Skip to main content

Advertisement

Log in

Nitrate accumulation in plants, factors affecting the process, and human health implications. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Leafy vegetables occupy a very important place in the human diet, but unfortunately constitute a group of foods which contributes maximally to nitrate consumption by living beings. Under excessive application of nitrogen fertilizer, these vegetables can accumulate high levels of nitrate and, upon being consumed by living beings, pose serious health hazards. Therefore, efforts are warranted to minimize the accumulation of nitrate in leafy vegetables and its ingestion by human beings. This review focuses on (i) the contribution of vegetables towards dietary nitrate intake by humans, (ii) the nutritional, environmental and physiological factors affecting nitrate accumulation in plants, (iii) the harmful and beneficial effects of nitrate on human health, and (iv) the strategies that may be followed to minimize the nitrate content in plants and its subsequent consumption by human beings. The risk to human health due to nitrate consumption may be minimized by harvesting vegetables at noon, removal of organs rich in nitrate content and cooking of vegetables in water with a low nitrate content. The European Commission Regulation No. 1822/2005 needs to be followed in order to ensure safe levels of nitrate in plants for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agency for Toxic Substances and Diseases Registry (2001) Case studies in environmental medicine: Nitrate/nitrite toxicity, US Department of Health and Human Services, Atlanta.

    Google Scholar 

  • Ahmed A.H.H. (1996) Physiological studies on tipburn and nitrate accumulation in lettuce plants, J. Agr. Sci. 21, 3971–3994.

    Google Scholar 

  • Ahmed A.H.H., Khalil M.K., Farrag A.M. (2000) Nitrate accumulation, growth, yield and chemical composition of Rocket (Eruca vesicaria subsp. sativa) plant as affected by NPK fertilization, kinetin and salicylic acid, in: Proceedings of ICEHM 2000, Cairo University, Egypt, pp. 495–508.

    Google Scholar 

  • Andrews M. (1986) The partitioning of nitrate assimilation between root and shoot of higher plants: mini review, Plant Cell Environ. 9, 511–519.

    CAS  Google Scholar 

  • Anjana, Umar S., Iqbal M., Abrol Y.P. (2006) Are nitrate concentrations in leafy vegetables within safe limits? Proceedings of the Workshop on Nitrogen in Environment, Industry and Agriculture, New Delhi, India, pp. 81–84.

    Google Scholar 

  • Aslam M., Oaks A., Huffaker R.C. (1976) Effect of light and glucose on the induction of nitrate reductase and on the distribution of nitrate in etiolated barley leaves, Plant Physiol. 58, 588–591.

    PubMed  CAS  Google Scholar 

  • Badawi A.F., Gehen H., Mohamed E.H., Mostafa H.M. (1998) Salivary nitrate, nitrite and nitrate reductase activity in relation to risk of oral cancer in Egypt, Dis. Markers 14, 91–97.

    PubMed  CAS  Google Scholar 

  • Beevers L., Schrader L.E., Flesher D., Hageman R.H. (1965) The role of light and nitrate in the induction of nitrate reductase in radish cotyledons and maize seedlings, Plant Physiol. 40, 691–698.

    PubMed  CAS  Google Scholar 

  • Behr U., Wiebe H.J. (1992) Relation between photosynthesis and nitrate content of lettuce cultivars, Sci. Hortic. 49, 175–179.

    CAS  Google Scholar 

  • Benjamin N., O’Driscoll F., Dougall H., Duncan C., Smith L., Golden M., McKenzie H. (1994) Stomach NO synthesis, Nature 368, 502.

    PubMed  CAS  Google Scholar 

  • Bjorne H., Petersson J., Phillipson M., Weitzberg E., Holm L., Lundberg J.O. (2004) Nitrate in saliva increases gastric mucosal blood flow and mucus thickness, J. Clin. Invest. 113, 106–114.

    Google Scholar 

  • Blom-Zandstra M. (1989) Nitrate accumulation in vegetables and its relationship to quality, Ann. Appl. Biol. 115, 553–561.

    Google Scholar 

  • Blom-Zandstra M., Lampe J.E.M. (1983) The effect of chloride and sulphate salts on the nitrate content in lettuce plants, J. Plant Nutr. 6, 611–628.

