* **55**, 597-602 (1975).
- 2. McKallip, R.J. et al. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. *Blood* **100**, 627-34 (2002).
- 3. McKallip, R.J. et al. Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. *Mol Pharmacol* **70**, 897-908 (2006).
- 4. Casanova, M.L. et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. *J Clin Invest* **111**, 43-50 (2003).
- 5. Blazquez, C. et al. Cannabinoid receptors as novel targets for the treatment of melanoma. *FASEB J* 20, 2633-5 (2006).
- 6. Caffarel, M.M. et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. *Mol Cancer* **9**, 196 (2010).
- 7. McAllister, S.D. et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. *Breast Cancer Res Treat* (2011).
- 8. Nasser, M.W. et al. Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. *PLoS One* **6**, e23901 (2011).
- 9. Blazquez, C. et al. Inhibition of tumor angiogenesis by cannabinoids. *FASEB J* **17**, 529-31 (2003).
- 10. Blazquez, C. et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. *Cancer Res* **68**, 1945-52 (2008).
- 11. Carracedo, A. et al. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. *Cancer Cell* **9**, 301-12 (2006).
- 12. Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. *Nat Med* **6**, 313-9 (2000).
- 13. Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. *J Clin Invest* **119**, 1359-72. (2009).
- 14. Massi, P. et al. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. *J Pharmacol Exp Ther* **308**, 838-45 (2004).
- 15. Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB₂ cannabinoid receptor. *Cancer Res* **61**, 5784-9 (2001).
- 16. Blazquez, C. et al. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. *Cancer Res* **64**, 5617-23 (2004).
- 17. Blazquez, C. et al. Down-regulation of tissue inhibitor of metalloproteinases-1 in gliomas: a new marker of cannabinoid antitumoral activity? *Neuropharmacology* **54**, 235-43 (2008).
- 18. Lorente, M. et al. Amphiregulin is a factor for resistance of glioma cells to cannabinoidinduced apoptosis. *Glia* **57**, 1374-85 (2009).
- 19. Torres, S. et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. *Mol Cancer Ther* **10**, 90-103 (2011).
- 20. Bifulco, M. et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. *FASEB J* **15**, 2745-7 (2001).
- 21. Portella, G. et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. *FASEB J* **17**, 1771-3 (2003).
- 22. Bifulco, M. et al. A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. *FASEB J* 18, 1606-8 (2004).
- 23. Ligresti, A. et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. *J Pharmacol Exp Ther* **318**, 1375-87 (2006).
- 24. Carracedo, A. et al. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. *Cancer Res* **66**, 6748-55 (2006).
- 25. Qamri, Z. et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. *Mol Cancer Ther* **8**, 3117-29 (2009).

- 26. Preet, A., Ganju, R.K. & Groopman, J.E. Δ^9 -Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. *Oncogene* **27**, 339-46 (2008).
- 27. Preet, A. et al. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of nonsmall cell lung cancer growth and metastasis. *Cancer Prev Res (Phila)* **4**, 65-75 (2011).
- 28. Ramer, R., Merkord, J., Rohde, H. & Hinz, B. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. *Biochem Pharmacol* **79**, 955-66 (2010).
- 29. Ramer, R., Rohde, A., Merkord, J., Rohde, H. & Hinz, B. Decrease of plasminogen activator inhibitor-1 may contribute to the anti-invasive action of cannabidiol on human lung cancer cells. *Pharm Res* **27**, 2162-74 (2010).
- 30. Gustafsson, K. et al. Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation. *Int J Cancer* **123**, 1025-33 (2008).
- 31. Huang, L. et al. Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor. *Lab Invest* **91**, 1007-1017 (2011).
- 32. DeMorrow, S. et al. Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. *Am J Physiol Gastrointest Liver Physiol* **294**, G506-19 (2008).
- 33. Frampton, G., Coufal, M., Li, H., Ramirez, J. & DeMorrow, S. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling. *Exp Cell Res* **316**, 1465-78 (2010).
- 34. Cianchi, F. et al. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. *Clin Cancer Res* **14**, 7691-700 (2008).
- 35. Oesch, S. et al. Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. *Mol Cancer Ther* **8**, 1838-45 (2009).
- 36. Olea-Herrero, N., Vara, D., Malagarie-Cazenave, S. & Diaz-Laviada, I. Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2. *Br J Cancer* **101**, 940-50 (2009).
- 37. Saghafi, N., Lam, D.K. & Schmidt, B.L. Cannabinoids attenuate cancer pain and proliferation in a mouse model. *Neurosci Lett* **488**, 247-51 (2011).
- 38. Vara, D. et al. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. *Cell Death Differ* **18**, 1099-111 (2011).
- 39. Izzo, A.A. et al. Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. *J Mol Med (Berl)* **86**, 89-98 (2008).
- 40. Wang, D. et al. Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. *Cancer Res* **68**, 6468-76 (2008).
- 41. Ramer, R. & Hinz, B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. *J Natl Cancer Inst* **100**, 59-69 (2008).
- 42. Grimaldi, C. et al. Anandamide inhibits adhesion and migration of breast cancer cells. *Exp Cell Res* **312**, 363-73 (2006).
- 43. McAllister, S.D. et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. *Breast Cancer Res Treat* **129**, 37-47 (2011).
- 44. Zhu, L.X. et al. Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptormediated, cytokine-dependent pathway. *J Immunol* **165**, 373-80 (2000).
- 45. Gardner, B., Zhu, L.X., Sharma, S., Tashkin, D.P. & Dubinett, S.M. Methanandamide increases COX-2 expression and tumor growth in murine lung cancer. *FASEB J* **17**, 2157-9 (2003).
- 46. McKallip, R.J., Nagarkatti, M. & Nagarkatti, P.S. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. *J Immunol* **174**, 3281-9 (2005).