Low operating voltage is highly attractive for medium-power millimeter-wave gyrotrons since it can reduce their size and cost, increase their safety, and, thus, improve usability for applications. However, at low voltages, the voltage depression caused by DC space-charge fields significantly limits the electron current and transverse power in the beam. Moreover, this current limitation is more pronounced for a beam with a higher pitch factor. As a result, for a given anode voltage, there is a pitch factor at which the transverse beam power in the gyrotron cavity is the maximum. This ultimate transverse power is found analytically in the non-relativistic approximation. Such a power is reached when the pitch factor calculated without taking into account voltage depression is only 0.82; voltage depression decreases the axial electron velocities, thus, increasing the actual pitch factor value in the cavity up to 1.4. As a result of this effect, high power and high efficiency cannot be obtained simultaneously in a low-voltage gyrotron. Using particle-in-cell simulations, two variants of low-voltage (5 kV) gyrotrons have been designed, namely, a device with higher power and an optimal pitch factor of 0.82 in the cavity and a device with a high pitch factor and high efficiency, but lower power.

1.
J. M.
Osepchuk
, “
Microwave power applications
,”
IEEE Trans. Microwave Theory Tech.
50
(
3
),
975
985
(
2002
).
2.
E. T.
Thostenson
and
T. W.
Chou
, “
Microwave processing: Fundamentals and applications
,”
Composites, Part A
30
,
1055
1071
(
1999
).
3.
K. H.
Brosnan
,
G. L.
Messing
, and
D. K.
Agrawal
, “
Microwave sintering of alumina at 2.45 GHz
,”
J. Am. Ceram. Soc.
86
,
1307
1312
(
2003
).
4.
Y.
Liu
,
J.
He
,
N.
Zhang
,
W.
Zhang
,
Y.
Zhou
, and
K.
Huang
, “
Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: A review
,”
J. Mater. Sci.
56
,
12559
12583
(
2021
).
5.
M. I.
Jones
,
M.
Valecillos
,
K.
Hirao
, and
M.
Toriyama
, “
Densification behavior in microwave-sintered silicon nitride at 28 GHz
,”
J. Am. Ceram. Soc.
84
(
10
),
2424
2426
(
2001
).
6.
S. V.
Egorov
,
A. G.
Eremeev
,
V. V.
Kholoptsev
,
I. V.
Plotnikov
,
K. I.
Rybakov
,
A. A.
Sorokin
,
S. S.
Balabanov
,
E. Y.
Rostokina
, and
Y. V.
Bykov
, “
Rapid microwave sintering of zinc oxide-based varistor ceramics
,”
J. Eur. Ceram. Soc.
41
(
13
),
6508
6515
(
2021
).
7.
S.
Sintsov
,
A.
Vodopyanov
, and
D.
Mansfeld
, “
Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron
,”
AIP Adv.
9
(
10
),
105009
(
2019
).
8.
D.
Mansfeld
,
S.
Sintsov
,
N.
Chekmarev
, and
A.
Vodopyanov
, “
Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz
,”
J. CO2 Util.
40
,
101197
(
2020
).
9.
A.
Thielens
,
D.
Bell
,
D. B.
Mortimore
,
M. K.
Greco
,
L.
Martens
, and
W.
Joseph
, “
Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 GHz
,”
Sci. Rep.
8
,
3924
(
2018
).
10.
A. Z.
Tirkel
,
J. C. S.
Lai
,
T. A.
Evans
, and
G. A.
Rankin
, “
Effects of millimeter wave exposure on termite behavior
,”
Marrakesh: Progress in Electromagnetics Research Symposium (Piers 2011)
(
Electromagnetics Academy
,
2011
), pp.
1581
1585
.
11.
G. S.
Nusinnovich
,
Introduction to the Physics of Gyrotrons
(
Johns Hopkins University Press
,
Barltimore, MD
,
2012
).
12.
M.
Thumm
, “
State-of-the-art of high-power gyro-devices and free electron masers
,”
J. Infrared, Millimeter, Terahertz Waves
41
(
1
),
1
140
(
2020
).
13.
S.
Sabchevski
,
M.
Glyavin
,
S.
Mitsudo
,
Y.
Tatematsu
, and
T.
Idehara
, “
Novel and emerging applications of the gyrotrons worldwide: Current status and prospects
,”
J. Infrared, Millimeter, Terahertz Waves
42
,
715
714
(
2021
).
14.
V. L.
Bratman
,
Y. K.
Kalynov
,
O. P.
Kulagin
,
A. N.
Leontyev
,
P. B.
Makhalov
,
V. N.
Manuilov
,
I. V.
Osharin
,
A. V.
Savilov
,
A. E.
Fedotov
,
A. P.
Fokin
, and
A. V.
Chirkov
, “
A compact THz source for enhancing the sensitivity of nuclear magnetic resonance spectroscopy with dynamic nuclear polarization
,”
Bull. Russ. Acad. Sci. Phys.
82
,
1592
1595
(
2018
).
15.
M. K.
Hornstein
,
V. S.
Bajaj
,
R. G.
Griffin
, and
R. J.
Temkin
, “
Efficient low-voltage operation of a CW gyrotron oscillator at 233 GHz
,”
IEEE Trans. Plasma Sci.
