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Abstract 

Introduction:  Programmed cell death ligand-1 (PD-L1) expression is a promising biomarker for identifying treatment 
related to non-small cell lung cancer (NSCLC). Automated image analysis served as an aided PD-L1 scoring tool for 
pathologists to reduce inter- and intrareader variability. We developed a novel automated tumor proportion scoring 
(TPS) algorithm, and evaluated the concordance of this image analysis algorithm with pathologist scores.

Methods:  We included 230 NSCLC samples prepared and stained using the PD-L1(SP263) and PD-L1(22C3) antibod-
ies separately. The scoring algorithm was based on regional segmentation and cellular detection. We used 30 PD-
L1(SP263) slides for algorithm training and validation.

Results:  Overall, 192 SP263 samples and 117 22C3 samples were amenable to image analysis scoring. Automated 
image analysis and pathologist scores were highly concordant [intraclass correlation coefficient (ICC) = 0.873 and 
0.737]. Concordances at moderate and high cutoff values were better than at low cutoff values significantly. For SP263 
and 22C3, the concordances in squamous cell carcinomas were better than adenocarcinomas (SP263 ICC = 0.884 vs 
0.783; 22C3 ICC = 0.782 vs 0.500). In addition, our automated immune cell proportion scoring (IPS) scores achieved 
high positive correlation with the pathologists TPS scores.

Conclusions:  The novel automated image analysis scoring algorithm permitted quantitative comparison with 
existing PD-L1 diagnostic assays and demonstrated effectiveness by combining cellular and regional information for 
image algorithm training. Meanwhile, the fact that concordances vary in different subtypes of NSCLC samples, which 
should be considered in algorithm development.
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Introduction
Programmed cell death-1 (PD-1) and programmed 
cell death ligand-1 (PD-L1) pathway have emerged as 
immune checkpoints in several malignancies including 
lung carcinoma [1]. PD-L1 is expressed in many tumors 
cells (TCs), which can interact with PD-1 expressed on 
cytotoxic T cells and thereby evade the recognition by 
the host’s immune system [2, 3]. PD-1/PD-L1 inhibi-
tors are used to block the immuno-escape interaction 
between TCs and immune cells in a variety of cancers. 
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[4] Assessment of PD-L1 expression and prediction the 
treatment outcomes of PD-1/PD-L1 inhibitors is a criti-
cal part of patient management in [5–8]. However, differ-
ent antibody clones and diagnosis platforms exist for the 
immunohistochemistry (IHC) assays in PD-L1 diagnosis 
[9–12]. The Food and Drug Administration (FDA) and 
European Medicines Agency (EMA) have approved sev-
eral diagnostic IHC antibodies with respective platforms, 
such as 22C3, 28-8, 73-10 from Dako (Agilent), SP142, 
SP263 from Ventana Medical Systems, to assess PD-L1 
expression levels in patients with non-small cell lung can-
cer (NSCLC) [9, 13, 14].

However, each IHC assay has different scoring methods 
and cutoff values to predict the PD-L1 status of a tumor. 
In the SP263 assay, tumor proportion score (TPS) ≥ 25% 
is used as the cutoff, and in the 28-8 and 22C3 assays, 
TPS ≥ 1% is used as the cutoff to predict PD-L1 positiv-
ity in NSCLC [9, 15]. A few studies have evaluated vari-
ous IHC assays for their reproducibility and sensitivity 
based on respective scoring criteria and cutoff values of 
PD-L1 assays [13, 16]. Strong concordance was found at 
various cutoff values with 22C3, 28-8, and SP263 assays, 
lower sensitivity was reported in the SP142 assay [13]. 
In addition, manual PD-L1 scoring by different patholo-
gists might lead to inconsistent results. Previous studies 
demonstrated inter-pathologist variability could be even 
higher than assay variability due to the subjective nature 
of IHC reporting [9, 17, 18]. Accurate PD-L1 scoring was 
even more difficult in tissue samples with low expression 
(< 10%) and in assays with 1%, 25%, or 50% cutoff value 
[17, 19], and further obstacles include weak-staining TCs, 
PD-L1–positive immune cells (ICs; lymphocytes and 
macrophages), and cytoplasm-staining TCs in PD-L1 
scoring [20, 21]. These staining result in false positive 
signals and unfaithful PD-L1 scoring which cannot be 
rectified by experienced pathologists. In summary, IHC-
based PD-L1 scoring is hindered by tedious, subjective, 
and time consuming process of manual scoring and the 
inconsistence of results amony pathologists [15, 21].