    CAS  Google Scholar 

  • Blom-Zandstra M., Lampe J.E.M. (1985) The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities, J. Exp. Bot. 36, 1043–1052.

    CAS  Google Scholar 

  • Blom-Zandstra M., Eenink A.H. (1986) Nitrate concentration and reduction in different genotypes of lettuce, J. Am. Soc. Hortic. Sci. 111, 908–911.

    CAS  Google Scholar 

  • Blom-Zandstra M., Lampe J.E.M., Ammerlaan F.H.M. (1988) C and N utilization of two lettuce genotypes during growth under non-varying light conditions and after changing the light intensity, Physiol. Plantarum 74, 147–153.

    Google Scholar 

  • Bruning-Fann C.S., Kaneene J.B. (1993) The effects of nitrate, nitrite, and N-nitroso compounds on animal health, Vet. Hum. Toxicol. 35, 237–253.

    PubMed  CAS  Google Scholar 

  • Buwalda F., Warmenhoven M. (1999) Growth-limiting phosphate nutrition suppresses nitrate accumulation in greenhouse lettuce, J. Exp. Bot. 50, 813–821.

    CAS  Google Scholar 

  • Cantliffe D.J. (1973) Nitrate accumulation in table beets and spinach as affected by nitrogen, phosphorus, and potassium nutrition and light intensity, Agron. J. 65, 563–565.

    Google Scholar 

  • Cardenas-Navarro R., Adamowicz S., Robin P. (1998) Diurnal nitrate uptake in young tomato (Lycopersicon esculentum Mill.) plants: Test of a feedback based model, J. Exp. Bot. 49, 721–730.

    CAS  Google Scholar 

  • Cardenas-Navarro R., Adamowicz S., Robin P. (1999) Nitrate accumulation in plants: a role for water, J. Exp. Bot. 50, 613–624.

    CAS  Google Scholar 

  • Cerezo M., Garcia-Agustin P., Serna M.D., Primo-Millo E. (1997) Kinetics of nitrate uptake by citrus seedlings and inhibitory effects of salinity, Plant Sci. 126, 105–112.

    CAS  Google Scholar 

  • Chadjaa H., Vezina L.-P., Dorais M., Gosselin A. (2001) Effects of lighting on the growth, quality and primary nitrogen assimilation of greenhouse lettuce (Lactuca sativa L.), Acta Hortic. 559, 325–331.

    Google Scholar 

  • Chapagain B.P., Wiesman Z., Zaccai M., Imas P., Magen H. (2003) Potassium chloride enhances fruit appearance and improves quality of fertigated greenhouse tomato as compared to potassium nitrate, J. Plant Nutr. 26, 643–658.

    CAS  Google Scholar 

  • Chen B.-M., Wang Z.-H., Li S.-X., Wang G.-X., Song H.-X., Wang X.-N. (2004) Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables, Plant Sci. 167, 635–643.

    CAS  Google Scholar 

  • Chung J.-B., Jin S.-J., Cho H.-J. (2005) Low water potential in saline soils enhances nitrate accumulation of lettuce, Commun. Soil Sci. Plant. 36, 1773–1785.

    CAS  Google Scholar 

  • Croen L.A., Todoroff K., Shaw G.M. (2001) Maternal exposure to nitrate from drinking water and diet and risk for neural tube defects, Am. J. Epidemiol. 153, 325–331.

    PubMed  CAS  Google Scholar 

  • Custic M., Poljak M., Coga L., Cosic T., Toth N., Pecina M. (2003) The influence of organic and mineral fertilization on nutrient status, nitrate accumulation, and yield of head chicory, Plant Soil Environ. 49, 218–222.

    Google Scholar 

  • Dabney B.J., Zelarney P.T., Hall A.H. (1990) Evaluation and treatment of patients exposed to systemic asphyxiants, Emerg. Care Q. 6, 65–80.

    Google Scholar 

  • Dapoigny L., Tourdonnet S.D., Roger-Estrade J., Jeuffroy M.-H., Fluery A. (2000) Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.) under various conditions of radiation and temperature, Agronomie 20, 843–855.

    Google Scholar 

  • Delhon P., Gojon A., Tillard P., Passama L. (1995a) Diurnal regulation of nitrate uptake in soybean plants. I. Changes in NO 3 influx, efflux, and N utilization in the plant during the day/night cycle, J. Exp. Bot. 46, 1585–1594.