35
,
27
30
(
2007
).
16.
V. L.
Bratman
,
O.
Dumbrajs
,
P.
Nikkola
, and
A. V.
Savilov
, “
Space charge effects as a source of electron energy spread and efficiency degradation in gyrotrons
,”
IEEE Trans. Plasma Sci.
28
(
3
),
633
637
(
2000
).
17.
A. P.
Fokin
,
M. Y.
Glyavin
, and
G. S.
Nusinovich
, “
Effect of ion compensation of the beam space charge on gyrotron operation
,”
Phys. Plasmas
22
,
043119
(
2015
).
18.
A.
Schlaich
,
C.
Wu
,
I.
Pagonakis
,
K.
Avramidis
,
S.
Illy
,
G.
Gantenbein
,
J.
Jelonnek
, and
M.
Thumm
, “
Frequency-based investigation of charge neutralization processes and thermal cavity expansion in gyrotrons
,”
J. Infrared, Millimeter, Terahertz Waves
36
(
9
),
797
818
(
2015
).
19.
M. Y.
Glyavin
,
A. D.
Kuntsevich
, and
V. N.
Manuilov
, “
Suppression of the oscillatory modes of a space charge in the magnetron injection guns of technological gyrotrons
,”
J. Infrared, Millimeter, Terahertz Waves
36
(
1
),
7
12
(
2015
).
20.
X.
Guan
,
W.
Fu
,
D.
Lu
,
Y.
Yan
,
T.
Yang
, and
X.
Yuan
, “
Experiment of a high-power sub-THz gyrotron operating in high-order axial modes
,”
IEEE Trans. Electron Devices
66
,
2752
2757
(
2019
).
21.
Y.
Liu
,
Q.
Liu
,
X.
Niu
,
H.
Wang
,
J.
Liu
,
G.
Guo
,
L.
Xu
,
L.
Wang
,
Y.
Zhang
,
K.
Jia
,
Q.
Zhao
, and
H.
Li
, “
Design and experiment on a 95-GHz 400 kW-level gyrotron
,”
IEEE Trans. Electron Devices
68
,
434
437
(
2021
).
22.
M. Y.
Glyavin
,
A. N.
Kuftin
,
M. V.
Morozkin
,
M. D.
Proyavin
,
A. P.
Fokin
,
A. V.
Chirkov
,
V. N.
Manuilov
,
A. S.
Sedov
,
E. A.
Soluyanova
,
D. I.
Sobolev
,
E. M.
Tai
,
A. I.
Tsvetkov
,
A. G.
Luchinin
,
S. Y.
Kornishin
, and
G. G.
Denisov
, “
A 250-Watts, 0.5-THz continuous-wave second-harmonic gyrotron
,”
IEEE Electron Device Lett.
42
,
1666
1669
(
2021
).
23.
D.
Lu
,
W.
Fu
,
X.
Guan
,
T.
Yang
,
C.
Zhang
,
C.
Chen
,
M.
Han
, and
Y.
Yan
, “
Ultra-high velocity ratio in magnetron injection guns for low-voltage compact gyrotrons
,”
Electronics
9
(
10
),
1587
(
2020
).
24.
A. E.
Fedotov
,
M. D.
Proyavin
,
E. S.
Semenov
, and
M. Y.
Glyavin
, “
Project of 30 GHz compact low-voltage gyrotron
,” in
46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)
,
2021
.
25.
L.
Aleksandr
,
K.
Sergey
,
P.
Sergey
,
K.
Eduard
,
K.
Alexei
,
G.
Mikhail
,
T.
Yoshinori
,
M.
Seitaro
, and
I.
Toshitaka
, “
Low-voltage adiabatic magnetron injection gun for 400 GHz gyrotron
,” in
IEEE Ukrainian Microwave Week (UkrMW)
(
IEEE
,
2020
), pp.
950
953
.
26.
A.
Drobot
and
K.
Kim
, “
Space charge effects on the equilibrium of guided electron flow with gyromotion
,”
Int. J. Electron.
51
(
4
),
351
367
(
1981
).
27.
A. K.
Ganguly
and
K. R.
Chu
, “
Limiting current in gyrotrons
,”
Int. J. Infrared, Millimeter Waves
5
(
1
),
103
121
(
1984
).
28.
S. E.
Tsimring
, “
Limiting current of helical electron beams in gyrotrons
,”
Int. J. Infrared Millimeter Waves
14
(
4
),
817
840
(
1993
).
29.
S.
Pan
,
C.
Du
,
H.
Bian
,
Z.
Gao
,
F.
Li
, and
P.
Liu
, “
Terahertz broadband whispering-gallery mode gyrotron backward-wave oscillator
,”
IEEE Trans. Electron Devices
66
,
2389
2395
(
2019
).
30.
J.
Zhou
,
D.
Liu
,
C.
Liao
, and
Z.
Li
, “
CHIPIC: An efficient code for electromagnetic PIC modeling and simulation
,”
IEEE Trans. Plasma Sci.
37
(
10
),
2002
2011
(
2009
).
You do not currently have access to this content.