Skip to main content
Log in

Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects

  • Invited Review Article
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This review paper is based on the invited talk presented by the same authors at the 8th International Workshop on Far-Infrared Technologies (IW-FIRT 2021). It overviews some well-known and novel and emerging applications of gyrotrons in diverse scientific and technological fields and presents both the current status and the prospects of the research in such a wide area worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.V. Kartikeyan, E. Borie, M.K.A. Thumm, “GYROTRONS High Power Microwave and Millimeter Wave Technology” (Springer, 2003).

  2. G. Nusinovich, “Introduction to the Physics of Gyrotrons” (The Johns Hopkins University Press, 2004).

  3. M. Thumm, “State-of-the-art of high power gyro-devices and free electron masers,” J. Infrared Millimeter, and Terahertz Waves, vol. 41 (2020) 1–140. https://doi.org/10.1007/s10762-019-00631-y.

    Article  Google Scholar 

  4. M. Glyavin, S. Sabchevski, T. Idehara, S. Mitsudo, “Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects,” J Infrared Millimeter, and Terahertz Waves, vol. 41 (2020) 1022–1037.

    Article  Google Scholar 

  5. T. Idehara, S.P. Sabchevski, “Development and Application of Gyrotrons at FIR UF,” IEEE Trans. Plasma Sci., vol. 46 (2018) 2452–2459. https://doi.org/10.1109/TPS.2017.2775678.

    Article  Google Scholar 

  6. T. Idehara, S. Sabchevski, M. Glyavin, S. Mitsudo, “The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging,” Appl. Sci., vol. 10, no. 3 (2020) 980. https://doi.org/10.3390/app10030980.

    Article  Google Scholar 

  7. M.K.A. Thumm, G.G. Denisov, K. Sakamoto, and M.Q. Tran, “High power gyrotrons for electron cyclotron heating and current drive,” Nucl. Fusion, vol. 59, no. 7, 2019, Art. no. 073001. https://doi.org/10.1088/1741-4326/ab2005.

    Article  Google Scholar 

  8. A.G. Litvak, G.G. Denisov and M.Y. Glyavin, "Russian Gyrotrons: Achievements and Trends," IEEE Journal of Microwaves, vol. 1, no. 1 (2021) 260-268. https://doi.org/10.1109/JMW.2020.3030917.

    Article  Google Scholar 

  9. Y. Oda, R. Ikeda, K. Kajiwara, T. Kobayashi, K. Hayashi, K. Takahashi, S. Moriyama, K. Sakamoto, T. Eguchi, Y. Kawakami "Development of the first ITER gyrotron in QST," Nuclear Fusion, vol. 59, no.8 (2019) 086014. https://doi.org/10.1088/1741-4326/ab22c2.

  10. S. Yuvaraj, M.V. Kartikeyan, M.K. Thumm, “Design Studies of a 3-MW, Multifrequency (170/204/236 GHz) DEMO Class Triangular Corrugated Coaxial Cavity Gyrotron,” IEEE Transactions on Electron Devices, vol. 66, no. 1 (2018) 702-708. https://doi.org/10.1109/TED.2018.2876870.

    Article  Google Scholar 

  11. S.N. Joshi, A.K. Sinha, "Indian Gyrotron initiatives," 2011 IEEE Applied Electromagnetics Conference (AEMC), 2011, pp. 1-4. https://doi.org/10.1109/AEMC.2011.6256908.

  12. O. Dumbrajs, M. Thumm, “Gyrotrons for technological applications,” International Journal of Electronics, vol. 76, no. 2, (1994) 351-364. https://doi.org/10.1080/00207219408925932.

    Article  Google Scholar 

  13. A.W. Fliflet, R.W. Bruce, R.P. Fischer, A.K. Kinkead, S.H. Gold, S. Ganguly, "Gyrotron-powered millimeter-wave beam facility for microwave processing of materials," IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297), Monterey, CA, USA, 1999, pp. 151-. https://doi.org/10.1109/PLASMA.1999.829393.

  14. G. Link, L. Feher, M. Thumm, H.J. Ritzhaupt-Kleissl, R. Bohme, A. Weisenburger, “Sintering of Advanced Ceramics Using a 30-GHz, 10-kW, CW Industrial Gyrotron”, IEEE Trans. on Plasma Science, vol. 27, no. 2 (1999) 547-554. https://doi.org/10.1109/27.772284.

    Article  Google Scholar 

  15. S. Sano, Y. Makino, S. Miyake, Yu.V. Bykov, A.G. Eremeev, S.V. Egorov, "30 and 83 GHz millimeter wave sintering of alumina," Journal of Materials Science Letters, vol. 19, no. 24 (2000) 2247-2250. https://doi.org/10.1023/A:1006733125930.

    Article  Google Scholar 

  16. Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, G. Denisov, A. Bogdashev, G. Kalynova, V. Semenov, N. Zharova, "24-84-GHz gyrotron systems for technological microwave applications," IEEE Transactions on Plasma Science, vol. 32, no. 1 (2004) 67-72. https://doi.org/10.1109/TPS.2004.823904.