    CAS  Google Scholar 

  • Delhon P., Gojon A., Tillard P., Passama L. (1995b) Diurnal regulation of nitrate uptake in soybean plants. II. Relationship with accumulation of nitrate and asparagines in the roots, J. Exp. Bot. 46, 1595–1602.

    CAS  Google Scholar 

  • Dich J., Jivinen R., Knekt P., Pentill P.L. (1996) Dietary intakes of nitrate, nitrite and NDMA in the Finish Mobile Clinic Health Examination Survey, Food Addit. Contam. 13, 541–552.

    PubMed  CAS  Google Scholar 

  • Dorais M., Papadoulos A.P., Gosselin A. (2001) Greenhouse tomato fruit quality, Hort. Rev. 26, 262–319.

    Google Scholar 

  • Drlik J., Rogl J. (1992) The effect of graduated rates of nitrogen fertilization on yield and nitrate accumulation in carrots, Zahradnictvi 19, 39–46.

    Google Scholar 

  • Duncan C., Dougall H., Johnston P., Green S., Brogan R., Leifert C., Smith L., Golden M., Benjamin N. (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate, Nat. Med. 1, 546–551.

    PubMed  CAS  Google Scholar 

  • Duncan C., Li H., Dykhuizen R., Frazer R., Johnston P., MacKnight G., Smith L., Lamza K., McKenzie H., Batt L., Kelly D., Golden M., Benjamin N., Leifert C. (1997) Protection against oral and gastrointestinal diseases: importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation, Comp. Biochem. Phys. 118, 939–948.

    CAS  Google Scholar 

  • Durner J., Klessig D.F. (1999) Nitric oxide as a signal in plants, Curr. Opin. Plant Biol. 2, 369–374.

    PubMed  CAS  Google Scholar 

  • Dykhuizen R., Frazer R., Duncan C., Smith C.C., Golden M., Benjamin N., Leifert C. (1996) Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defence, Antimicrob. Agents Ch. 40, 1422–1425.

    CAS  Google Scholar 

  • EC (European Commission), Commission Regulation (EC) No. 1822/2005 of 8 November 2005 amending Regulation (EC) No. 466/2001 as regards nitrate in certain vegetables, Official J. Eur. Union. L293, 11–13.

  • Eicholzer M., Gutzwiller F. (1990) Dietary nitrates, nitrites and N-nitroso compounds and cancer risk: A review of the epidemiologic evidence, Nutr. Rev. 56, 95–105.

    Google Scholar 

  • Elia A., Conversa G., Gonnella M. (2000) Dosi di azoto, produzione e accumulo di nitrati di lattuga allevata in idrocoltura, Atti V Giornate Scientifiche SOI, Sirmione, 229–230.

    Google Scholar 

  • Ferrario-Mery S., Murchie E., Hirel B., Galtier N., Quick W.P., Foyer C.H. (1997) Manipulation of the pathways of sucrose biosynthesis and nitrogen assimilation in transformed plants to improve photosynthesis and productivity, in: Foyer C.H., Quick W.P. (Eds.), A molecular approach to primary metabolism in higher plants, Taylor and Francis, London, pp. 125–153.

    Google Scholar 

  • Fewtrell L. (2004) Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion, Environ. Health Persp. 112, 1371–1374.

    Google Scholar 

  • Gastal F., Lemaire G. (2002) N uptake and distribution in crops: an agronomical and ecophysiological persp., Physiol. Plantarum 53, 789–799.

    CAS  Google Scholar 

  • Geelen D., Lurin C., Bouchez D., Frachisse J.M., Lelievre F., Courtil B., Barbier-Brygoo H., Maurel C. (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content, Plant J. 21, 259–267.

    PubMed  CAS  Google Scholar 

  • Giovannoni G., Heales S.J.R., Silver N.C., O’Riorden J., Miller R.F., Land J.M., Clark J.B., Thompson E.J. (1997) Raised serum nitrate and nitrite levels in patients with multiple sclerosis, J. Neurol. Sci. 145, 77–81.

    PubMed  CAS  Google Scholar 

  • Gruda N. (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption, Crit. Rev. Plant Sci. 24, 227–247.

    CAS  Google Scholar 

  • Grzebelus D., Baranski R. (2001) Identification of accessions showing low nitrate accumulation in a germplasm collection of garden beet, Acta Hortic. 563, 253–255.