Compared with manual scoring by pathologists, auto-
mated image analysis may provide an aided scoring tool 
for pathologists to reduce inter- and intrareader variabil-
ity and increase scoring throughput (e.g., high efficiency 
by eliminating the need for manual area selection on 
stained samples) [15, 21, 22]. Recently, many research-
ers have demonstrated the feasibility of deep learning-
based methods in estimating TPS automatically [15, 21], 
these algorithms could be categorized into regional area 
ratio-based and cellular count ratio-based methods. The 
regional area ratio-based method estimates TPS by cal-
culating the ratio between region areas of positive TCs 
[TC (+)] and TCs [15, 21], which was not well suited with 
the current clinical guidelines. TPS was recommended 

to be calculated on the basis of tumor cellular count [23]. 
On the other hand, cellular count ratio-based meth-
ods, which directly extracted cellular information at 
high magnification scale to localize and count the cells, 
however, the accuracy of the algorithm needs further 
improvement [24].

In clinical diagnosis, pathologists approximately dis-
tinguish the TC region from other regions firstly at the 
lower magnification scale and then zoom into the higher 
magnification for accurate cell counting. Such a process 
works best to prevent both false positives and false nega-
tives (e.g., histocytes and necrotic cells) by obtaining 
both the regional-and-cellular information. Motivated by 
this clinical diagnosis process in practice, we developed 
an automated tumor proportion scoring method using a 
multi-stage ensemble strategy. Taking advantage of both 
methods mentioned above, we designed a framework 
composed of a cellular localization network (C-Net) and 
a regional segmentation network (R-Net), and the effi-
cacy of this algorithm was compared with PD-L1 scoring 
performed by experienced pathologists.

Materials and methods
Tumor samples and assays
Archived, commercially sourced, formalin-fixed paraf-
fin-embedded NSCLC sections (N = 230) were obtained 
from the pathology departments of three hospitals, 
namely Peking Union Medical College Hospital, Fudan 
University Shanghai Cancer Center, and the First Affili-
ated Hospital of Soochow University, China. The sam-
ples were prepared and stained using the Ventana PD-L1 
(SP263) assay (Cat#07494190001, Ventana Medical Sys-
tems, Inc., Tucson, USA) using the automated Ventana 
BenchMark Ultra platform, according to the manufactur-
er’s protocol. At the same time, among the 230 sections, 
117 samples, from Peking Union Medical College Hospi-
tal, were stained using the Dako PD-L1 (22C3) pharmDx 
assay (Cat#SK006, Heverlee, Belgium) using the Dako 
Autostainer Link48 platform. The PD-L1–stained TCs 
were scored with TPS, which represents the best esti-
mated percentage (0–100%) of TCs showing partial or 
complete membranous PD-L1 staining. At least 2 pathol-
ogists trained on the use of Ventana PD-L1 (SP263) assay 
and Dako PD-L1 (22C3) assay scored the proportion 
of tumor cells (TCs) with PD-L1 membrane staining to 
obtain a consistent TPS value.

Image analysis scoring algorithm
An image analysis scoring algorithm was proposed, 
which consisted of 2 main parts: (1) cellular localization 
and elementary TPS calculation using fully convolutional 
networks, using a weighted pixel-wise cross-entropy, (2) 
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a synchronized regional segmentation branch to refine 
the TPS.

Cellular localization algorithm
Cellular localization aimed to utilize fully convolutional 
networks to quantitatively classify, localize, and count the 
PD-L1 cell nuclei. However, the excessive decoding pro-
cesses of excited algorithms (e.g., FCN [24] and U-Net 
[25]) significantly increased the parameters. Thus, to 
obtain results in a timely manner, we designed the C-Net 
with a high-efficiency decoder that restored the resolu-
tion of the encoded features. C-Net utilizes the deep 
supervision method and transition blocks to allow the 
kernels in lower convolutional layers to extract higher 
level semantic features, which were critical for prediction 
[26]. Moreover, we proposed a weighted pixel-wise cross-
entropy as a loss function of C-Net to promote the algo-
rithm in the right direction.

