Skip to main content
Log in

Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microwave plasma chemical vapor deposition (MPCVD) has received tremendous research interest in fabrication of carbon nanotubes (CNTs) due to its unique advantages of high reactivity, rapid heating, no pollution, good controllability, etc. It would be meaningful to summarize the efforts that have been devoted in this area. Up to now, no such review has been seen in the literature. In this review, a summarization and discussion of the MPCVD devices applied in CNTs fabrication are firstly given, followed by the discussion on effect and affecting mechanisms of H2 plasma pretreatment, nitrogen atoms in the reacting gases and microwave power. Notably, the parameters of as-synthesized CNTs products and the corresponding synthesizing MPCVD conditions are listed out. Finally, the capabilities of MPCVD in facilitating atmospheric-pressure, low-temperature and in situ growth of CNTs are reviewed. This review can give a comprehensive grasp of current progress and understanding of MPCVD in preparation of CNTs and may provide a useful guidance for readers to design their fabricating systems to obtained required CNTs using MPCVD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

reproduced with permission from reference [97]. Copyright [2007], [Elsevier].); and d-g cross section TEM images of Pt-CNT growth after a pretreatment of d 0 and e 3 min. Corresponding plan-view SEM images f and g, respectively, of residual nanoparticles embedded in the substrate and separated from the nanotubes as a result of TEM preparation procedures (reproduced with permission from reference [99]. Copyright [2011], [Elsevier Ltd].)

Figure 5

(reproduced with permission from reference [77]. Copyright [2002], [Elsevier].); b catalytic model by the introduction of I) N*; II) H*; III) N*and H* (reproduced with permission from reference [107]. Copyright [2019], [Royal Society of Chemistry].)

Figure 6

reproduced with permission from reference [78]. Copyright [2002], [Elsevier BV].)

Figure 7

reproduced with permission from reference [79]. Copyright [2006], [Elsevier].)

Figure 8
Figure 9

(reproduced with permission from reference [80]. Copyright [2004], [Elsevier Inc].)

Figure 10

(reproduced with permission from reference [103]. Copyright [2006], [Elsevier BV]); b a schematic diagram of CNT growth using Fe-Si as catalyst: (i) Fe–Si becomes Fe–Si–C with an equilibrium carbon concentration (Csp) during the incubation period. Cm refers to the methane concentration; (ii) CNT begins to grow from the catalyst, causing the carbon concentration at the interface between the catalyst and CNT to decrease to Cicnt; (iii) the growth terminates when Cicnt increases to Csp due to the rapid diffusion of carbon atoms in Fe–Si–C (reproduced with permission from reference [102]. Copyright [2004], [Elsevier].)

Figure 11

(reproduced with permission from reference [33]. Copyright [2018], [Elsevier BV].)

Figure 12

reproduced with permission from reference [125]. Copyright [2007], [Elsevier BV].); and f SEM image of CNTs on the hydroxyapatite (Adapted with permission from reference [127]. Copyright [2012], [Elsevier BV].)

Similar content being viewed by others

Abbreviations

CNT(s):

Carbon nanotube(s)

CVD(s):

Chemical vapor depositions

PECVD:

Plasma-enhanced chemical vapor deposition

MPCVD:

Microwave plasma (enhanced) chemical vapor deposition

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Wang J, Xie Z, Yeow JTW (2020) Review—state-of-the-art organic solar cells based on carbon nanotubes and graphene. J Solid State Sci Technol 9:105004

    Article  CAS  Google Scholar 

  4. Bisht A, Chockalingam S, Panwar OS, Kesarwani AK, Singh BP, Singh VN (2016) Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel. Mater Res Bull 74:156–163

    Article  CAS  Google Scholar 

  5. Zhou T, Kropp E, Chen JY, Kulinsky L (2020) Step-wise deposition process for dielectrophoretic formation of conductive 50-micron-long carbon nanotube bridges. Micromachines 11:371

