In this work, we have calculated the relativistic collision operator representing the line broadening, by collision with free electrons, of isolated lines emitted by hydrogen-like ions (Ly-α line 2 p 2 P 3 / 2 o 1 s 2 S 1 / 2 ) of hydrogenic ions FeXXVI, CrXXIV, and CoXXVII in the temperature range of 10 8 to 5 × 10 9 K and electron densities of 1021 to 10 26 cm 3 . To accomplish this task, we have considered the fine structure of these ions and taking into account the relativistic effects related to the free electrons. Specifically, two relativistic effects are considered: the electric field of Liénard–Wiechert, created by the free electron at the emitter ion, and the modification of the hyperbolic trajectory due to the dependent mass on the free electron velocity. The average over the velocities of the free electrons is accomplished by using the Maxwell–Juttner distribution, which is more adequate for the fast (relativistic) electrons. The results are compared to the classical case (when the electric field is the Coulomb's field) to Doppler broadening and to some experimental results (K. Koyama and M. G. Haines) available in the literature. It turns out that, at high temperatures and high densities, the Stark broadening by the relativistic electrons overcomes the Doppler broadening.

1.
V.
Decaux
,
M.
Bitter
,
H.
Hsuan
,
S.
von Goeler
,
K. W.
Hill
,
R. A.
Hulse
,
G.
Taylor
,
H.
Park
, and
C. P.
Bhalla
, “
Dielectronic satellite spectra of hydrogen-like iron from the Tokamak Fusion Test Reactor
,”
Phys. Rev. A
43
(
1
),
228
(
1991
).
2.
J. N.
Bahcall
,
M. H.
Pinsonneault
, and
G. J.
Wasserburg
, (see table 9 page 801) in: “
Solar models with helium and heavy-element diffusion
,”
Rev. Mod. Phys.
67
(
4
),
781
(
1995
).
3.
K.
Miyamoto
,
Fig.1.1 Page 2 in Fundamentals of Plasma Physics and Controlled Fusion
(
Iwanami Book Service Center
,
Tokyo
,
1997
).
4.
S.
Bianchi
,
G.
Matt
,
F.
Nicastro
,
D.
Porquet
, and
J.
Dubau
, “
Fe XXV and Fe XXVI lines from low-velocity, photoionized gas in the x-ray spectra of active galactic nuclei
,”
Mon. Not. R. Astron. Soc.
357
(
2
),
599
607
(
2005
).
5.
K.
Koyama
,
Y.
Hyodo
,
T.
Inui
,
H.
Nakajima
,
H.
Matsumoto
,
T. G.
Tsuru
, and
G. V.
Brown
, “
Iron and nickel line diagnostics for the galactic center diffuse emission
,”
Publ. Astron. Soc. Jpn.
59
,
S245
S255
(
2007
).
6.
L. W.
Brenneman
and
C. S.
Reynolds
, “
Relativistic broadening of iron emission lines in a sample of active galactic nuclei
,”
Astrophys. J.
702
(
2
),
1367
(
2009
).
7.
J. N.
Reeves
,
V.
Braito
,
G.
Chartas
,
F.
Hamann
,
S.
Laha
, and
E.
Nardini
, “
Resolving the soft X-ray ultrafast outflow in PDS 456
,”
Astrophys. J.
895
(
1
),
37
(
2020
).
8.
M. G.
Haines
,
P. D.
LePell
,
C. A.
Coverdale
,
B.
Jones
, and
C.
Deeney
, “
Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2 × 10 9 Kelvin
,”
Phys. Rev. Lett.
96
,
075003
(
2006
).
9.
P.
Chakraborty
,
G. J.
Ferland
,
M.
Chatzikos
,
F.
Guzman
, and
Y.
Su
, “
X-ray spectroscopy in the micro-calorimeter era. III. Line formation under case A, case B, case C, and case D in H-and He-like Iron for a photoionized cloud
,”
Astrophys. J.
912
(
1
),
26
(
2021
).
10.
M. A.
Bautista
and
L.
Titarchuk
, “
H-like iron emission in narrow-line Seyfert 1 galaxies as a temperature diagnostic of accretion flows
,”
Astrophys. J.
511
(
1
),
105
(
1999
).
11.
B.
O'Rourke
,
F. J.
Currell
,
H.
Kuramoto
,
Y. M.
Li
,
S.
Ohtani
,
X. M.
Tong
, and
H.
Watanabe
, “
Electron-impact ionization of hydrogen-like iron ions
,”
J. Phys. B
34
(
20
),
4003
(
2001
).
12.
J. P.
Apruzese
,
J. W.
Thomhill
,
K. G.
Whitney
,
J.
Davis
,
C.
Deeney
, and
C. A.
Coverdale
, “
Comparative analysis of time-resolved and time-integrated x-ray data from long pulse Z-pinch implosions on Saturn
,”
Phys. Plasmas
8
,
3799
(
2001
).
13.
S. V.
Lebedev
,
F. N.
Beg
,
S. N.
Bland
,
J. P.
Chittenden
,
A. E.
Dangor
, and
M. G.
Haines
,
Phys. Plasmas
9
,
2293
(
2002
).
14.
M. S.
Dimitrijević
,
Z.
Simić
,
A.
Kovačević
,
A.
Valjarević
, and
S.
Sahal-Bréchot
, “
Stark broadening of Xe VIII spectral lines
,”
Mon. Not. R. Astron. Soc.
454
(
2
),
1736
1741
(
2015
).
15.
M. S.
Dimitrijević
,
Z.
Simić
,
R.
Stamm
,
J.