    Google Scholar 

  • Gupta S.K. (2006) Nitrate toxicity and human health, Proceedings of the Workshop on Nitrogen in Environment, Industry and Agriculture, New Delhi, India, pp. 8–10.

    Google Scholar 

  • Gupta S.K., Gupta R.C., Seth A.K., Gupta A.B., Bassin J.K., Gupta D.K., Sharma S. (1999) Epidemiological evaluation of recurrent stomatitis, nitrates in drinking water and cytochrome b5 reductase activity, Am. J. Gastroenterol. 94, 1808–1812.

    PubMed  CAS  Google Scholar 

  • Gupta S.K., Gupta R.C., Seth A.K., Gupta A.B., Bassin J.K. Gupta A. (2000a) Methemoglobinemia—A problem of all age groups in areas with high nitrate in drinking water, Nat. Med. J. India 13, 58–61.

    CAS  Google Scholar 

  • Gupta S.K., Gupta R.C., Gupta A.B., Seth A.K., Bassin J.K., Gupta A. (2000b) Recurrent acute respiratory tract infection in areas having high nitrate concentration in drinking water, Environ. Health Persp. 108, 363–366.

    CAS  Google Scholar 

  • Gupta S.K., Gupta R.C., Gupta A.B., Seth A.K., Bassin J.K., Gupta A. (2001) Recurrent diarrhea in areas with high nitrate in drinking water, Arch. Environ. Health 56, 369–374.

    PubMed  CAS  Google Scholar 

  • Harada H., Yoshimura Y., Sunaga Y., Hatanaka T., Sugita S. (2003) Breeding of Italian ryegrass (Lolium multiflorum Lam.) for a low nitrate concentration by seedling test, Euphytica 129, 201–209.

    CAS  Google Scholar 

  • Harada H., Kuromori T., Horayama T., Shinozaki K., Leigh R.A. (2004) Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels, J. Exp. Bot. 55, 2005–2014.

    PubMed  CAS  Google Scholar 

  • Harrison J., Hirel B., Limani A.M. (2004) Variation in nitrate uptake and assimilation between two ecotypes of Lotus japonicus and their recombinant inbred lines, Physiol. Plantarum 120, 124–131.

    CAS  Google Scholar 

  • Hausler R.E., Blackwell R.D., Lea P.J., Leegood R.C. (1994) Control of photosynthesis in barley leaves with reduced activities of glutamine synthase, Planta 194, 406–417.

    CAS  Google Scholar 

  • Hill M.J. (1999) Nitrate toxicity: myth or reality, Brit. J. Nutr. 81, 343–344.

    PubMed  CAS  Google Scholar 

  • Hirel B., Bertin P., Quillere I. (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize, Plant Physiol. 125, 1258–1270.

    PubMed  CAS  Google Scholar 

  • Iijima K., Fyfe V., McColl K.E.L. (2003) Studies of nitric oxide generation from salivary nitrite in human gastric juice, Scand. J. Gastroentero. 38, 246–252.

    CAS  Google Scholar 

  • Ikemoto Y., Teraguchi M., Kogayashi Y. (2002) Plasma level of nitrate in congenital heart disease: comparison with healthy children, Pediatr. Cardiol. 23, 132–136.

    PubMed  CAS  Google Scholar 

  • Inal A., Tarakcioglu C. (2001) Effects of nitrogen forms on growth, nitrate accumulation, membrane permeability, and nitrogen use efficiency of hydroponically grown bunch onion under boron deficiency and toxicity, J. Plant Nutr. 24, 1521–1534.

    CAS  Google Scholar 

  • Ishiwata H., Yamada T., Yoshiike N., Nishijima M., Kawamoto A., Uyama Y. (2002) Daily intake of food additives in Japan in five age groups estimated by the market basket method, Eur. Food Res. Technol. 215, 367–374.

    CAS  Google Scholar 

  • Izmailov S.F. (2004) Saturation and utilization of nitrate pools in pea and sugar beet leaves, Russ. J. Plant Physl. 51, 189–193.

    CAS  Google Scholar 

  • Kaiser W.M., Weiner H., Huber S. (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity, Physiol. Plantarum 105, 385–390.