    Article  Google Scholar 

  6. Hu YX, Ye DL, Luo B, Hu H, Zhu XB, Li WSC, LL, Peng SJ, Wang LZ (2017) A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater 30:1703824

  7. Ding EX, Geng HZ, Mao LH, Wang WY, Wang Y, Luo ZJ, Wang J, Yang HJ (2016) Recent research progress of carbon nanotube arrays prepared by plasma enhanced chemical vapor deposition method. Mater Sci Forum 853:308–314

    Article  Google Scholar 

  8. Das D, Roy A (2020) Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Appl Surf Sci 515:146043

    Article  CAS  Google Scholar 

  9. Kar R, Patel NN, Chand N, Shilpa RK, Dusane RO, Patil DS, Sinha S (2016) Detailed investigation on the mechanism of co-deposition of different carbon nanostructures by microwave plasma CVD. Carbon 106:233–242

    Article  CAS  Google Scholar 

  10. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  11. Deng JH, Liu RN, Zhang Y, Zhu WX, Han AL, Cheng GA (2017) Highly improved field emission from vertical graphene-carbon nanotube composites. J Alloys Compd 723:75–83

    Article  CAS  Google Scholar 

  12. Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon Nanotubes—the Route Toward Applications. Science 297:787–792

    Article  CAS  Google Scholar 

  13. Desai SB, Madhvapathy SR, Sachid AB, Llinas JP, Wang QX, Ahn GH, Pitner G, Kim MJ, Bokor J, Hu CM, Wong HSP, Javey A (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354:99–102

    Article  CAS  Google Scholar 

  14. Mathur A, Maity T, Wadhwa S, Ghosh B, Sarma S, Ray SC, Kaviraj B, Roy SS, Roy S (2018) Magnetic properties of microwave-plasma (thermal) chemical vapour deposited Co-filled (Fe-filled) multiwall carbon nanotubes: comparative study for magnetic device applications. Mater Res Express 5:076101

    Article  Google Scholar 

  15. Yoo PK, Park SJ, Kim S (2021) Preparation and catalytic activity of platinum supported on amine-functionalized MIL-101 (Fe)/nitrogen-doped carbon nanotube composite for fuel cells. J Nanosci Nanotechnol 21:4644–4648

    Article  Google Scholar 

  16. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2020) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  17. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

  18. Ahn D, Ahn SE (2020) Thermoacoustic properties of multi-wall carbon nanotube sheet for loudspeaker application. Mater Lett 263:127242

    Article  CAS  Google Scholar 

  19. Bisht A, Chockalingam S, Panwar OS (2019) Wettability property of CNT-graphene like film deposited by microwave plasma enhanced vapor deposition technique. Fullerenes Nanotubes Carbon Nanostruct 27:486–491

    Article  CAS  Google Scholar 

  20. Matsumoto K, Kinosita S, Gotoh Y (2001) Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition. Appl Phys Lett 78:539–540

    Article  CAS  Google Scholar 

  21. Park SJ, Lee DG (2006) Performance improvement of micron-sized fibrous metal filters by direct growth of carbon nanotubes. Carbon 44:1930–1935

    Article  CAS  Google Scholar 

  22. Wang SD, Chang MH, Lan KMD, Wu CC, Cheng JJ, Chang HK (2005) Synthesis of carbon nanotubes by arc discharge in sodium chloride solution. Carbon 43:1778–1814

    Article  Google Scholar 

  23. Kostoglou N, Ryzhkov V, Walters I, Doumanidis C, Rebholz C, Mitterer C (2019) Arc-produced short-length multi-walled carbon nanotubes as “millstones” for the preparation of graphene-like nanoplatelets. Carbon 146:779–784

    Article  CAS  Google Scholar 

  24. Yudasaka M, Komatsu T, Ichihashi T, Iijima S (1997) Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem Phys Lett 278:102–106