Weighted pixel‑wise cross‑entropy loss
Tumor cells were close and/or adhesive, which made 
the network recognizing multiple cells as one cell easily. 
Meanwhile, the cross-entropy was ineffective since the 
point-level annotation could not represent cells with rup-
turing membranes or missing nucleus. For identifying the 
tumor cells individually, we constructed a weight matrix  
ϕ   which increased the loss of those difficult cells during 
training effectively. It could also be understood as a kind 
of difficult sample mining. The weight ϕ was defined as:

where Ŷ i

b
 denoted the ground truths of the pixel i in flat-
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examples with higher loss. It induced that the training of 
C-Net would be stabilized in the right direction.

Regional segmentation and TPS refinement
Furthermore, we employed DeeplabV3+ pre-trained on 
ImageNet as the basic model for the regional segmenta-
tion network (R-Net) to generate a tumor region prob-
ability map on a low magnification scale. The map was 
used to weigh out the features in the C-Net. Owing to 
this, the nontumor cell features were suppressed and the 
cell got a minimal probability value after the activation 
layer.

Other comparable cellular localization algorithms were 
obtained from the previous studies, including Mi [24], 
U-Net [25], and S3Net [26]. A complete image analysis 
was composed of the algorithm and its training data set. 
Because of the lack of original training data sets in the 
previous studies, we could not reproduce previous image 
analyses completely. Therefore, we re-trained the three 
previous algorithms using our cell data sets and com-
pared the effectiveness of cellular localization of these 
four algorithms.

At the same time, we combined our R-Net with four 
cellular localization algorithms respectively and scored 
TPS values on big patches (size 4096 × 4096), sampled 
from whole slide images (WSIs), for evaluating the effec-
tiveness of our R-Net. The pathologist scores, annotated 
as the ground truth data, of big patches were scored by 
two manufacturer-trained pathologists, and a consist-
ent value was obtained. Slides were scanned on a Nano-
Zoomer 2.0HT scanner at 40× magnification.

Statistical analysis
The results of cellular localization algorithms were evalu-
ated using 4 indexes [25]: the accuracy of the detection 
of TC (+) and negative tumor cells [TC (−)] (Object 
F1 Score), the accuracy of the count of TC (+) and TC 
(−) [the mean absolute error (MAE), the root mean 
squared error (RMSE) and the mean absolute percent 
error (MAPE)]. These four indexes are generally utilized 
to evaluate the cellular localization algorithms. Moreo-
ver, the effectiveness of R-Net was evaluated using six 
indexes: MAE, RMSE, MAPE, the Pearson product-
moment correlation coefficient, Spearman’s rank cor-
relation coefficient, and intraclass correlation coefficient 
(ICC).

To assess the similarity in TPS values between image 
analysis and pathologist, Fleiss’ kappa statistics for cat-
egorical scores were used after dichotomization based on 
specified cutoffs. The various cutoff values utilized were 
1%, 5%, 10%, 25%, and 50%. All of these values have been 
previously used in various immune checkpoint inhibitor 
trials or as suggested by the manufactures [13]. The ICC 
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analysis was used to assess scoring reliability for continu-
ous TPS values. ICCs of 0.75 to 0.9 and > 0.9 were consid-
ered to indicate good and excellent reliability, respectively 
[28]. Kappa scores of ≥ 0.8 were considered near per-
fect, scores of 0.60–0.79 were considered strong, scores 
of 0.40–0.59 were considered moderate, and scores of 
0.20–0.39 were considered weak. SPSS software, version 
25.0 (IBM Corporation), was used for statistical analyses, 
where P < 0.05 was considered statistically significant.

Optimization of image analysis scoring algorithm
A computer-aided program was developed for manual 
annotation for pathologists (Fig. 1) where they utilized 30 
PD-L1(SP263)-staining cases, including 15 squamous cell 
carcinoma cases and 15 adenocarcinoma cases, to sample 
patches for annotation from WSIs. Cell tags were labeled 
on 4264 patches of size 512 × 512 pixels, which repre-
sented the type of TC in the 40× magnification scale and 
consisted of 519275 TC (+), 537471 TC (−), and 693290 
normal cells (e.g., histocyte, lymphocyte, and fibro-
cyte). Region tags were labeled on 596 patches of size 
2048 × 2048 pixels, which represented the type of tumor 
region on the 10× magnification scale and consisted of 
272 TC (+) regions, 584 TC (−) regions, and 486 nor-
mal regions. The patches of cell tags and region tags were 
extracted nonrepetitively. Approximately 60% of cell and 

regions tags were designated as the training data set, 20% 
as validating data set, and 20% as testing data set.