    Article  Google Scholar 

  17. Y. Bykov, A. Eremeev, M. Glyavin, V.V. Holoptsev, I.V. Plotnikov, V.Pavlov (2006) “3.5 kW 24 GHz Compact Gyrotron System for Microwave Processing of Materials,” In: Willert-Porada M. (eds) Advances in Microwave and Radio Frequency Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32944-2_3.

    Chapter  Google Scholar 

  18. G. Link, S. Rhee, L. Feher, M. Thumm, (2007). “Millimeter Wave Sintering of Ceramics,” In Ceramic Materials and Components for Engines (eds J.G. Heinrich and F. Aldinger). https://doi.org/10.1002/9783527612765.ch77.

  19. S. Sano, Y. Makino, S. Miyake, Yu.V. Bykov, A.G. Eremeev, S.V. Egorov, "30 and 83 GHz millimeter wave sintering of alumina," Journal of Materials Science Letters, vol. 19, no. 24 (2000) 2247-2250. https://doi.org/10.1023/A:1006733125930.

    Article  Google Scholar 

  20. Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, G. Denisov G., A. Bogdashev, G. Kalynova, V. Semenov, N. Zharova, "24-84-GHz gyrotron systems for technological microwave applications," IEEE Transactions on Plasma Science, vol. 32, no. 1 (2004) 67-72. https://doi.org/10.1109/TPS.2004.823904.

    Article  Google Scholar 

  21. V.E. Zapevalov, V.K. Lygin, O.V. Malygin, M.A. Moiseev, V.P. Karpov, V.I. Khizhnjak, E.M. Tai, T. Idehara, I. Ogawa, S. Mitsudo, “Development of the 300 GHz 4 kW CW Gyrotron - Proc. Joint 29-th Int. Conf. on Infrared and Millimeter Waves and 12-th Int. Conf. on Terahertz Electronics (Sept 27 – Oct 1, 2004, Karlsruhe, Germany) pp. 149–150

  22. S. Mitsudo, H. Hoshizuki, T. Idehara, T. Saito, "Development of material processing system by using a 300 GHz CW gyrotron," Journal of Physics: Conference Series, vol. 51 (2006) 549-552. https://doi.org/10.1088/1742-6596/51/1/124.

    Article  Google Scholar 

  23. H. Hoshizuki, S. Mitsudo, T. Saji, K. Matsuura, T. Idehara, M. Glyavin, A. Eremeev, T. Honda, Y. Iwai, H. Nishi, A. Kitano, J. Ishibashi, “High Temperature Thermal Insulation System for Millimeter Wave Sintering of B4C”, International Journal of Infrared and Millimeter Waves, vol. 26, no. 11 (2005) 153–1541. https://doi.org/10.1007/s10762-005-0030-z.

    Article  Google Scholar 

  24. S. Mitsudo, K. Sako, S. Tani, I.N. Sudiana, “High Power Pulsed Submillimeter Wave Sintering of Zirconia Ceramics,” The 36th Int. Conf. on Infrared, Millimeter and THz Waves (IRMMW-THz 2011), October 2-7, 2011, Hyatt Regency Houston, Houston, Texas, USA. https://doi.org/10.1109/irmmw-THz.2011.6105135.

    Chapter  Google Scholar 

  25. H. Aripin, S. Mitsudo, I.N. Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, S. Sabchevski, “Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 26, no. 11 (2011) 1531–1541. https://doi.org/10.1007/s10762-011-9797-2.

    Article  Google Scholar 

  26. H. Aripin, S. Mitsudo, E.S. Prima, I.N. Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, S. Sano, B. Sunendar, S. Sabchevski, “Structural and microwave properties of silica xerogel glass-ceramic sintered by sub-millimeter wave heating using a gyrotron,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, no. 11 (2012) 1149–1162. https://doi.org/10.1007/s10762-012-9925-7.

    Article  Google Scholar 

  27. H. Aripin, S. Mitsudo, I.N. Sudiana, B. Nundang, S. Sabchevski, "Volumetric Microwave Heating of Mullite Ceramic Using a 28 GHz Gyrotron," International Journal of Materials Science and Engineering, vol. 6, no. 1 (2018) 32-38. https://doi.org/10.17706/ijmse.2018.6.1.32-38.

    Article  Google Scholar 

  28. A.V. Vodopyanov, A.V. Samokhin, N.V. Alexeev, M.A. Sinayskiy, A.I. Tsvetkov, M.Y. Glyavin, A.P. Fokina, V.I. Malygina, “Application of the 263 GHz/1 kW gyrotron setup to produce a metal oxide nanopowder by the evaporation-condensation technique,” Vacuum, vol. 145 (2017) 340-346. https://doi.org/10.1016/j.vacuum.2017.09.018.

    Article  Google Scholar 

  29. V.V. Chernov, A.M. Gorbachev, A.L. Vikharev, M.A. Lobaev, “Criterion for comparison of MPACVD reactors working at different microwave frequencies and diamond growth conditions,” Phys. Status Solidi A, vol. 213 (2016) 2564-2569. https://doi.org/10.1002/pssa.201600193.