    CAS  Google Scholar 

  • Kaiser W.M., Weiner H., Kandlbinder A., Tsai C.-B., Rockel P., Sonoda M., Planchet E. (2002) Modulation of nitrate reductase: Some new insights, an unusual case and a potentially important side reaction, J. Exp. Bot. 52, 875–882.

    Google Scholar 

  • King B.J., Siddiqi M.Y., Ruth T.J., Warner R.L., Glass A.D.M. (1993) Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium, Plant Physiol. 102, 1279–1286.

    PubMed  CAS  Google Scholar 

  • Knekt P., Jarvinen R., Dich J., Hakulinen T. (1999) Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: A follow-up study, Int. J. Cancer 80, 852–856.

    PubMed  CAS  Google Scholar 

  • Knobeloch L., Salna B., Hogan A., Postle J., Anderson H. (2000) Blue babies and nitrate-contaminated well water, Environ. Health Persp. 108, 675–678.

    CAS  Google Scholar 

  • L’hirondel J., L’hirondel J.-L. (2002) Nitrate and man: toxic, harmless or beneficial? CABI, Wallingford, UK, p. 168.

    Google Scholar 

  • Laine P., Ourry A., Boucaud J. (1995) Shoot control of nitrate uptake rates by roots of Brassica napus L.: Effects of localized nitrate supply, Planta 196, 77–83.

    CAS  Google Scholar 

  • Lamattina L., Garcia-Mata C., Graziano M., Pagnussat G. (2003) Nitric oxide: the versatility of an extensive signal molecule, Annu. Rev. Plant Biol. 554, 109–136.

    Google Scholar 

  • Lambers H., Steingrover E. (1978) Growth respiration of a flood-tolerant and a flood-intolerant Scenecio species: Correlation between calculated and experimental values, Physiol. Plantarum 43, 219–224.

    Google Scholar 

  • Le Bot J., Kirkby E.A. (1992) Diurnal uptake of nitrate and potassium during vegetative growth of tomato plants, J. Plant Nutr. 15, 247–264.

    Google Scholar 

  • Liu L., Shelp B.J. (1996) Impact of chloride on nitrate absorption and accumulation by broccoli (Brassica oleracea var. italica), Can. J. Plant Sci. 76, 367–377.

    Google Scholar 

  • Loudet O., Chaillow S., Krapp A., Daniel-Vedele F. (2003) Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana, Genetics 163, 711–722.

    PubMed  CAS  Google Scholar 

  • Luo J., Lion Z., Yan X. (1993) Urea transformation and the adaptability of three leafy vegetables to urea as a source of nitrogen in hydroponic culture, J. Plant Nutr. 16, 797–812.

    Google Scholar 

  • Macduff J.H., Wild A. (1988) Changes in NO 3 and K+ uptake by four species in flowing solution culture in response to increased irradiance, Physiol. Plantarum 74, 251–256.

    CAS  Google Scholar 

  • Macduff J.H., Jackson S.B. (1992) Influx and efflux of nitrate ammonium in Italian ryegrass and white clover roots: Comparisons between effects of darkness and defoliation, J. Exp. Bot. 43, 525–535.

    CAS  Google Scholar 

  • Macduff J.H., Bakken A.K. (2003) Diurnal variation in uptake and xylem contents of inorganic and assimilated N under continuous and interrupted N supply to Phleum pratense and Festuca pratensis, J. Exp. Bot. 54, 431–444.

    PubMed  CAS  Google Scholar 

  • Man H.M., Abd-El Baki G.K., Stegmann P., Weigner H., Kaiser W.M. (1999) The activation site of nitrate reductase activity in leaves, Planta 209, 462–468.

    PubMed  CAS  Google Scholar 

  • Matt P., Geiger M., Walch-Liu P., Engles C., Krapp A., Stitt M. (2001) The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: A major imbalance between the rate nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period, Plant Cell Environ. 24, 177–190.

    CAS  Google Scholar 

  • Maynard D.N., Barker A.V., Minotti P.L., Peck N.H. (1976) Nitrate accumulation in vegetables, Adv. Agron. 28, 71–118.

    CAS  Google Scholar 

  • McCall D., Willumsen J. (1998) Effects of nitrate, ammonium and chloride application on the yield and nitrate content of soil-grown lettuce, J. Hortic. Sci. Biotech. 73, 698–703.