To test the robustness of this approach and avoid over-
fitting of deep neural networks, online data augmenta-
tion techniques, including random rotation, shear, shift, 
zooming of width and height, whitening, and horizontal 
and vertical flips, were employed to enlarge the train-
ing set. Both C-Net and R-Net were optimized by the 
momentum optimizer with a batch size of 4, an initial 
learning rate of 0.001, and maximum epoch of 200. Even-
tually, the image analysis achieved regional segmentation 
and cellular localization on WSIs and automated TPS of 
the whole slides. The result obtained after image analysis 
optimization for a case is presented in Fig. 2.

Optimization for immune cells PD‑L1 evaluation
Except for PD-L1 evaluation of tumor cells, we also opti-
mized our algorithm for immune cells PD-L1(SP263) 
evaluation. The immune cells included lymphocytes and 
histocytes in tumor regions. The PD-L1–stained ICs were 
scored with immune cell proportion scoring (IPS), which 
represents the estimated percentage (0–100%) of ICs 
showing membranous or cytoplasmic PD-L1 staining. To 
assess the correlation between automated IPS and TPS, 
we used Mann–Whitney U test, chi-square test, Spear-
man and Pearson correlation coefficients for evaluation.

Fig. 1  Procedure for annotation. a A computer-aided program was designed for pathologist’s annotation; b Pathologists annotated regional 
information for the regional set, including TC (+) regions, TC (−) regions, and normal regions; c Cellular annotation included TC (+) (red), TC (−) 
(green), fibrocyte (orange), lymphocyte (blue), and histocyte (purple). TC tumor cells
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Results
Tumor samples demographics
Tumor resection samples for PD-L1 assessment were 
obtained from 230 patients with stage I to IV NSCLC.

30 cases were used for algorithm training. After exclu-
sion of slides with poor staining and scanning quality, 
there were eventually 192 NSCLC PD-L1(SP263) stain-
ing slides for image analysis, including 88 squamous 

Fig. 2  Image analysis result of a case. a PD-L1 slide representing original image; b PD-L1 slide representing regional segmentation of the whole 
slide; c PD-L1 image representing regional segmentation result; d PD-L1 image representing cellular localization results. In regional segmentation, 
red and green areas represent TC (+) and TC (−) regions separately. In cellular localization, TC (+) (red), TC (−) (green), fibrocyte (yellow), 
lymphocyte (blue), and histocyte (pink) are shown separately. PD-L1 programmed death-ligand 1, TC tumor cells
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cell carcinoma cases, 100 adenocarcinoma cases, and 
four adenosquamous carcinoma cases. According to the 
manual scoring results, there were 67 PD-L1–negative 
cases (TPS < 1%; 18 squamous cell carcinomas cases, 48 
adenocarcinomas cases and 1 adenosquamous carcino-
mas cases), 52 low expression cases (1% ≤ TPS < 25%; 24 
squamous cell carcinomas cases and 28 adenocarcinomas 
cases), 13 moderate expression cases (25% ≤ TPS < 50%; 
four squamous cell carcinomas cases and nine adenocar-
cinomas cases), and 60 high expression cases (TPS ≥ 50%; 
41 squamous cell carcinomas cases, 16 adenocarcinomas 
cases, and three adenosquamous carcinomas cases).

Meanwhile, 117 NSCLC PD-L1(22C3) staining slides 
included 47 squamous cell carcinoma cases, 66 adenocar-
cinoma cases, and four adenosquamous carcinoma cases. 
According to the manual scoring results, there were 65 
PD-L1–negative cases (TPS < 1%; 18 squamous cell car-
cinomas cases, 46 adenocarcinomas cases and one aden-
osquamous carcinomas cases), 11 low expression cases 
(1% ≤ TPS < 25%; seven squamous cell carcinomas cases 
and four adenocarcinomas cases), nine moderate expres-
sion cases (25% ≤ TPS < 50%; one squamous cell carcino-
mas cases and eight adenocarcinomas cases), and 32 high 

expression cases (TPS ≥ 50%; 21 squamous cell carcino-
mas cases, eight adenocarcinomas cases, and three aden-
osquamous carcinomas cases).