    Article  Google Scholar 

  30. https://www.gyrotrontech.com/

  31. L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R. Griffn, R. “Dynamic Nuclear Polarization with a Cyclotron Resonance Maser at 5 T,” Phys. Rev. Lett., vol. 71 (1993) 3561–3564. https://doi.org/10.1103/PhysRevLett.71.3561.

    Article  Google Scholar 

  32. R.J. Temkin, “Development of terahertz gyrotrons for spectroscopy at MIT,” Terahertz Sci. Technol., vol. 7, no. 1(2014) 1–9. https://doi.org/10.11906/TST.001-009.2014.03.01.

    Article  Google Scholar 

  33. S.K. Jawla, R.G. Griffin, I.A. Mastovsky, M.A. Shapiro, R.J. Temkin, R. J.. “Second harmonic 527-GHz gyrotron for DNP-NMR: Design and experimental results,” IEEE Transactions on Electron Devices, vol. 67, no. 1 (2019) 328-334. https://doi.org/10.1109/TED.2019.2953658.

    Article  Google Scholar 

  34. R.G. Griffin, T.M. Swager, R.J. Temkin, “High frequency dynamic nuclear polarization: New directions for the 21st century,” J Magn Reson., vol. 306 (2019) 128-133. https://doi.org/10.1016/j.jmr.2019.07.019.

    Article  Google Scholar 

  35. E.A. Nanni, S. Jawla S.M. Lewis, M.A. Shapiro, R.J. Temkin, “Photonic-band-gap gyrotron amplifier with picosecond pulses,” Appl Phys Lett., vol. 111, no. 3 (2017) 233504. https://doi.org/10.1063/1.5006348.

    Article  Google Scholar 

  36. F.J. Scott, E.P. Saliba, B.J. Albert, N. Alaniva, E.L. Sesti, Ch. Gao, N.C. Golota, E.J. Choi, A.P. Jagtap, J.J. Wittmann, M. Eckardt, W. Harneit, B. Corzilius, S.Th. Sigurdsson, A.B. Barnes, “Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization,” Journal of Magnetic Resonance, vol. 289 (2018) 45-54. https://doi.org/10.1016/j.jmr.2018.02.010.

    Article  Google Scholar 

  37. T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuilov, V. Zaslavsky, I. Zotova, A. Sedov, "A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy," Review of Scientific Instruments, vol. 88, no. 9 (2017) 094708. https://doi.org/10.1063/1.4997994.

    Article  Google Scholar 

  38. A.A. Bogdashov, V.I. Belousov, A.V. Chirkov, G.G. Denisov, V.V. Korchagin, S.Yu. Kornishin., “Transmission Line for 258 GHz Gyrotron DNP Spectrometry,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32 (2011) 823–837. https://doi.org/10.1007/s10762-011-9787-4.

    Article  Google Scholar 

  39. S. Alberti, J.-P. Ansermet, K.A. Avramides, D. Fasel, J.-P. Hogge, S. Kern, C. Lievin, Y. Liu, A. Macor, I. Pagonakis, "Design of a frequency-tunable gyrotron for DNP-enhanced NMR spectroscopy," 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009, pp. 1-2, https://doi.org/10.1109/ICIMW.2009.5324906.

  40. Visit: https://www.jeol.co.jp/en/products/esr/basics.html

  41. T. Tatsukawa, T. Maeda, H. Sasai, T. Idehara, M. Mekata, T. Saito, T. Kanemaki, “ESR spectrometer with a wide frequency range using a gyrotron as a radiation power source,” Int. J. Infr. Millim. Waves, vol. 16, no. 1 (1995) 293–305. https://doi.org/10.1007/BF02085864.

    Article  Google Scholar 

  42. S. Mitsudo, T. Higuchi, K. Kanazawa, T. Idehara, I. Ogawa, M. Chiba, “High field ESR measurements using gyrotron FU series as radiation sources,” J. Phys. Soc. Jpn., vol. 72, Suppl. B (2003) 172–176. https://doi.org/10.1143/JPSJS.72SB.172.

    Article  Google Scholar 

  43. S. Mitsudo, C. Umegaki, K. Hiiragi, M. Narioka, Y. Fujii, Y. Tatematsu, “Development of a millimeter wave pulsed ESR system by using a gyrotron as a light source,” In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; p. 1. https://doi.org/10.1109/IRMMW-THz.2016.7758476.

  44. S. Mitsudo, K. Kono, K. Dono, K. Hayashi, Y. Ishikawa and Y. Fujii, "FT-ESR measurements on BDPA by Pulsed ESR using a gyrotron as high-power millimeter wave source," 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019, pp. 1-1, https://doi.org/10.1109/IRMMW-THz.2019.8874493.

    Book  Google Scholar 

  45. S. Mitsudo, K. Dono, K. Hayashi, Y. Ishikawa, Y. Fujii, "Improvement in sensitivity of FT- ESR measurements by using a gyrotron as high-power millimeter wave source," 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 2020, pp. 1-1, https://doi.org/10.1109/IRMMW-THz46771.2020.9370426.