    Article  CAS  Google Scholar 

  25. Wu X, Yin H, Li Q (2019) Ablation and Patterning of Carbon Nanotube Film by Femtosecond Laser Irradiation. Appl Sci 9:3045

    Article  CAS  Google Scholar 

  26. Carlsson J, Martin P (2010) Chemical vapor deposition. In: Deposition technologies for films and coatings, 3rd edn. Elsevier/William Andrew, p 314–363

  27. Makhlouf ASH (2011) Current and advanced coating technologies for industrial applications. In: Nanocoatings and ultra-thin films, p 3–23

  28. George P (2001) Chemical vapor deposition. In: Encyclopedia of materials: science and technology, 2nd edn. p 1173–1176

  29. Pang J, Bachmatiuk A, Ibrahim I, Fu L, Placha D, Simha Martynkova G, Trzebicka B, Gemming T, Eckert J, Rummeli MH (2016) CVD growth of 1D and 2D sp2 carbon nanomaterials. J Mater Sci 51:640–667

  30. Warner J, Schäffel F, Bachmatiuk A, Rümmeli M (2013) Methods for obtaining graphene. Graphene, Elsevier Inc., p 129–228

  31. Hasanzadeh I, Eskandari MJ (2020) Direct growth of multiwall carbon nanotube on metal catalyst by chemical vapor deposition: In situ nucleation. Surf Coat Technol 381:125109

    Article  CAS  Google Scholar 

  32. Chuc NV, Thanh CT, Tu NV, Phuong VTQ, Thang PV, Tam NTT (2015) A simple approach to the fabrication of graphene-carbon nanotube hybrid films on copper substrate by chemical vapor deposition. J Mater Sci Technol 31:479–483

    Article  CAS  Google Scholar 

  33. Roy A, Das D (2018) Low temperature growth of carbon nanotubes by microwave plasma stimulated by CO2 as weak oxidant and guided by shadow masking. Diamond Relat Mater 88:204–214

    Article  CAS  Google Scholar 

  34. Fang ZX, Zhao HY, Xiong L, Zhang F, Fu QM, Ma ZB, Xu CB, Lin ZY, Wang H, Hu Z, Yao SH (2019) Enhanced ferromagnetic properties of N-2 plasma-treated carbon nanotubes. J Mater Sci 54:2307–2314

    Article  CAS  Google Scholar 

  35. Li DS, Tong L, Gao B (2020) Synthesis of multiwalled carbon nanotubes on stainless steel by atmospheric pressure microwave plasma chemical vapor deposition. Appl Sci 10:4468

    Article  Google Scholar 

  36. Nageswaran G, Jothi L, Jagannathan S (2019) Plasma assisted polymer modifications. In: Non-thermal plasma technology for polymeric materials, ScienceDirect, p 95–127

  37. Lieberman M, Lichtenberg A (2005) Direct current (DC) discharges. In: Principles of plasma discharges and materials processing, p 535–570

  38. Gianfrancesco AD (2017) Technologies for chemical analyses, microstructural and inspection investigations. In: Materials for ultra-supercritical and advanced ultra-supercritical power plants, ScienceDirect, p 197–245

  39. Park J, Henins I, Herrmann H, Selwyn G (2001) Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source. J Appl Phys 89:20–28

    Article  CAS  Google Scholar 

  40. Lieberman MA, Lichtenberg AJ (2005) Introduction. Principles of Plasma Discharges and Materials Processing, p 1–22

  41. Klibumrung A, Phuruangrat A, Thongtem T, Tongtem S (2018) Synthesis, characterization and optical properties of BaMoO4 synthesized by microwave induced plasma method. Russian J Inorg Chem 63:725–731

    Article  Google Scholar 

  42. Boas CRSV, Focassio B, Marinho E, Larrude DG, Salvadori MC, Leao CR, dos Santos DJ (2019) Characterization of nitrogen doped graphene bilayers synthesized by fast, low temperature microwave plasma-enhanced chemical vapour deposition. Sci Rep 9:17571