    CAS  Google Scholar 

  • McCall D., Willumsen J. (1999) Effects of nitrogen availability and supplementary light on the nitrate content of soil grown lettuce, J. Hortic. Sci. Biotech. 74, 458–463.

    Google Scholar 

  • McColl K.E.L. (2005) When saliva meets acid: chemical warfare at the oesophagogastric junction, Gut 54, 1–3.

    PubMed  CAS  Google Scholar 

  • McIntyre G.I. (1997) The role of nitrate in the osmotic and nutritional control of plant development, Aust. J. Plant Physiol. 24, 103–118.

    CAS  Google Scholar 

  • McKnight G.M., Duncan C.W., Leifert C., Golden M.H. (1999) Dietary nitrate in man: friend and foe? Brit. J. Nutr. 81, 349–358.

    PubMed  CAS  Google Scholar 

  • Meah M.N., Harrison N., Davies A. (1994) Nitrate and nitrite in foods and the diet, Food Addit. Contain. 11, 519–532.

    CAS  Google Scholar 

  • Mensinga T.T., Speijers G.J.A., Meulenbelt J. (2003) Health implications of exposure to environmental nitrogenous compounds, Toxicol. Rev. 22, 41–51.

    PubMed  CAS  Google Scholar 

  • Merlo I., Ferretti C., Passera C., Ghisi R. (1994) Effect of decreased irradiance on N and C metabolism in leaves and roots of maize, Physiol. Plantarum 91, 72–80.

    CAS  Google Scholar 

  • Michal F.D. (1998) A population based case control study on the association between nitrate in drinking water and non-Hodgkin’s lymphoma, The Johns Hopkins University Press, USA, p. 285.

    Google Scholar 

  • Michaud D.S., Mysliwiec P.A., Aldoori W., Willett W.C., Giovannucci E. (2004) Peptic Ulcer Disease and the Risk of Bladder Cancer in a Prospective Study of Male Health Professionals, Cancer Epidem. Biomar. 13, 250–254.

    Google Scholar 

  • Miller A.J., Smith S.J. (1996) Nitrate transport and compartmentation in cereal root cells, J. Exp. Bot. 47, 843–854.

    CAS  Google Scholar 

  • Moriya A., Grant J., Mowat C., Williams C., Carswell A., Preston T., Anderson S., Iijima K., McColl K.E.L. (2002) In vitro studies indicate that acid catalysed generation of N-nitrosocompounds from dietary nitrate will be maximal at the gastro-oesophageal junction and cardia, Scand. J. Gastroentero. 37, 253–261.

    CAS  Google Scholar 

  • Morton W.E. (1971) Hypertension and drinking constituents in Colorado, Am. J. Public Health 61, 1371–1378.

    PubMed  CAS  Google Scholar 

  • NAAS (2005) Policy options for efficient nitrogen use, Policy paper No. 33, National Academy of Agricultural Sciences, New Delhi, pp. 1–4.

    Google Scholar 

  • Nazaryuk V.M., Klenova M.I., Kalimullina F.R. (2002) Ecoagrochemical approaches to the problem of nitrate pollution in agroecosystems, Russ. J. Ecol. 33, 392–397.

    CAS  Google Scholar 

  • Nosengo N. (2003) Fertilized to death, Nature 425, 894–895.

    PubMed  CAS  Google Scholar 

  • Ourry A., Gordon A.J., Macduff J.H. (1997) Nitrogen uptake and assimilation in roots and root nodules, in: Foyer C.H., Quick W.P. (Eds.), A molecular approach to primary metabolism in higher plants, Taylor and Francis, London, pp. 237–253.

    Google Scholar 

  • Pearson C.J., Volk R.J., Jackson W.A. (1981) Daily changes in nitrate influx, efflux and metabolism in maize and pearlmillet, Planta 152, 319–324.

    CAS  Google Scholar 

  • Raupp J. (1996) Fertilization effects on product quality and examination of parameters and methods for quality assessment, in: Raupp J. (Ed.), Quality of plant products grown with manure fertilization, Darmstadt, pp. 44–48.

  • Reddy K.S., Menary R.C. (1990) Nitrate reductase and nitrate accumulation in relation to nitrate toxicity in Boronia megastigma, Physiol. Plantarum 78, 430–434.