Comparison between pathologist scores and image 
analysis scores
In PD-L1(SP263) staining slides, the automated image 
analysis achieved high concordance with pathologist 
scores (ICC: 0.873, 95% CI 0.835–0.903; Table  1). The 
PD-L1 expression on the basis of TC scores across all the 
cutoffs analyzed revealed strong comparable concord-
ances at 10% (κ: 0.677, 95% CI 0.624–0.730; Fig. 3a), 25% 
(κ: 0.811, 95% CI 0.767–0.855; Fig. 3a), and 50% (κ: 0.704, 
95% CI 0.647–0.761; Fig. 3a) cutoffs. However, at 1% and 
5% cutoff values, the concordances were relatively low 
(1% κ: 0.433, 95% CI 0.366–0.500; 5% κ: 0.491, 95% CI 
0.428–0.554; Fig. 3a).

The concordance values between pathologist scores 
and image analysis scores were also satisfactory (ICC: 
0.737, 95% CI 0.641–0.810; Table  1) in PD-L1 (22C3) 
staining slides. In various cutoffs evaluations, the results 
revealed moderate and strong concordances at 25% (κ: 
0.538, 95% CI 0.460–0.616; Fig.  3a) and 50% (κ: 0.699, 
95% CI 0.624–0.774; Fig. 3a). However, the concordances 
at 5% and 10% cutoff values were weak (5% κ: 0.215, 
95% CI 0.153–0.277; 10% κ: 0.358, 95% CI 0.285–0.431; 
Fig.  3a). At 1% cutoff value, there was no concordance 
between pathologist scores and image analysis scores.

In both SP263 and 22C3 staining, we noticed that in 
PD-L1–negative expression cases, the image analysis 
scores were higher than pathologist scores. However, the 
pathologist scores were much higher in cases with mod-
erate and high PD-L1 expression (Fig. 3b, c). Meanwhile, 
we noticed that when comparing with PD-L1(SP263) 
staining results, the differences between pathologists and 

Table 1  The concordance (intraclass correlation coefficient) of 
multistage net in different histological variants

CI confidence interval, ICC intraclass correlation coefficient, SCC squamous cell 
carcinomas, Ad adenocarcinomas

ICC 95% CI P

SP263 Total 0.873 0.835–0.903 0.000

SCC 0.884 0.828–0.923 0.000

Ad 0.795 0.710–0.856 0.000

22C3 Total 0.737 0.641–0.810 0.000

SCC 0.782 0.641–0.873 0.000

Ad 0.500 0.295–0.661 0.000

Fig. 3  a Concordance of scoring tumor cell PD-L1 expression using Fleiss’ kappa statistics at 1%, 5%, 10%, 25%, and 50% cutoffs; Comparison 
between image analysis and pathologist scores in TPS values in SP263 (b) and 22C3 (c). PD-L1 programmed death-ligand 1, TPS tumor proportion 
score, AI artificial intelligence



Page 7 of 12Pan et al. J Transl Med          (2021) 19:249 	

image analysis were more drastic in PD-L1(22C3) nega-
tive expression cases (Fig. 3c).

Comparison between pathologist scores and image 
analysis scores in different histological subtypes
In SP263 staining slides, the correlation of concordances 
values between pathologist scores and image analy-
sis scores was evaluated in 88 squamous cell carcinoma 
cases and 100 adenocarcinoma cases, respectively. On 
the basis of the TPS values, concordances in squamous 
cell carcinomas were better than adenocarcinomas 
(ICC = 0.884 vs 0.783; Table  1). However, evaluation at 
different cutoffs revealed that the concordances in ade-
nocarcinomas were better than those in squamous cell 
carcinomas at low cutoff values (1% κ: 0.350 vs 0.389; 5% 
κ: 0.359 vs 0.473; Fig. 4a). Nevertheless, the concordances 
in squamous cell carcinomas were high when compared 
at moderate and high cutoff values (10% κ: 0.661 vs 0.624; 
25% κ: 0.818 vs 0.743; 50% κ: 0.724 vs 0.534; Fig. 4a).

Similar to SP263, in 47 squamous cell carcinoma 
cases and 66 adenocarcinoma PD-L1(22C3) staining 
cases, concordances in squamous cell carcinomas were 
better than adenocarcinomas (ICC = 0.782 vs 0.500; 
Table 1). Moreover, the concordances in squamous cell 
carcinomas were highly satisfactory when compared at 
moderate and high cutoff values (25% κ: 0.580 vs 0.392; 
50% κ: 0.742 vs 0.431; Fig. 4a). At 10% cutoff value, the 
concordances in adenocarcinomas were better (10% 

κ: 0.268 vs 0.313; Fig.  4a). Nevertheless, at 1% and 5% 
cutoff values, there were no concordances between 
pathologist scores and image analysis scores in either 
adenocarcinomas or squamous cell carcinomas.