    Book  Google Scholar 

  46. H. Takahashi, H. Y. Ishikawa, T. Okamoto, D. Hachiya, K. Dono, K. Hayashi, T. Asano, S. Mitsudo, E. Ohmichi, H. Ohta, “Force detection of high-frequency electron spin resonance near room temperature using high-power millimeter-wave source gyrotron,” Applied Physics Letters, vol. 118, no. 2 (2021) 022407. https://doi.org/10.1063/5.0036800.

    Article  Google Scholar 

  47. J. Goulon, A. Rogalev, F. Wilhelm, N. Jaouen, C. Goulon-Ginet, C Brouder, “X-ray detected ferromagnetic resonance in thin films,” The European Physical Journal B-Condensed Matter and Complex Systems, vol. 53, no. 2 (2006) 169-184. https://doi.org/10.1140/epjb/e2006-00367-6.

    Article  Google Scholar 

  48. J. Goulon, A. Rogalev, G. Goujon, F. Wilhelm, J. Ben Youssef, C. Gros, J.M. Barbe, R. Guilard, “X-ray detected magnetic resonance: a unique probe of the precession dynamics of orbital magnetization components,” International journal of molecular sciences, vol. 12, no. 12 (2011) 8797–8835. https://doi.org/10.3390/ijms12128797.

    Article  Google Scholar 

  49. J. Goulon, A. Rogalev, F. Wilhelm, G. Goujon, T. Idehara, “Sub-THz gyrotron optimized for X-ray detected electron magnetic resonance,” J. Plasma Fusion Res., vol 84 (2008) 909–911.

  50. A. Rogalev, J. Goulon, G. Goujon,F. Wilhelm, I. Ogawa, T. Idehara, “X-ray Detected Magnetic Resonance at Sub-THz frequencies using a high power gyrotron source,” J. Infrared, Millimeter, and. Terahertz Waves, vol. 33 (2012) 777–793. https://doi.org/10.1007/s10762-011-9855-9.

    Article  Google Scholar 

  51. S. Asai, T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, S. Sabchevski, “Direct Measurement of Positronium Hyper Fine Structure—A New Horizon of Precision Spectroscopy Using Gyrotrons,” J. Infrared Millimeter, and. Terahertz Waves, vol. 33 (2012) 766–776. https://doi.org/10.1007/s10762-011-9864-8.

    Article  Google Scholar 

  52. T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, I. Ogawa, T. Idehara, S. Sabchevski, “Direct observation of the hyperfine transition of ground-state positronium,” Phys. Rev. Lett., vol. 108 (2012) 253401. https://doi.org/10.1103/PhysRevLett.108.253401.

    Article  Google Scholar 

  53. A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, T. Idehara, “First millimeter-wave spectroscopy of ground-state positronium,” Prog. Theor. Exp. Phys., (2015) 011C01. https://doi.org/10.1093/ptep/ptu181.

  54. Applications of high-power microwaves / Andrei V. Gaponov-Grekhov, Victor L. Granatstein, editors (Artech House, 1994). ISBN 089006699X.

  55. A.A.Tolkachev, B.A. Levitan, G.K. Solovjev, V.V. Veytsel, V.E. Farber, “A megawatt power millimeter-wave phased-array radar,” IEEE Aerospace and Electronic Systems Magazine, vol. 15, no. 7 (2000) 25-31.

    Article  Google Scholar 

  56. M.E. MacDonald, J.P. Anderson, R.K. Lee, D.A. Gordon, G.N. McGrew, "The HUSIR W-band transmitter," Lincoln Laboratory Journal, vol. 21, no.1 (2014) 106-114. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.671.9552&rep=rep1&type=pdf

  57. Manheimer, W. M., Fliflet, A. W., St. Germain, K., Linde, G. J., Cheung, W. J., Gregers-Hansen, V., Danly, B. G., and Ngo, M. T. (2003), Initial cloud images with the NRL high power 94 GHz WARLOC radar, Geophys. Res. Lett., 30, 1103, https://doi.org/10.1029/2002GL016507.

    Article  Google Scholar 

  58. S.V. Samsonov, G.G. Denisov, I.G. Gachev, A.A. Bogdashov, "CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube," IEEE Electron Device Letters, vol. 41, no. 5 (2020): 773-776. https://doi.org/10.1109/LED.2020.2980572.

    Article  Google Scholar 

  59. W. He, C.R. Donaldson, L. Zhang, P. McElhinney, H. Yin, J.R. Garner, K. Ronald, A.W. Cross, A.D.R. Phelps, "Experimental test of a W-band gyro-TWA for cloud radar applications," 2016 46th European Microwave Conference (EuMC), 2016, pp. 1099-1102. https://doi.org/10.1109/EuMC.2016.7824539.

  60. N. Kumar, U. Singh, T.P. Singh, A. K. Sinha, “Design of 95 GHz, 2 MW Gyrotron for Communication and Security Applications,” J Infrared, Millimeter, and Terahertz Waves, vol. 32 (2011) 186–195. https://doi.org/10.1007/s10762-010-9762-5.

    Article  Google Scholar 

  61. M. Blank, P. Borchard, S. Cauffman, K. Felch, “Design and Demonstration of W-band Gyrotron Amplifiers for Radar Applications,” 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Cardiff, Wales, 2007, pp. 358–361. https://doi.org/10.1109/ICIMW.2007.4516535.

