On the basis of kinetic theory, the stability of an electron beam interacting with inhomogeneous plasma is investigated at Knudsen numbers of the order of 1. The theory has been tested on the example of a low-voltage beam discharge in a rear gas. It is shown that in the case of an inhomogeneous plasma even if the attenuation of a beam is neglected, several perturbations can propagate simultaneously at the same frequency, but with different phase and group velocities and increments. The case of a linear dependence of the plasma density on the coordinate is investigated in detail. In this case, there are two solutions: n- and p-waves, only the n-wave having a physical meaning. It is found that an increase in the plasma density gradient leads to a decrease in the increment and an increase in the phase and group velocities of propagation of perturbations with a frequency of the order of plasma frequency. A system with a growing plasma density along the beam direction is more stable than that with a constant density. For a significant change in the growth rate of the disturbance, the relative gradient of plasma density by an amount of about 10% at the wavelength is sufficient. All the observed features of the perturbation parameters depending on the plasma density gradient are physically interpreted. The calculations are confirmed by experimental data.

1.
V.
Sukhomlinov
,
R.
Matveev
,
A.
Mustafaev
, and
N.
Timofeev
,
Phys. Plasmas
27
(
6
),
062106
(
2020
).
2.
V.
Sukhomlinov
,
R.
Matveev
,
A.
Mustafaev
,
N.
Timofeev
, and
D.
Solihov
,
Phys. Plasmas
27
(
8
),
083504
(
2020
).
3.
V.
Sukhomlinov
,
R.
Matveev
,
A.
Mustafaev
,
V.
Pavlov
, and
S.
Gordeev
,
Tech. Phys.
66
(
4
),
1301
1310
(
2021
).
4.
V.
Sukhomlinov
,
R.
Matveev
,
A.
Mustafaev
, and
N.
Timofeev
,
Chin. J. Phys.
74
,
195
208
(
2021
).
5.
V. S.
Sukhomlinov
,
A. S.
Mustafaev
,
H.
Koubaji
,
N. A.
Timofeev
, and
O.
Murillo
,
New J. Phys.
23
,
123044
(
2021
).
6.
A. I.
Ahiezer
and
J. B.
Fainberg
, Proc. Acad. Sci. USSR
DAN
64
,
555
(
1949
).
7.
D.
Bohm
and
E. P.
Gross
,
Phys. Rev.
75
(
12
),
1851
(
1949
).
8.
D.
Sydorenko
,
I.
Kaganovich
,
P.
Ventzek
, and
L.
Chen
,
Phys. Plasmas
23
(
12
),
122119
(
2016
).
9.
I.
Kaganovich
and
D.
Sydorenko
,
Phys. Plasmas
23
(
11
),
112116
(
2016
).
10.
D.
Sydorenko
,
I.
Kaganovich
,
P.
Ventzek
, and
L.
Chen
,
Phys. Plasmas
25
(
1
),
011606
(
2018
).
11.
V.
Malkin
and
N.
Fisch
,
Phys. Rev. Lett.
89
(
12
),
125004
(
2002
).
12.
P.
Yoon
,
T.
Rhee
, and
C.
Ryu
,
Phys. Rev. Lett.
95
(
21
),
215003
(
2005
).
13.
W. E.
Drummond
,
Phys. Fluids
7
(
6
),
816
821
(
1964
).
14.
W.
Drummond
and
D.
Pines
,
Ann. Phys.
28
(
3
),
478
499
(
1964
).
15.
L.
Al'tshul'
and
V.
Karpman
,
Sov. Phys. JETP
22
(
2
),
361
368
(
1966
).
16.
V.
Tarakanov
and
E.
Shustin
,
Plasma Phys. Rep.
33
(
2
),
130
137
(
2007
).
17.
A.
Serov
,
J. Plasma Phys.
35
(
7
),
624
635
(
2009
).
18.
H.
Singhaus
,
Phys. Fluids
7
(
9
),
1534
1540
(
1964
).
19.
N.
Matsiborko
,
I.
Onishchenko
,
V.
Shapiro
, and
V.
Shevchenko
,
Plasma Phys.
14
(
6
),
591
(
1972
).
20.
F.
Baksht
,
V.
Lapshin
, and
A.
Mustafaev
,
J. Phys. D
28
(
4
),
689
(
1995
).
21.
A.
