Skip to main content
Log in

A Compact THz Source for Enhancing the Sensitivity of Nuclear Magnetic Resonance Spectroscopy with Dynamic Nuclear Polarization

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

High-power terahertz radiation finds application in electron paramagnetic resonance spectroscopy and is used to enhance the sensitivity of nuclear magnetic resonance spectroscopy through dynamic nuclear polarization. The compact source of terahertz radiation proposed in this work follows the gyrotron scheme and relies on the proximity of the paramagnetic-resonance and cyclotron frequencies for electrons. However, the design of this terahertz source differs greatly from those of conventional gyrotrons. Simulations of its performance show that terahertz radiation with required parameters can be obtained with applied voltages below 2 kV. Experimental tests demonstrate that stimulated synchrontron radiation can indeed be generated at such nonrelativistic voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Becerra, L.R., Gerfen, G.J., and Temkin, R.J., Phys. Rev. Lett., 1993, vol. 71, p. 3561.

    Article  ADS  Google Scholar 

  2. Ardenkjaer-Larsen, J.-H., Boebinger, G.S., Comment, A., et al., Angew. Chem., Int. Ed., 2015, vol. 54, p. 9162.

    Article  Google Scholar 

  3. Maly, T., Debelouchina, G.T., Bajaj, V.S., et al., J. Chem. Phys., 2008, vol. 128, p. 052211.

    Article  ADS  Google Scholar 

  4. Rosay, M., Blank, M., and Engelke, F., J. Magn. Reson., 2016, vol. 624, p. 88.

    Article  ADS  Google Scholar 

  5. Matsuki, Y., Idehara, T., Fukazawa, J., et al., J. Magn. Reson., 2017, vol. 624, p. 107.

    Google Scholar 

  6. Prisner, T., Denisenkov, V., and Sezer, D., J. Magn. Reson., 2016, vol. 624, p. 68.

    Article  ADS  Google Scholar 

  7. Bratman, V.L., Fedotov, A.E., Kalynov, Yu.K., et al., J. Infrared, Millimeter, Terahertz Waves, 2013, vol. 34, p. 837.

    Article  Google Scholar 

  8. Sirigiri, J.R. and Maly, T., US Patent 8786284, 2014.

  9. Bratman, V.L., Kalynov, Yu.K., Makhalov, P.B., and Fedotov, A.E., Radiophys. Quantum Electron., 2014, vol. 56, p. 532.

    Article  ADS  Google Scholar 

  10. Bratman, V.L., Fedotov, A.E., Kalynov, Yu.K., et al., IEEE Trans. Plasma Sci., 2017, vol. 45, p. 644.

    Article  ADS  Google Scholar 

  11. Zapevalov, V.E., Kuftin, A.N., Manuilov, V.N., et al., Proc. 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” Nizhny Novgorod, 2011, p. 143.

  12. Glyavin, M.Yu., Zavolskiy, N.A., Sedov, A.S., et al., Phys. Plasmas, 2013, vol. 20, p. 033103.

    Article  ADS  Google Scholar 

  13. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., et al., IEEE Trans. Plasma Sci., 2007, vol. 35, p. 27.

    Article  ADS  Google Scholar 

  14. Kishko, S.A., Ponomarenko, S.S., Kuleshov, A.N., et al., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 2475.

    Article  ADS  Google Scholar 

  15. Glyavin, M.Yu., Denisov, G.G., Zapevalov, V.E., et al., Phys.-Usp., 2016, vol. 59, p. 595.

    Article  ADS  Google Scholar 

  16. Glyavin, M.Yu., Chirkov, A.V., Denisov, G.G., et al., Rev. Sci. Instrum., 2015, vol. 86, p. 054705.

    Article  ADS  Google Scholar 

  17. Bratman, V.L., Fedotov, A.E., Fokin, A.P., et al., Phys. Plasmas, 2017, vol. 24, p. 113 105.

    Article  Google Scholar 

  18. Ginzburg, N.S., Glyavin, M.Yu., Zotova, I.V., Zheleznov, I.V., and Fokin, A.P., Tech. Phys. Lett., 2017, vol. 43, p. 110.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation under grant 16-12-10445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savilov.

Additional information

Translated by A. Asratyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bratman, V.L., Kalynov, Y.K., Kulagin, O.P. et al. A Compact THz Source for Enhancing the Sensitivity of Nuclear Magnetic Resonance Spectroscopy with Dynamic Nuclear Polarization. Bull. Russ. Acad. Sci. Phys. 82, 1592–1595 (2018). https://doi.org/10.3103/S1062873818120274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818120274

Navigation