  62. M. Han, X. Guan, M. Einat, W. Fu, Y. Yan, “Investigation on a 220 GHz Quasi-Optical Antenna for Wireless Power Transmission,” Electronics, vol. 10, no. 5 (2021) 634. https://doi.org/10.3390/electronics10050634.

    Article  Google Scholar 

  63. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T.D. Carozzi, Y. N. Istomin, N. H. Ibragimov, R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett., vol. 99, no. 8 (2007) 087701-1–087701-4. https://doi.org/10.1103/PhysRevLett.99.087701.

    Article  Google Scholar 

  64. O. Edfors, A.J. Johansson. "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Transactions on Antennas and Propagation, vol. 60, no. 2 (2011) 1126-1131. https://doi.org/10.1109/TAP.2011.2173142.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Thumm, “Gyro-devices – natural sources of high-power high-order angular momentum millimeter-wave beams,” Terahertz Science and Technology, vol. 13, no. 1 (2020) 1 – 21. https://doi.org/10.1051/tst/2020131001.

    Article  MathSciNet  Google Scholar 

  66. A. Sawant, I. Lee, M.S. Choe, E. Choi, "Development of the Second Harmonic 190 GHz Gyrotron for OAM Communication," 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2019, pp. 1-2. https://doi.org/10.1109/IRMMW-THz.2019.8873925.

  67. A. Sawant, I. Lee, B. C. Jung and E. Choi, "Ultimate Capacity Analysis of Orbital Angular Momentum Channels," IEEE Wireless Communications, https://doi.org/10.1109/MWC.001.2000258.

  68. N.S. Kardashev, “Optimal wavelength region for communication with extraterrestrial intelligence: λ = 1.5 mm,” Nature, vol. 278 (1979) 28–30. https://doi.org/10.1038/278028a0.

    Article  Google Scholar 

  69. S. Mizojiri , K. Shimamura, M. Fukunari , S.Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu , T. Saito, “Subterahertz Wireless Power Transmission Using 303-GHz Rectenna and 300-kW-Class Gyrotron,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 9 (2018) 834-836. https://doi.org/10.1109/LMWC.2018.2860248.

    Article  Google Scholar 

  70. S. Mizojiri, K. Shimamura, "Recent progress of Wireless Power Transfer via Sub-THz wave," 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019, pp. 705-707. https://doi.org/10.1109/APMC46564.2019.9038353.

  71. Y. Hidaka, E. M. Choi, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, G. F. Edmiston, A. A. Neuber, and Y. Oda, "Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron." Physics of Plasmas, vol. 16, no. 5 (2009) 055702. https://doi.org/10.1063/1.3083218.

    Article  Google Scholar 

  72. V.L. Bratman, V.G. Zorin, Yu.K. Kalynov, V.A. Koldanov, A.G. Litvak, S.V. Razin, A.V. Sidorov, V.A. Skalyga, "Plasma creation by terahertz electromagnetic radiation", Physics of Plasmas, vol. 18 (2011) 083507. https://doi.org/10.1063/1.3622202.

    Article  Google Scholar 

  73. M.Y. Glyavin, S.V. Golubev, V.G. Zorin, et al., “The Discharge Maintained by High-Power Terahertz Radiation in a Nonuniform Gas Flow,” Radiophys Quantum El, vol. 56 (2014) 561–565. https://doi.org/10.1007/s11141-014-9459-z.

    Article  Google Scholar 

  74. A.V. Sidorov, S.V. Golubev, S.V. Razin, A.P. Veselov, A.V. Vodopyanov, A.P. Fokin, A.G. Luchinin, M.Yu. Glyavin, “Gas discharge powered by the focused beam of the high-intensive electromagnetic waves of the terahertz frequency band,” Journal of Physics D: Applied Physics, vol. 51, no. 46 (2018) 464002. https://doi.org/10.1088/1361-6463/aadb3c.

    Article  Google Scholar 

  75. M.Yu. Glyavin, S.V. Golubev, I.V. Izotov, A.G. Litvak, A.G. Luchinin, S.V. Razin, A.V. Sidorov, V.A. Skalyga, A.V. Vodopyanov, "A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band", Applied Physics Letters, vol. 105 (2014) 174101. https://doi.org/10.1063/1.4900751.

    Article  Google Scholar 

  76. A.L. Vikharev, A.M. Gorbachev, D.B. Radishev, “Physics and application of gas discharge in millimeter wave beams,” J. Phys. D: Appl. Phys. vol. 52 (2018) 014001. https://doi.org/10.1088/1361-6463/aae3a3.

    Article  Google Scholar 

  77. K. Shimamura, J. Yamasaki, K. Miyawaki, R. Minami, T. Kariya, J. Yang, S. Yokota, "Propagation of microwave breakdown in argon induced by a 28 GHz gyrotron beam", Physics of Plasmas, vol. 28 (2021) 033505. https://doi.org/10.1063/5.0045350.

    Article  Google Scholar 

  78. A. Sidorov, S. Razin, A. Veselov, A. Vodopyanov, M. Morozkin, M. Glyavin, "Breakdown of the heavy noble gases in a focused beam of powerful sub-THz gyrotron", Physics of Plasmas, vol. 26 (2021) 083510. https://doi.org/10.1063/1.5109526.