  43. Trnovcevic J, Schneider F, Scherer U (2017) Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste. Radiat Eff Defect Solids 172:23–31

    Article  CAS  Google Scholar 

  44. Radoiu MT (2003) Studies of 2.45 GHz microwave induced plasma abatement of CF4. Environ Sci Technol 37:3985–3988

    Article  CAS  Google Scholar 

  45. Schulz U, Munzert P, Kaiser N (2001) Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion. Surf Coat Technol 142–144:507–511

    Article  Google Scholar 

  46. Jauberteau JL, Thomas L, Aubreton J, Jauberteau I, Catherinot A (1998) High Reactivity of CH2 Radical in an AR-CH4 Post-Discharge. Plasma Chem Plasma Process 18:137–151

    Article  CAS  Google Scholar 

  47. Croslyn AE, Smith BW, Winefordner JD (1997) A review of microwave plasma sources in atomic emission spectrometry: literature from 1985 to the present. Crit Rev Anal Chem 27:199–255

    Article  CAS  Google Scholar 

  48. Takano Y, Nagao M, Sakaguchi I, Tachiki M, Hatano T (2004) Superconductivity in diamond thin films well above liquid helium temperature. Appl Phys Lett 85:2851–2853

    Article  CAS  Google Scholar 

  49. Tatarova E, Dias A, Henriques J, Abrashev M, Bundaleska N, Kovacevic E et al (2017) Towards large-scale in free-standing graphene and N-graphene sheets. Sci Rep 7:10175

    Article  CAS  Google Scholar 

  50. Altmannsgofer S, Boudaden J, Wieland R, Eisele I, Kutter C (2017) Microwave plasma assisted process for cleaning and deposition in future semiconductor technology. IOP Conf Ser Mater Sci Eng 213:012–021

    Google Scholar 

  51. Strelkov PS (2019) Experimental relativistic plasma microwave electronics. Phys-Usp 62:465–486

    Article  CAS  Google Scholar 

  52. Wang Z, Zhang G, Jia Z (2014) A large-volume stable atmospheric air microwave plasma based on inductive coupling window—rectangular resonator. IEEE Trans Plasma Sci 42:1669–1673

    Article  Google Scholar 

  53. Chen Z, Zhang H, Tu Y, Kudryavtsev AA (2018) Research progress on atmospheric pressure lower-power microwave plasma sources and their application prospects. Scienta Sinica: Physica Mechanica et Astronomica 48:125201

    Google Scholar 

  54. Zhang B, Wang Q, Zhang G (2014) Liao S (2009) Experimental study on the emission spectra of microwave plasma at atmospheric pressure. J Appl Phys 115:043302

    Article  Google Scholar 

  55. Navaneetha KP, Selvarajan V, Deshmukh RR, Gao C (2009) Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma. Appl Surf Sci 255:3965–3971

    Article  Google Scholar 

  56. Qin LC, Zhou D, Krauss AR, Gruen DM (1998) Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 72:3437–3439

    Article  CAS  Google Scholar 

  57. Kim Y, Song W, Lee SY, Shrestha S, Jeon C, Choi WC, Kim M, Park CY (2010) Growth of millimeter-scale vertically aligned carbon nanotubes by microwave plasma chemical vapor deposition. Jpn J Appl Phys 49:085101

  58. Choi YC, Bae DJ, Lee YH, Lee BS, Han IT, Choi WB, Lee NS, Kim JM (2000) Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synth Met 108:159–163

  59. Kumar A, Maschmann MR, Hodson SL, Baur J, Fisher TS (2015) Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon 84:236–245

    Article  CAS  Google Scholar 

  60. Rizk S, Assouar BM, Poucques LD, Alnot P, Bougdira J (2009) Controlled Nanostructuration of Catalyst Particles for Carbon Nanotubes Growth. J Phys Chem C 113:8718–8723