Further, in either adenocarcinomas or squamous cell 
carcinomas, the image analysis scores were higher in 
low PD-L1 cases, and lower in cases with high expres-
sion of PD-L1 (Fig.  4b–e). Noticeably, in both squa-
mous cell carcinomas and adenocarcinomas, the 
differences between pathologists and image analysis 
were more obvious in cases with negative PD-L1(22C3) 
expression (Fig. 4d, e).

Automated immune cells PD‑L1 evaluation
Besides tumor cells, we also optimized our algorithm 
for immune cells PD-L1(SP263) evaluation. In the 192 
NSCLC PD-L1(SP263) staining slides, the automated 
IPS scores achieved high positive correlation with the 
pathologists TPS scores (Spearman = 0.531, Pear-
son = 0.494). At 1%, 25% and 50% TPS cutoff values, 
high IPS scores were significantly associated with high 
TPS cases (Fig.  5a–c). At the same time, we used 1% 
as TPS and IPS cutoff values simultaneously, and the 
result also demonstrated that high PD-L1 TPS scores 
were significantly associated with high IPS scores 
(P < 0.001, Additional file 1: Table S1).

Fig. 4  a Concordance of scoring tumor cell PD-L1 expression in SCC and adenocarcinomas using Fleiss’ kappa statistics at 1%, 5%, 10%, 25%, and 
50% cutoffs; Comparison between image analysis and pathologist scores in PD-L1(SP263) SCC cases (b) and adenocarcinoma cases (c); Comparison 
between image analysis and pathologist scores in PD-L1(22C3) SCC cases (d) and adenocarcinoma cases (e). PD-L1 programmed death-ligand 1, 
SCC squamous cell carcinomas, Ad adenocarcinomas, AI artificial intelligence
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Comparison between C‑Net and the previous established 
algorithms
Mi et al. reported the best performance so far for auto-
mated tumor proportion scoring [24]. Comparing the 
proposed C-Net against Mi et  al. [24], U-Net [25] and 
S3Net [26], and verified the effectiveness of weighted 
pixel-wise cross-entropy loss on the Cell tags, we listed 
the obtained average performance of these models in 
Table 2. In close tumor cells, based on the construction 
of the proposed weighted pixel-wise cross-entropy loss, 
the C-Net was able to identify different tumor cells indi-
vidually which helped achieve the best performance in 
the Object F1 Score, MAE, RMSE and MAPE [25] on the 
validation data of Cell tags. Meanwhile, due to the norm 
in the pro-posed loss strengthens to supervise the close 
tumor cells, the performance of the C-Net in terms of 
the object-level recall would be improved significantly. 
We visualized two patches images and the correspond-
ing localization results obtained by different deep mod-
els, together with the ground truth, in Additional file 1: 
Figure S1.

Evaluation of R‑Net effectiveness
To evaluate the effectiveness of R-Net algorithm, based 
on regional segmentation network, automated tumor 
proportion scoring was employed on big patches sampled 

from 61 WSIs, excluding the 30 WSIs in the training 
data set. The results demonstrated that combining R-Net 
could significantly improve the performance of all the 
cellular localization networks (Table  3 and Additional 
file 1: Figure S2). Specifically, the local cellular features of 
TC (+) and positive immune cells could hardly be used 
by a common CNN to classify cells correctly. Benefited 
from the R-Net contextual information was provided 
while classifying similar cells. Out results showed that 
R-Net could significantly improve the performance of 
each localization network. In addition, being trained by 
the same cell data set and combined with our R-Net, the 
concordance between our image analysis TPS values and 
pathologist scores was higher than with the other three 
methods (Table 3).

Discussion
In the current study, we showed that automated image 
analysis scoring algorithm can be used to determine 
tumor cell PD-L1 expression in patients with NSCLC 
and demonstrated high analytical concordance with 
pathologist scores. The image analysis algorithm revealed 
stronger yet comparable concordances at 10%, 25%, and 
50% cutoffs, whereas the concordances were relatively 
weak at 1% and 5% cutoff values. Further observations 
revealed higher image analysis scores in PD-L1–negative 

Fig. 5  Correlation between TPS and IPS at 1% (a), 25% (b) and 50% (c) TPS cutoff values. TPS tumor proportional scoring, IPS immune cell 
proportion scoring

Table 2  Comparison between our C-Net and the previous cellular localization algorithms on the cell data set

F1 score object F1 score, MAE mean absolute error, MAPE mean absolute percent error, RMSE root mean squared error

Method F1 score MAE RMSE MAPE

TC (+) TC (−) Avg. TC (+) TC (−) Avg. TC (+) TC (−) Avg. TC (+) TC (−) Avg.