    Article  Google Scholar 

  79. A.G. Shalashov, A.V. Vodopyanov, I.S. Abramov, A.V. Sidorov, E.D. Gospodchikov, S.V. Razin, N.I. Chkhalo, N.N. Salashchenko, M.Yu. Glyavin, S.V. Golubev, "Observation of extreme ultraviolet light emission from an expanding plasma jet with multiply charged argon or xenon ions", Applied Physics Letters, vol. 113 (2018) 153502. https://doi.org/10.1063/1.5049126.

    Article  Google Scholar 

  80. A.V. Sidorov, S.V. Razin, A.I. Tsvetkov, A.P. Fokin, A.P. Veselov, S.V. Golubev, A.V. Vodopyanov, and M.Yu. Glyavin, "Gas breakdown by a focused beam of CW THz radiation," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 2017, pp. 2600-2602. https://doi.org/10.1109/PIERS.2017.8262191.

  81. M. Fukunari, R. Kamiya, R. Okamoto, Y. Yamaguchi, Y. Tatematsu, T. Saito, "Application of the Millimeter-Wave Discharge Induced in Gas to a Wireless Power Transfer System," 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 2020, pp. 1-2. https://doi.org/10.1109/IRMMW-THz46771.2020.9370384.

  82. D. Mansfeld, S. Sintsov, N. Chekmarev, A. Vodopyanov, “Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure,” Journal of CO2 Utilization, vol. 40 (2020) 101197. https://doi.org/10.1016/j.jcou.2020.101197.

    Article  Google Scholar 

  83. G.S. Nusinovich, R. Pu, T.M. Antonsen, O.V. Sinitsyn, J. Rodgers, A. Mohamed, J. Silverman, M. Al-Sheikhly, Y.S. Dimant, G.M. Milikh, M.Yu. Glyavin, A.G. Luchinin, E.A. Kopelovich, V.L. Granatstein, V.L. “Development of THz-range gyrotrons for detection of concealed radioactive materials,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 3 (2011) 380-402. https://doi.org/10.1007/s10762-010-9708-y.

    Article  Google Scholar 

  84. M.Yu. Glyavin, A.G. Luchinin, A.A. Bogdashov, V.N. Manuilov, M.V. Morozkin, Yu.V. Rodin, G.G. Denisov, D. Kashin, G. Rogers, C.A. Romero-Talamas, R. Pu, A.G. Shkvarunetz, G.S. Nusinovich, “Experimental Study of the Pulsed Terahertz Gyrotron with Record-Breaking Power and Efficiency Parameters,” Radiophysics and Quantum Electronics, vol. 56, no. 8-9 (2014) 497-507. https://doi.org/10.1007/s11141-014-9454-4.

    Article  Google Scholar 

  85. C.M. Lyneis, D. Leitner, D.S. Todd, G. Sabbi, S. Prestemon, S. Caspi, P. Ferracin, "Fourth generation electron cyclotron resonance ion sources (invited)", Review of Scientific Instruments, vol. 79 (2008) 02A32. https://doi.org/10.1063/1.2816793.

    Article  Google Scholar 

  86. T.Thuillier, D. Bondoux, J. Angot, M. Baylac, E. Froidefond, J. Jacob, T. Lamy, A. Leduc, P. Sole, F. Debray, C. Trophime, V. Skalyga, I. Izotov, “Prospect for a 60 GHz multicharged ECR ion source,” Rev. Sci. Instr., vol. 89 (2018) 052302. https://doi.org/10.1063/1.5017113.

    Article  Google Scholar 

  87. G. Denisov, M. Glyavin, A. Tsvetkov, A. Eremeev, V. Kholoptsev, I. Plotnikov, Yu. Bykov, V.C. Orlov, M. Morozkin, M. Shmelev, E. Kopelovich, M. Troitsky, M. Kuznetsov, K. Zhurin, A. Novikov, M. Bakulin, D. Sobolev, E. Tai, E. Soluyanova, E. Sokolov, “A 45-GHz/20-kW Gyrotron-Based Microwave Setup for the Fourth-Generation ECR Ion Sources,” IEEE Trans. Electron Devices, vol. 69 (2018). https://doi.org/10.1109/TED.2018.2859274.

  88. H.W. Zhao, L.T. Sun, J.W. Guo, W.H. Zhang, W. Lu, W. Wu, B.M. Wu, G. Sabbi, M. Juchno, A. Hafalia, E. Ravaioli, D. Z. Xie, "Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR", Review of Scientific Instruments, vol. 89, (2018) 052301. https://doi.org/10.1063/1.5017479.

    Article  Google Scholar 

  89. V.A. Skalyga, S.V. Golubev, I.V. Izotov, M.Yu. Kazakov, R.L. Lapin, S.V. Razin, A.V. Sidorov, R.A. Shaposhnikov, A.F. Bokhanov, O. Tarvainen, “Status of new developments in the field of high-current gasdynamic ECR ion sources at the IAP RAS,” AIP Conference Proceedings, vol. 2011(2018) 020018. https://doi.org/10.1063/1.5053260.