    Article  CAS  Google Scholar 

  61. Maschmann MR, Amama PB, Goyal A, Iqbal Z, Fisher TS (2006) Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD. Carbon 44:2758–2763

    Article  CAS  Google Scholar 

  62. Tsai SH, Chao CW, Lee CL, Shih HC (1999) Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl Phys Lett 74:3462–3464

    Article  CAS  Google Scholar 

  63. Chen LC, Wen CY, Liang CH, Hong WK, Chen KJ, Cheng HC, Shen CS, Wu CT, Chen KH (2002) Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Adv Funct Mater 12:687–692

  64. Kousalya AS, Singh KP, Fisher TS (2015) Heterogeneous wetting surfaces with graphitic petal-decorated carbonnanotubes for enhanced flow boiling. Int J Heat Mass Transfer 87:380–389

    Article  CAS  Google Scholar 

  65. Kinoshita H, Kume I, Sakai H, Tagawa M, Ohmae N (2004) High growth rate of vertically aligned carbon nanotubes using a plasma shield in microwave plasma-enhanced chemical vapor deposition. Carbon 42:2735–2777

    Article  Google Scholar 

  66. Lu F, Liao K, Ting JM (2012) Growth of carbon nanotubes on metallic substrates using a substrate-shielded microwave plasma-enhanced chemical vapor deposition. J Electrochem Soc 159:K50–K54

    Article  CAS  Google Scholar 

  67. Lu F, Ting JM (2013) Very rapid growth of aligned carbon nanotubes on metallic substrates. Acta Mater 61:2148–2153

    Article  CAS  Google Scholar 

  68. Matsushita A, Nagai M, Yamakawa K, Hiramatsu M, Sakai A, Hori M, et al (2004) Growth of carbon nanotubes by microwave-excited non-equilibrium atmospheric-pressure plasma. Jpn J Appl Phys 43:424–425

    Article  CAS  Google Scholar 

  69. Amama PB, Lan C, Cola BA, Xu X, Reifenberger RG, Fisher TS (2008) Electrical and thermal interface conductance of carbon nanotubes grown under direct current bias voltage. J Phys Chem C 112:19727–19733

    Article  CAS  Google Scholar 

  70. Zajíčková L, Eliáš M, Jašek O, Kudrle V, Frgala Z, Matějková J et al (2005) Atmospheric pressure microwave torch for synthesis of carbon nanotubes. Plasma Phys Control Fusion 47:B655–B666

    Article  Google Scholar 

  71. Ficek R, Elias M, Zajickova L, Jasek O, Vrba R (2007) Gas pressure sensor based on PECVD grown carbon nanotubes. Mater Res Soc Symp Proc 1018:EE14–05

  72. Zajíčková L, Eliáš M, Jašek O, Kučerová Z, Synek P, Matějková J et al (2007) Characterization of carbon nanotubes deposited in microwave torch at atmospheric pressure. Plasma Process Polym 4:S245–S249

    Article  Google Scholar 

  73. Nozaki T, Unno Y, Okazaki K (2002) Thermal structure of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci Technol 11:431–438

    Article  CAS  Google Scholar 

  74. Chen CK, Perry WL, Xu HF, Jiang YB, Philips J (2003) Plasma torch production of macroscopic carbon nanotube structures. Carbon 41:2555–2560

    Article  CAS  Google Scholar 

  75. Kikuchi T, Hasegawa Y, Shirai H (2004) Rf microplasma jet at atmospheric pressure: characterization and application to thin film processing. J Phys D Appl Phys 37:1537–1543

    Article  CAS  Google Scholar 

  76. Jasek O, Synek P, Zajickova L, Elias M, Kudrle V (2010) Synthesis of carbon nanostructures by plasma enhanced chemical vapour deposition at atmospheric pressure. J Elect Eng 61:311–313