Mustafaev
and
A.
Mezentsev
,
J. Phys. D
19
(
5
),
L69
(
1986
).
22.
A.
Mustafaev
,
Tech. Phys.
46
,
472
483
(
2001
).
23.
B. N.
Breizman
,
V. V.
Mirnov
, and
D. D.
Ryutov
,
Sov. Phys. JETP
31
(
2
),
948
954
(
1970
).
24.
W. M.
Leavens
and
C. H.
Love
,
Phys. Fluids
13
,
732
(
1970
).
25.
E. P.
Kontar
,
Phys. Rev. E
65
,
066408
(
2002
).
26.
E. M.
Barston
,
Ann. Phys.
29
,
282
303
(
1964
).
27.
A. A.
Vlasov
,
Teoriya Mnogikh Chastits
(
Gostekhizdat
,
Moscow
,
1950
)
A. A.
Vlasov
, [Theory of Many Particles (
Gordon and Breach
,
New York
,
1950
)].
28.
A. A.
Zaitsev
and
I. A.
Savchenko
,
J. Appl. Mech. Tech. Phys.
6
,
25
28
(
1965
).
29.
A.
Mustafaev
and
V.
Sukhomlinov
,
Tech. Phys.
65
,
560
567
(
2020
).
30.
S. A.
Self
,
M. M.
Shoucri
, and
F. W.
Crawford
,
J. Appl. Phys.
42
(
2
),
704
713
(
1971
).
31.
V.
Soukhomlinov
,
N.
Gerasimov
, and
V.
Sheverev
,
J. Phys. D
40
(
8
),
2507
(
2007
).
32.
N. A.
Gerasimov
,
A. V.
Kanygin
, and
V. S.
Soukhomlinov
,
Tech. Phys.
57
(
1
),
88
94
(
2012
).
33.
D. W.
Mahaffey
,
G.
Mccullagh
, and
K. G.
Emeleus
,
Phys. Rev. J. Arch.
112
(
4
),
1052
(
1958
).
34.
F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum Press
,
New York
,
1984
).
35.
J.
Davis
and
S.
Veg
, in
Proceedings of Symposium on Turbulence of Fluids and Plasmas
, Brooklyn,
1968
.
36.
R. L.
Morse
and
C. W.
Nielson
,
Phys. Fluids
12
(
11
),
2418
2425
(
1969
).
37.
M.
Gabovich
and
V.
Kovalenko
,
Sov. Phys. JETP
30
(
3
),
392
396
(
1970
).
38.
T.
O'Neil
,
J.
Winfrey
, and
J.
Malmberg
,
Phys. Fluids
14
(
6
),
1204
1212
(
1971
).
39.
J.
Thompson
,
Phys. Fluids
14
(
7
),
1532
1541
(
1971
).
40.
B.
Goldstein
,
W.
Carr
,
B.
Rosen
, and
M.
Seidl
,
Phys. Fluids
21
(
9
),
1569
1577
(
1978
).
41.
V.
Shapiro
and
V.
Shevchenko
,
Nucl. Fusion
12
(
1
),
133
(
1972
).
42.
T.
O'Neil
and
J.
Winfrey
,
Phys. Fluids
15
(
8
),
1514
1522
(
1972
).
43.
S. A.
Self
, “
Interaction of a cylindrical beam with a plasma. II. Experiment and comparison with theory
,”
J. Appl. Phys.
40
(
13
),
5232
5243
(
1969
).
44.
S. A.
Self
, “
Interaction of a cylindrical beam with a plasma. I. Theory
,”
J. Appl. Phys.
40
(
13
),
5217
5231
(
1969
).
45.
V. S.
Sukhomlinov
and
A. S.
Mustafaev
,
High Temp.
56
,
10
19
(
2018
).
46.
R.
Mayol
and
F.
Salvat
, “
Total and transport cross sections for elastic scattering of electrons by atoms
,”
At. Data Nucl. Data Tables
65
,
55
154
(
1997
).
47.
M.
Adibzadeh
and
C. E.
Theodosiou
,
At. Data Nucl. Data Tables
91
(
1
),
8
76
(
2005
).
48.
V.
Sukhomlinov
,
R.
Matveev
,
A.
Mustafaev
, and
N.
Timofeev
,
Chin. J. Phys.
77
,
1291
1304
(
2022
).
You do not currently have access to this content.