    Article  Google Scholar 

  90. V. Skalyga, I. Izotov, S. Golubev, S. Razin, A. Sidorov “H+ and D+ high current ion beams formation from ECR discharge sustained by 75 GHz gyrotron radiation,” AIP Conference Proceedings, vol. 1771 (2016) 070012. https://doi.org/10.1063/1.4964236.

    Article  Google Scholar 

  91. A. Girard, D. Hitz, G. Melin, S. Gammino, G. Ciavola, L. Celona, “Utilization of gyrotrons in the field of ECRIS for accelerators, first results and perspectives,” Nuclear Fusion, vol. 43, no. 11 (2003). https://doi.org/10.1088/0029-5515/43/11/025.

  92. M.A. K. Othman, J. Picard, S. Schaub, V.A. Dolgashev, S.M. Lewis, J. Neilson, A. Haase, S. Jawla, B. Spataro, R. J. Temkin, S. Tantaw, E. A. Nanni, “Experimental demonstration of externally driven millimeter-wave particle accelerator structure,” Appl. Phys. Lett., vol. 117 (2020). https://doi.org/10.1063/5.0011397.

  93. B. Danly, G. Bekefi, R. Davidson, R. Temkin, T. Tran, J. Wurtele, “Principles of gyrotron powered electromagnetic wigglers for free-electron lasers,” IEEE Journal of Quantum Electronics, vol. 23, no. 1 (1987) 103-116. https://doi.org/10.1109/JQE.1987.1073205.

    Article  Google Scholar 

  94. E.B. Abubakirov, I.V. Bandurkin, A.A. Vikharev, S.V. Kuzikov, R.M. Rozental, A.V. Savilov, A.E. Fedotov, “Microwave Undulators and Electron Generators for New-Generation Free-Electron Lasers,” Radiophys Quantum El, vol. 58 (2016) 755–768. https://doi.org/10.1007/s11141-016-9648-z.

    Article  Google Scholar 

  95. S.V. Kuzikov, A.V. Savilov, A.A. Vikharev, “Flying radio frequency undulator,” Applied Physics Letters, vol. 105, no. 3 (2014) 033504. https://doi.org/10.1063/1.4890586.

    Article  Google Scholar 

  96. L. Zhang, W. He, J. Clarke, K. Ronald, A.D.R. Phelps, A.W. Cross, "Microwave Undulator Using a Helically Corrugated Waveguide," IEEE Transactions on Electron Devices, vol. 65, no. 12 (2018) 5499-5504. https://doi.org/10.1109/TED.2018.2873726.

    Article  Google Scholar 

  97. T. Tatsukawa, A. Doi, M. Teranaka, T. Idehara, T. Kanemaki, I. Ogawa, S.P. Sabchevski, “Submillimeter Wave Irradiation on Living Bodies Using Catheter Waveguide Vent Antennae with Dielectric Rod and Sheet”. In: NANOscale Magnetic Oxides and Bio-World, Edited by I. Nedkov and Ph. Tailhades (Heron Press Ltd., Sofia) pp. 123-138, 2004. ISBN-10 : 9545801565; ISBN-13 : 978-9545801563.

  98. S.P. Sabchevski, T. Idehara, S. Ishiyama, N. Miyoshi, T. Tatsukawa, “A Dual▯ Beam Irradiation Facility for a Novel Hybrid Cancer Therapy,” Journal of Infrared, Millimeter and Terahertz Waves, vol. 34, no. 1, pp. 71-87, 2013.

    Article  Google Scholar 

  99. N. Miyoshi, T. Idehara, E. Khutoryan, Y. Fukunaga, A.B. Bibin, S. Ito, S.P. Sabchevski, "Combined Hyperthermia and Photodynamic Therapy Using a Sub-THz Gyrotron as a Radiation Source", Journal of Infrared, Millimeter, and Terahertz Waves, vol. 37, no. 8, pp. 805-814, 2016.

    Article  Google Scholar 

  100. S.-T. Han, A.C. Torrezan, J.R. Sirigiri, M.A. Shapiro, R.J. Temkin, “Active real-time imaging system employed with a CW 460-GHz gyrotron and a pyroelectric array camera,” 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2009), 2009, 1-2. https://doi.org/10.1109/ICIMW.2009.5324787.

  101. S.P. Han, H. Ko, N. Kim, W.H. Lee, K. Moon, I.M. Lee, E.S. Lee, D.H. Lee, W. Lee, S.T. Han, S.W. Choi, K.H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1× 240 InGaAs Schottky barrier diode array detector,” Optics express, vol. 22, no. 23 (2014) 28977-28983. https://doi.org/10.1364/OE.22.028977.

    Article  Google Scholar 

  102. S.T Han, W.J Lee, K.S. Park, S.W. Choi, J.H. Yoon, J.S. Yoo, “Application of T-ray gyrotron developed for real-time non-destructive inspection to enhanced regeneration of cells,” In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz 2015), 1-2). IEEE. https://doi.org/10.1109/IRMMW-THz.2015.7327867.