    Article  Google Scholar 

  77. Lee JY, Lee BS (2002) Nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition. Thin Solid Films 418:85–88

    Article  CAS  Google Scholar 

  78. Woo YS, Jeon DY, Han IT, Lee NS, Jung JE, Kim JM (2002) In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition. Diamond Relat Mater 11:59–66

    Article  CAS  Google Scholar 

  79. Srivastava SK, Vankar VD, Kumar V (2006) Growth and microstructures of carbon nanotube films prepared by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 515:1552–1560

    Article  CAS  Google Scholar 

  80. Hirata A, Yoshioka N (2004) Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribology Int 37:893–898

    Article  CAS  Google Scholar 

  81. Chen M, Chen C, Shi S, Chen C (2003) Low-temperature synthesis multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using CH4–CO2 gas mixture. Jpn J Appl Phys 42:614–619

    Article  CAS  Google Scholar 

  82. Teng IJ, Chen KL, Hsu HL, Jian S, Wang L, Chen JH (2011) Highly graphitized laterally interconnected SWCNT network synthesis via a sandwich-grown method. J Phys D; Appl Phys 44:145401

    Article  Google Scholar 

  83. Chen Z, Merikhi J, Koehler I, Bachmann PK (2006) Sandwich growth of carbon nanotubes. Diamond Relat Mater 15:104–108

    Article  Google Scholar 

  84. Yao B, Wang N (2001) Carbon nanotube arrays prepared by MWCVD. J Phys Chem B 105:11395–11398

    Article  CAS  Google Scholar 

  85. Ubnoske SM, Radauscher EJ, Meshot ER, Stoner BR, Parker CB, Glass JT (2017) Integrating carbon nanotube forests into polysilicon MEMS: growth kinetics, mechanisms, and adhesion. Carbon 113:192–204

    Article  CAS  Google Scholar 

  86. Quinton BT, Leedy KD, Lawson JW, Tsao B, Scofield JD (2005) Influence of oxide buffer layers on the growth of carbon nanotube arrays on carbon substrates. Carbon 87:175–185

    Article  Google Scholar 

  87. Sharma H, Shukla AK, Vankar VD (2011) Effect of titanium interlayer on the microstructure and electron emission characteristics of multiwalled carbon nanotubes. J Appl Phys 110:033726

    Article  Google Scholar 

  88. Sharma H, Shukla AK, Vankar VD (2012) Structural modifications and enhanced Raman scattering from multiwalled carbon nanotubes grown on titanium coated silicon single crystals. Thin Solid Films 520:1902–1908

    Article  CAS  Google Scholar 

  89. Bower C, Zhou O, Zhu W, Werder DJ, Jin SH (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769

    Article  CAS  Google Scholar 

  90. Iwasaki T, Zhong G, Aikawa T, Yoshida T, Kawarada H (2005) Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. J Phys Chem Lett B 109:19556–19559

    Article  CAS  Google Scholar 

  91. Iwasaki T, Robertson J, Kawarada H (2008) Mechanism analysis of interrupted growth of single-walled carbon nanotube arrays. Nano Lett 8:886–890

    Article  CAS  Google Scholar 

  92. Hsua CM, Linb CH, Laia HJ, Kuo CT (2005) Root growth of multi-wall carbon nanotubes by MPCVD. Thin Solid Films 471:140–144

    Article  Google Scholar 

  93. Jian SR (2009) Effects of H2 plasma pretreated Ni catalysts on the growth of carbon nanotubes. Mater Chem Phys 115:740–743

    Article  CAS  Google Scholar 

  94. Srivastava SK, Vankar VD, Kumar V (2010) Effect of hydrogen plasma treatment on the growth and microstructures of multiwalled carbon nanotubes. Nano-Micro Lett 2:42–48

    Article  CAS  Google Scholar 

  95. Zhang K, Chai Y, Yuen MMF, Xiao DGW, Chan PCH (2008) Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnol 19:215706