Mi 0.56 0.57 0.57 40.27 24.34 32.31 52.76 28.99 40.86 44.61 53.17 45.61

U-Net 0.58 0.64 0.61 39.71 20.01 29.86 48.93 26.01 37.37 43.82 42.85 43.34

S3 Net 0.68 0.71 0.70 30.07 17.52 23.80 42.68 23.53 33.11 33.82 38.16 35.99

C-Net 0.75 0.78 0.77 19.01 10.41 14.71 27.21 17.21 22.21 24.19 23.34 23.77
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expression cases. Additionally, the correlation of con-
cordance values between pathologist scores and image 
analysis scores demonstrated variable results in differ-
ent histological tissues. The concordances in squamous 
cell carcinomas were better than those in adenocarcino-
mas at high or moderate cutoff values, whereas the con-
cordances in adenocarcinomas were better than those in 
squamous cell carcinomas at low cutoff values.

The IHC method and C-Net are the commonly pre-
ferred techniques by pathologists. However, these meth-
ods rarely distinguish the cellular features of samples 
such as TC (+) and positive normal cells (e.g., histo-
cytes). Further, these methods have shortcomings such 
as dependence on fixation techniques and variability dur-
ing interpretation of the results. The low sensitivity and 
low concordance rate of the assay might be due to higher 
incidence of false negative results (> 20%) based on IC 
or TC ≥ 25% and IC ≥ 25% threshold. Thus, when lack 
of sufficient staining, the incidence of false positive and 
false negative was commonly observed in locating and 
classifying tumor cells by C-Net alone. Hence, a novel 
automated TPS framework was proposed, which was 
based on a multistage ensemble strategy. We utilized the 
features of both C-Net and R-Net to design this multi-
stage framework. C-Net predicted the cellular count ratio 
based TPS by quantitatively classifying, localizing, and 
counting the PD-L1 cell nuclei, whereas R-Net was used 
to generate a tumor probability map to distinguish tumor 
regions from their normal counterparts.

Our results were similar to a previously published 
study, which demonstrated that novel automated image 
analysis scoring algorithm was highly correlated with 
pathologist scores [21]. However, in our study the con-
cordance between pathologists and image analysis algo-
rithm was satisfied for 25% and 50% cutoff values, but 
the concordances of 1%, 5% and 10% cutoff values were 
lowered significantly. The reason might be that normal 
cells (such as histocytes) can be easily misdiagnosed with 

other variants of tumor cells. Image analysis distinguishes 
various tumor cells through PD-L1 immunohistochemi-
cal staining slides, which can lead to misdiagnosis of 
normal positive cells and higher image analysis scores 
in low-TPS-value cases, and misdiagnose of normal 
negative cells and lower scores in high-TPS-value cases. 
These results correlate with the study by Widmaier et al., 
where concordance was weak for lower cutoff pairs. 
This could be explained by the lower number of strongly 
positive cases and slightly lower specificity of low cutoff 
values evaluation [21]. Additionally, although we used 
PD-L1(SP263) staining slides for previous training, the 
concordances of PD-L1(22C3) staining slides were also 
satisfactory. Moreover, in the same series of sections, 
the concordances of PD-L1(SP263) slides were better. 
We noticed that the differences between pathologists 
and image analysis were more obvious in PD-L1(22C3) 
negative expression cases than in PD-L1(SP263) negative 
cases. It indicates that our image analysis can be poten-
tially applied for different PD-L1 assays, although we still 
need optimization of the algorithm, especially in PD-L1 
negative and low expression cases. Therefore, variable 
staining of slides and detailed annotations along with the 
development of image analysis algorithm were critical for 
improving the accuracy.