  103. P. Woskov, P. Michael, “Millimeter-Wave Heating, Radiometry, and Calorimetry of Granite Rock to Vaporization,” J Infrared, Millimeter, and Terahertz Waves, vol. 33(2012) 82–95. https://doi.org/10.1007/s10762-011-9851-0

    Article  Google Scholar 

  104. P.P Woskov, “MMW Directed Energy Rock Exposure Experiments and Analysis,” PSFC/JA-14-12 (December 2014 Plasma Science and Fusion Center, MIT). http://library.psfc.mit.edu/catalog/reports/2010/14rr/14rr012/14rr012_full.pdf

  105. Gallucci, Maria. "Altarock melts rock for geothermal wells: Millimeter waves could help us dig deeper and faster than with traditional drills-[News]." IEEE Spectrum 57.3 (2020): 8-9.

    Article  Google Scholar 

  106. L. Billings, “Microwave Rocketry,” Scientific American, vol. 313, no. 6 (2015) 33–33. https://doi.org/10.1038/scientificamerican1215-33.

    Article  Google Scholar 

  107. Rocket-Launch by Microwave Beamed Propulsion Energy. Visit: https://rdreview.jaea.go.jp/tayu/ACT05E/02/0206.htm

  108. V. Velazquez, K. Komurasaki, K. Kuniyoshi, “Development of a Novel Launch System Microwave Rocket Powered by Millimeter-Wave Discharge,” International Journal of Aerospace Engineering, vol. 2018 (2018) 9247429. https://doi.org/10.1155/2018/9247429.

    Article  Google Scholar 

  109. M. Fukunari, K. Komurasaki, Y. Nakamura, Y. Oda, K. Sakamoto, “Rocket Propulsion Powered Using a Gyrotron,” Journal of Energy and Power Engineering, vol. 11 (2017) 363-371. https://doi.org/10.17265/1934-8975/2017.06.001.

    Article  Google Scholar 

  110. J. Neilson, M. Read, L. Ives, "Design of a permanent magnet gyrotron for active denial systems," 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009, pp. 1-2, https://doi.org/10.1109/ICIMW.2009.5324657.

  111. M. Blank, P. Borchard, P. Cahalan, S. Cauffman, K. Felch, "10.1: Development and demonstration of a multi-megawatt 95 GHz gyrotron", Proc. IEEE Int. Vac. Electron. Conf. (IVEC), pp. 189-190, May 2010. https://doi.org/10.1109/IVELEC.2008.4556380.

  112. N. Kumar, U. Singh, A. Kumar, et al. “Design of 95 GHz, 100 kW gyrotron for Active Denial System application,” Vacuum, vol. 99 (2014) 99-106. https://doi.org/10.1016/j.vacuum.2013.05.002.

    Article  Google Scholar 

  113. S.G. Kim, A. Sawant, I. Lee, D. Kim, M.S. Choe, J.-H. Won, J. Kim, J. So, W. Jang, E. Choi, “System Development and Performance Testing of a W-Band Gyrotron,” J Infrared, Millimeter, and Terahertz Waves, vol. 37 (2016) 209–229. https://doi.org/10.1007/s10762-015-0221-1.

    Article  Google Scholar 

  114. M. Pilossof, Einat, "95-GHz Gyrotron With Room Temperature dc Solenoid," IEEE Transactions on Electron Devices, vol. 65, no. 8, (2018) 3474-3478. https://doi.org/10.1109/TED.2018.2841184.

    Article  Google Scholar 

  115. S.T. Han, J.R. Sirigiri, H. Khatun, V. Pathania, J. Kim, “Development of a Compact W-Band Gyrotron System With a Depressed Collector,” IEEE Transactions on Plasma Science, vol. 49, no. 2 (2021), 672-679.

    Article  Google Scholar 

  116. Ying-hui Liu , Qiao Liu , Xinjian Niu, Hui Wang, Jianwei Liu, Guo Guo, Lin, “Design and Experiment on a 95-GHz 400 kW-Level Gyrotron,” IEEE Trans. Electron Devices, vol. 68, n. 1 (2021) 434-437. https://doi.org/10.1109/TED.2020.3036324.

  117. D. Hambling, “'Pain Ray' First Commercial Sale Looms,” Wired, 08.05.2009. On-line publication. Visit: https://www.wired.com/2009/08/pain-ray-first-commercial-sale-looms

  118. V.E. Zapevalov, “High-power Microwaves Against Locusts and Other Harmful Animals,” EPJ Web of Conferences, vol. 149 (2018) 10015. https://doi.org/10.1051/epjconf/201819510015.

    Article  Google Scholar 

Download references

Acknowledgements

The work has been carried out in the framework of the collaboration of the International Consortium for Development of High-Power Terahertz Science and Technology (visit: http://fir.u-fukui.ac.jp/Website_Consortium) organized and facilitated by the Research Center for Development of Far-Infrared Region at the University of Fukui, and supported by Gyro Tech Co., Ltd., Fukui (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svilen Sabchevski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabchevski, S., Glyavin, M., Mitsudo, S. et al. Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects. J Infrared Milli Terahz Waves 42, 715–741 (2021). https://doi.org/10.1007/s10762-021-00804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00804-8

Keywords

Navigation