    Article  CAS  Google Scholar 

  96. Malesevic A, Chen H, Hauffman T, Vanhulse A, Terryn H, Haesendonck CV (2007) Study of the catalyst evolution during annealing preceding the growth of carbon nanotubes by microwave plasma-enhanced chemical vapour deposition. Nanotechnol 18:455602

    Article  Google Scholar 

  97. Wang WP, Wen HC, Jian SR, Juang JY, Lai YS, Tsai CH (2007) The effects of hydrogen plasma pretreatment on the formation of vertically aligned carbon nanotubes. Appl Surf Sci 253:9248–9253

    Article  CAS  Google Scholar 

  98. Jian SR, Chen YT, Wang CF, Wen HC, Chiu WM, Yang CS (2008) The influences of H2 plasma pretreatment on the growth of vertically aligned carbon nanotubes by microwave plasma chemical vapor deposition. Nanoscale Res Lett 3:230–235

    Article  CAS  Google Scholar 

  99. Brown B, Parker CB, Stoner BR, Glass JT (2011) Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 49:266–274

    Article  CAS  Google Scholar 

  100. Kuo CY, Chan CL, Gau C, Liu CW, Shiau SH, Ting JH (2007) Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes. IEEE Trans Nanotechnol 6:63–69

    Article  Google Scholar 

  101. Zhong G, Iwasaki T, Honda K, Furukawa Y, Ohdomari I, Kawarada H (2005) Very high yield growth of vertically aligned single-walled carbon nanotubes by point-arc microwave plasma CVD. Chem Vap Deposition 11:127–130

  102. Ting JM, Liao KH (2004) Low-temperature, nonlinear rapid growth of aligned carbon nanotubes. Chem Phys Lett 396:469–472

    Article  CAS  Google Scholar 

  103. Liao KH, Ting JM (2006) Characteristics of aligned carbon nanotubes synthesized using a high-rate low-temperature process. Diamond Relat Mater 15:1210–1216

    Article  CAS  Google Scholar 

  104. Zhong G, Iwasaki T, Robertson J, Kawarada H (2007) Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem Lett B 111:1907–1910

    Article  CAS  Google Scholar 

  105. Du Z, Wang S, Kong C, Deng Q, Wang G, Liang C, Tang HL (2015) Microwave plasma synthesized nitrogen-doped carbon nanotubes for oxygen reduction. J Solid State Electron 19:1541–1549

    Article  CAS  Google Scholar 

  106. Moon YK, Jung CG, Park SJ, Kim TG, Kim SH (2009) Role of oxygen in the growth of carbon nanotubes on metal alloy fibers by plasma-enhanced chemical vapor deposition. J Mater Res 24:1536–1542

  107. Zhang MC, Guo GC, Wang RZ, Cui YL, Feng XY, Wang BR (2019) Coupling enhanced growth by nitrogen and hydrogen plasma of carbon nanotubes. CrystEngComm 21:4653–4660

    Article  CAS  Google Scholar 

  108. Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ (2007) Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon 45:913–921

    Article  CAS  Google Scholar 

  109. Rocks C, Mitra S, Macias-Montero M, Maguire P, Svrcek V, Levchenko I, Ostrikov K, Mariotti D (2016) Impact of silicon nanocrystal oxidation on the nonmetallic growth of carbon nanotubes. ACS Appl Mater Interfaces 8:19012–19023

  110. Srivastava SK, Vankar VD, Kumar V (2008) excellent field emission properties of short conical carbon nanotubes prepared by microwave plasma enhanced CVD process. Nanoscale Res Lett 3:25–30

    Article  CAS  Google Scholar 

  111. Fang T, Chen K, Chang W (2008) Characteristics of Co-filled carbon nanotubes. Appl Surf Sci 254:1890–1894

    Article  CAS  Google Scholar 

  112. Liu RM, Ting JM (2003) Growth of carbon nanotubes using microwave plasma-enhanced chemical vapor deposition process. Mater Chem Phys 82:571–574