    CAS  Google Scholar 

  • Reinink K., Groenwold R., Bootsma A. (1987) Genotypical differences in nitrate content in Lactuca sativa L. and related species and correlation with dry matter content, Euphytica 36, 11–18.

    Google Scholar 

  • Ruiz J.M., Romero L. (2002) Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants, Ann. Appl. Biol. 140, 241–245.

    Google Scholar 

  • Santamaria P. (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation, J. Sci. Food Agr. 86, 10–17.

    CAS  Google Scholar 

  • Santamaria P., Elia A. (1997) Producing nitrate-free endive heads: Effect of nitrogen form on growth, yield and ion composition of endive, J. Am. Soc. Hortic. Sci. 122, 140–145.

    Google Scholar 

  • Santamaria P., Elia A., Parente A., Serio F. (1998a) Nitrate and ammonium nutrition in chicory and rocket salad plants, J. Plant Nutr. 21, 1779–1789.

    CAS  Google Scholar 

  • Santamaria P., Elia A., Parente A., Serio F. (1998b) Fertilization strategies for lowering nitrate content in leafy vegetables: Chicory and rocket, J. Plant Nutr. 21, 1791–1803.

    CAS  Google Scholar 

  • Santamaria P., Elia A., Serio F., Todaro E. (1999) A survey of nitrate and oxalate content in retail fresh vegetables, J. Sci. Food Agr. 79, 1882–1888.

    CAS  Google Scholar 

  • Santamaria P., Elia A., Gonnella M., Parente A., Serio F. (2001) Ways of reducing rocket salad nitrate content, Acta Hortic. 548, 529–537.

    CAS  Google Scholar 

  • Scaife A. (1989) A pump/leak/buffer model for plant nitrate uptake, Plant Soil 114, 139–141.

    CAS  Google Scholar 

  • Scaife A., Schloemer S. (1994) The diurnal pattern of nitrate uptake and reduction by spinach (Spinacia oleracea L.), Ann. Bot. 73, 337–343.

    CAS  Google Scholar 

  • SCF (Scientific Committee on Food) (1995) Opinion on nitrate and nitrite, expressed on 22 September 1995 (Annex 4 to Document III/5611/95), European Commission (Eds.), Brussels, p. 34.

  • Scheible W.-R., Lauerer M., Schulze E.D., Caboche M., Stitt M. (1997a) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco, Plant J. 11, 671–691.

    CAS  Google Scholar 

  • Scheible W.-R., Gonzales-Fontes A., Morcuende R., Lauerer M., Geiger M., Glaab J., Schulze E.-D., Stitt M. (1997b) Tobacco mutants with a decreased number of functional nia-genes compensate by modifying the diurnal regulation transcription, post-translational modification and turnover of nitrate reductase, Planta 203, 305–319.

    Google Scholar 

  • Seginer I. (2003) A dynamic model for nitrogen-stressed lettuce, Ann. Bot. 91, 623–635.

    PubMed  CAS  Google Scholar 

  • Seginer I., Buwalda F., van Straten G. (1998) Nitrate concentration in greenhouse lettuce: A modeling study, Acta Hortic. 456, 189–197.

    Google Scholar 

  • Seginer I., Bleyaert P., Breugelmans M. (2004) Modelling ontogenetic changes of nitrogen and water content in lettuce, Ann. Bot. 94, 393–404.

    PubMed  CAS  Google Scholar 

  • Siddiqi M.Y., Glass A.D.M., Ruth T.J., Rufty T.W. Jr. (1990) Studies of the uptake of nitrate in barley. I. Kinetics of NO 3 influx, Plant Physiol. 93, 1426–1432.

    PubMed  CAS  Google Scholar 

  • Speijers G.J.A. (1996) Nitrate, in: World Health Organization (Eds.), Toxicological evaluation of certain food additives and contaminants in food, Food Additive Series 35, Geneva, pp. 325–360.

    Google Scholar 

  • Steingrover E., Ratering P., Siesling J. (1986a) Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity, Physiol. Plantarum 66, 550–556.

    CAS  Google Scholar 

  • Steingrover E., Woldendorp J., Sijtsma L. (1986b) Nitrate accumulation and its relation to leaf elongation in spinach leaves, J. Exp. Bot. 37, 1093–1102.

    Google Scholar 

  • Stitt M., Muller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W.-R., Krapp A. (2002) Steps towards an integrated view of nitrogen metabolism, J. Exp. Bot. 52, 959–970.