Our study showed that the concordances in squa-
mous cell carcinomas cases were better than those in 
adenocarcinomas cases. This can be attributed to the 
fact that there are abundant histological variants of 
adenocarcinomas cases. Thus, more histological vari-
ants of adenocarcinoma samples are needed to test and 
improve the accuracy of the image analysis algorithm. 
Moreover, as noted earlier, the consistency in squamous 
cell carcinomas and adenocarcinomas varied at differ-
ent cutoff evaluations. At low cutoff values, the con-
cordances in adenocarcinomas were better. However, in 
case of moderate or high cutoff values, the concordances 
in squamous cell carcinomas were more satisfied than 

Table 3  Effectiveness of our R-Net and comparison between different cellular localization algorithms and pathologists on big patches

ICC intraclass correlation coefficient, MAE mean absolute error, MAPE mean absolute percent error, PCC Pearson product-moment correlation coefficient, RMSE root 
mean squared error, SRCC​ Spearman’s rank correlation coefficient

R-Net MAE RMSE PCCs SRCC​ ICC

Mi – 12.34 17.82 0.834 0.921 0.917

√ 9.64 15.71 0.882 0.927 0.919

U-Net – 10.22 15.45 0.865 0.936 0.935

√ 8.83 14.48 0.904 0.937 0.935

S3-Net – 8.18 13.46 0.905 0.945 0.943

√ 7.56 12.73 0.928 0.956 0.953

C-Net – 8.00 12.19 0.906 0.951 0.951

√ 7.55 11.82 0.933 0.965 0.963
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adenocarcinomas. This might be because of the differ-
ences in the rate of positive cases between squamous cell 
carcinomas and adenocarcinomas. Further observations 
are consistent with previously published studies [29, 30], 
where more PD-L1 high expression cases in squamous 
cell carcinomas were observed, which indicated that in 
the positive tumor cell or region training datasets, there 
were more squamous cell carcinoma tags than adeno-
carcinomas. At the same time, more negative adeno-
carcinoma tags were included in the training dataset. 
Moreover, previously published studies exhibited that 
PD-L1 expression was significantly higher in the more 
aggressive variants of adenocarcinomas (e.g., papillary 
and solid types) than in the common others (e.g., lepidic 
and acinar types) [29–31]. It should be noted that the 
ratio of PD-L1 staining was different in various variants 
of adenocarcinomas.

Besides tumor cells, PD-L1 expression of immune cells 
also influence the effectiveness of immunotherapy [1]. 
However, compared with TPS, the concordances of IPS 
by different pathologists were low [13]. We optimized 
our image analysis for IPS evaluation. The result demon-
strated that high IPS scores were significantly associated 
with high TPS cases. As same as our results, the previ-
ous researches have mentioned that high PD-L1 expres-
sion in immune cells was significantly associated with 
high PD-L1 level in tumor [32, 33]. Actually, there were 
limited research about automated IPS evaluation. This is 
partially due to the difficulties of recognizing and distin-
guishing tumor regions and tumor related immune cells. 
Our research revealed that combining R-Net and C-Net 
could improve the accuracy of automated IPS evalua-
tion. However, we need assess the concordances between 
pathologists and image analysis IPS scores directly in the 
future.

There are several limitations in this study. First, the 
training or validation samples used for our research were 
core biopsy or large section samples. Cytology samples of 
patients in advanced stage of disease like fine needle aspi-
ration biopsy, bronchoalveolar lavage fluid, and hydro-
thorax samples are required to further understand the 
efficiency of the image analysis [34]. Unfortunately, none 
of the pivotal clinical trials included cytology specimens 
for the development of the companion PD-L1 IHC assays 
[13]. Nevertheless, a series of studies have reported on 
the concordance of PD-L1 assessment on cytology ver-
sus matching surgical specimens, and tumor cell PD-L1 
scoring between different PD-L1 IHC assays in cytology 
samples were reliable based on literature report [35–37]. 
Thus, utilization of our scoring algorithm in cytology 
samples are promising though further training and vali-
dation are warranted. In addition, earlier studies demon-
strated that the PD-L1 expression between primary and 

metastatic tumors was discordant [38], and the PD-L1 
expression of metastatic tumors was also associated with 
either immunotherapy response or survival [39]. Further-
more, as our training and validating cases consisted of 
primary tumors, recognizing positive and negative tumor 
cells among whole sample images would be a challenge.

Conclusion
In conclusion, the proposed automated TPS system 
based on image analysis algorithm comprising C-Net 
with a weighted pixel-wise cross-entropy as loss func-
tion and R-Net achieved a comparable concordance with 
pathologist scores. As observed in a previously published 
study [21], the concordances at high cutoff values were 
better than at low cutoff values. The concordances in 
squamous cell carcinomas and adenocarcinomas varied 
at different cutoff evaluations. In addition, our research 
revealed that combining R-Net and C-Net could poten-
tially improve the accuracy of automated IPS evaluation.
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