    Article  CAS  Google Scholar 

  113. Muguruma H, Hoshino T, Matsui Y (2011) Enzyme biosensor based on plasma-polymerized film-covered carbon nanotube layer grown directly on a flat substrate. ACS Appl Mater Interfaces 3:2445–2450

    Article  CAS  Google Scholar 

  114. Wang SG, Wang MY, Yu DD, Zhang WB, Deng XQ, Du Y, Cheng LL, Wang JH (2010) Integrated carbon nanotubes electrodes in microfluidic chip via MWPCVD. Plasma Sci Technol 12:556–560

  115. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 75:3129–3131

    Article  CAS  Google Scholar 

  116. Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ (2002) Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett 81:3648–3650

  117. Piao R, Liu D, Yuan N, Zhang Z, Yang X, Wong W (2018) Multiple ratiometric thermometry using electronic transitions between Stark sublevels of Er3+ for reliable temperature detection. J Alloys Compd 756:208–211

    Article  CAS  Google Scholar 

  118. Ting JM, Hung SW, Liao KH (2008) Characteristics of Fe-Si thin-film catalysts and their effects on the growth of carbon nanotubes. J Electrochem Soc 155:K146–K151

    Article  CAS  Google Scholar 

  119. Chen M, Chen C, Chen C (2002) Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J Mater Sci 37:3561–356

    Article  CAS  Google Scholar 

  120. Li XB, Zhou JT, Wu QY, Liu ML, Zhou RF, Chen ZX (2019) Fast microfocus x-ray tube based on carbon nanotube array. J Vac Sci Technol B 37:051203

    Article  Google Scholar 

  121. Yan XL, Wu YL, Wang BS, Zhang Q, Zheng RT, Wu XL, Cheng GA (2018) Fabrication of carbon nanotube on nickel-chromium alloy wire for high-current field emission. Appl Surf Sci 450:38–45

    Article  CAS  Google Scholar 

  122. Tung FK, Yoshimura M, Ueda K (2009) Direct fabrication of carbon nanotubes STM tips by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition. J Nanomater 2009:612549

  123. Tanaka K, Yoshimura M, Ueda K (2009) High-resolution magnetic force microscopy using carbon nanotube probes fabricated directly by microwave plasma-enhanced chemical vapor deposition. J Nanomater 2009:147204

  124. Pekarek J, Vrba R, Prasek J, Jasek O, Majzlikova P, Pekarkova J (2015) MEMS carbon nanotubes field emission pressure sensor with simplified design: performance and field emission properties study. IEEE Sens J 15:1430–1436

    Article  Google Scholar 

  125. Wang SG, Li YQ, Zhao XJ, Wang JH, Han JJ, Wang T (2007) Electrochemical detection of catechol at integrated carbon nanotubes electrodes. Diamond Relat Mater 16:248–252

    Article  CAS  Google Scholar 

  126. Su CH, Zhang ZM (2017) Sensors made of carbon ceramic composite materials. Mater Lett 197:90–93

    Article  CAS  Google Scholar 

  127. Duraia ESM, Hannora A, Mansurov Z, Beall GW (2012) Direct growth of carbon nanotubes on hydroxyapatite using MPECVD. Mater Chem Phys 132:119–124

    Article  CAS  Google Scholar 

  128. Chuang F, Chen P, Cheng T, Chien C, Li B (2007) Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate. Nanotechnol 18:395702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61801314), National Natural Science Foundation of China (Grant No. 61731013), Sichuan Science and Technology Program (Grant No. 2019YFH0078) and Fundamental Research Funds for the Central Universities of China (Grant No. YJ201703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wencong Zhang or Yanping Zhou.

Ethics declarations

Conflict of interst

The authors declare that they have no competing interests.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., He, J., Zhang, N. et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review. J Mater Sci 56, 12559–12583 (2021). https://doi.org/10.1007/s10853-021-06128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06128-1

Navigation