    Google Scholar 

  • Szaleczky E., Pronai L., Nakazawa H., Tulassay Z. (2000) Evidence of in vivo peroxynitrite formation in patients with colorectal carcinoma, higher plasma nitrate/nitrite levels, and lower protection against oxygen free radicals, J. Clin. Gastroenterol. 30, 47–51.

    PubMed  CAS  Google Scholar 

  • Tohgi H., Abe T., Yamazaki K., Murata T., Isobe C., Ishizaki E. (1998) The cerebrospinal fluid oxidized NO metabolites, nitrite and nitrate, in Alzheimer’s disease and vascular dementia of Binswanger type and multiple small infarct type, J. Neural Transm. 105, 1283–1291.

    PubMed  CAS  Google Scholar 

  • Turkdogan M.K., Testereci H., Akman N., Kahraman T., Kara K., Tuncer I., Uygan I. (2003) Dietary nitrate and nitrite levels in an endemic upper gastrointestinal (esophageal and gastric) cancer region of Turkey, Turk. J. Gastroenterol. 14, 50–53.

    PubMed  Google Scholar 

  • Tzung W.-J., Po W.-Y., Wu J.T., Wang Y.-P. (1995) Effects of some environmental factors on nitrate content of Chinese cabbage (Brasica chinensis L.), J. Chin. Agr. Chem. Soc. 33, 125–133.

    Google Scholar 

  • Urrestarazu M., Postigo A., Salas M., Sanchez A., Carrasco G. (1998) Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions, J. Plant Nutr. 21, 1705–1714.

    CAS  Google Scholar 

  • Ustyugova I.V., Zeman C., Dhanwada K., Beltz L.A. (2002) Nitrates/nitrite alter human lymphocyte proliferation and cytokine production, Arch. Environ. Cont. Tox. 43, 270–276.

    CAS  Google Scholar 

  • van der Boon J., Steenhuizen J.W., Steingrover E.G. (1990) Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4/NO3 ratio and temperature of the recirculating nutrient solution, J. Hortic. Sci. 65, 309–321.

    Google Scholar 

  • van der Leij M., Smith S.J., Miller A.J. (1998) Remobilization of vacuolar stored nitrate in barley root cells, Planta 205, 64–72.

    Google Scholar 

  • Veen B.W., Kleinendorst A. (1985) Nitrate accumulation and osmotic regulation in Italian ryegrass (Lolium multiflorum Lam.), J. Exp. Bot. 36, 211–218.

    CAS  Google Scholar 

  • Vieira I.S., Vasconselos E.P., Monteiro A.A. (1998) Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilisation, Nutr. Cycl. Agroecosys. 51, 249–258.

    Google Scholar 

  • Walker R. (1990) Nitrates and N-nitroso compounds: A review of the occurrence in food and diet and the toxicological implications, Food Addit. Contain. 7, 717–768.

    CAS  Google Scholar 

  • Xu C., Wu L.H., Ju X.T., Zhang F.S. (2005) Role of nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) in nitrate accumulation in greengrocery (Brassica campestris L. ssp. chinensis) and vegetable soil, J. Environ. Sci. (China) 17, 81–83.

    CAS  Google Scholar 

  • Xu G., Magen H., Tarchitzky J., Kafkafi U. (2000) Advances in chloride nutrition of plants, Adv. Agron. 68, 97–150.

    CAS  Google Scholar 

  • Xu J., Xu X., Verstraete W. (2001) The bactericidial effect and chemical reactions of acidified nitrite under conditions simulating the stomach, J. Appl. Microbiol. 90, 523–529.

    PubMed  CAS  Google Scholar 

  • Ysart G., Miller P., Barrett G., Farrington D., Lawrance P., Harrison N. (1999) Dietary exposures to nitrate in the UK, Food Addit. Contam. 16, 521–532.

    PubMed  CAS  Google Scholar 

  • Zhou Z.-Y., Wang M.-J., Wang J.-S. (2000) Nitrate and nitrite contamination in vegetables in China, Food Rev. Int. 16, 61–76.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Shahid Umar.

About this article

Cite this article

Anjana, S.U., Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 27, 45–57 (2007). https://doi.org/10.1051/agro:2006021

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2006021

Navigation