Rosato
,
N.
Milovanović
, and
C.
Yubero
, “
Stark broadening of Se IV, Sn IV, Sb IV and Te IV spectral lines
,”
Atoms
6
(
1
),
10
(
2018
).
16.
Z.
Simic
,
M. S.
Dimitrijevic
, and
A.
Kovacevic
, “
On the Stark broadening in hot stars
,”
Mem. S.A.It. Suppl.
15
,
143
(
2010
).
17.
E.
Oks
and
P.
Sanders
, “
Stark broadening of hydrogen/deuterium spectral lines by a relativistic electron beam: Analytical results and possible applications to magnetic fusion edge plasmas
,”
J. Phys. Commun.
2
(
1
),
015030
(
2018
).
18.
J.
Rosato
,
S. P.
Pandya
,
C.
Logeais
,
M.
Meireni
,
I.
Hannachi
,
R.
Reichle
, and
R.
Stamm
, “
A study of Stark broadening for the diagnostic of runaway electrons in ITER
,”
AIP Conf. Proc.
1811
,
110001
(
2017
).
19.
E.
Oks
, “
Monopole contribution to the stark width of hydrogenlike spectral lines in plasmas: Analytical results
,”
Plasma
3
(
4
),
180
186
(
2020
).
20.
S.
Douis
and
M. T.
Meftah
, “
Relativistic effects of the electrons in plasma: correlation function and electronic line broadening
,”
Afr. Rev. Phys.
8
,
17
24
(
2013
).
21.
A.
Naam
,
M. T.
Meftah
,
S.
Douis
, and
S.
Alexiou
, “
Spectral line broadening by relativistic electrons in plasmas: Collision operator
,”
Adv. Space Res.
54
(
7
),
1242
1247
(
2014
).
22.
H.
Gossa
,
M. T.
Meftah
,
K.
Chenini
,
D. E.
Zenkhri
,
B.
Amieur
, and
H.
Guerrida
, “
The spectral line asymmetry of the Doppler effect in relativistic plasmas
,”
Europhys. Lett.
139
,
20001
(
2022
).
23.
H. R.
Griem
,
M.
Baranger
,
A. C.
Kolb
, and
G.
Oertel
, “
Stark broadening of neutral helium lines in a plasma
,”
Phys. Rev.
125
,
177
(
1962
).
24.
S.
Sahal-Bréchot
, “
Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma
,”
Astron. Astrophys.
2
,
322
(
1969
).
25.
H. R.
Griem
,
M.
Blaha
, and
P. C.
Kepple
, “
Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas
,”
Phys. Rev. A
19
(
6
),
2421
(
1979
).
26.
M. T.
Meftah
,
K.
Arif
,
K.
Chenini
,
K. A.
Touati
, and
S.
Douis
, “
Contribution of Lienard-Wiechert potential to the electron broadening of spectral lines in plasmas
,”
Atoms
6
,
6
(
2018
).
27.
R. W.
Lee
, “
Plasma line broadening of the Lyman-transition including ion dynamics
,”
J. Phys. B Atom. Molec. Phys
11
,
L167
(
1978
).
28.
R. W.
Lee
, “
Plasma line shapes for selected transitions in hydrogen-, helium- and lithium-like ions
,”
J. Quant. Spectrosc. Radiat. Transfer
40
(
5
),
561
568
(
1988
).
29.
H. R.
Griem
,
A.
Kolb
, and
Y.
Shen
, “
Stark broadening of hydrogen lines in a plasma
,”
Phys. Rev.
116
,
4
(
1959
).
30.
P.
Kepple
and
H. R.
Griem
, “
Improved stark profile calculations for hydrogen lines Hα,Hβ,Hγ and Hδ broadening
,”
Phys. Rev
173
,
317
(
1968
).
31.
M.
Baranger
, “
General impact theory of pressure broadening
,”
Phys. Rev.
112
,
855
(
1958
).
32.
M.
Baranger
, “
Problem of overlapping lines in the theory of pressure broadening
,”
Phys. Rev.
111
,
494
(
1958
).
33.
M.
Baranger
, “
Simplified quantum-mechanical theory of pressure broadening
,”
Phys. Rev.
111
,
481
(
1958
).
34.
S.
Bréchot
and
H.
Van Regemorter
,
C. R. Acad. Sci.
256
,
909
610
.
35.
S.
Bréchot
,
Phys Lett.
24A
,
476
477
(
1967
).
36.
S.
Alexiou
, “
Collision operator for isolated ion lines in the standard stark-broadening theory with applications to the z scaling in the li isoelectronic series 3p-3s transition
,”
Phys. Rev. A
49
,
106
(
1994
).
37.
S.
Alexiou
and
R. W.
Lee
, “
Semiclassical calculations of line broadening in plasmas: Comparison with quantal results
,”
J. Quant. Spectrosc. Radiat. Transfer
99
,
10
20
(
2006
).
38.
D. E.
Kelleher
and
W. L.
Wiese
, “
Observation if ion motion in hydrogen stark profiles
,”
Phys. Rev. Lett.
31
,
1431
(
1973
).
39.
W. L.
Wiese
,
D. E.
Kelleher
, and
V.
Helbig
, “
Variations in Balmer-line stark profiles with atom- ion reduced mass
,”
Phys. Rev. A
11
,
1854
(
1975
).
40.
S.
Ferri
,
A.
Calisti
,
C.
Moss
,
J.
Rosato
,
B.
Talin
,
S.
Alexiou
,
M. A.
Gigosos
,
M. A.
Gonzlez
,
D.
Gonzlez-Herrero
,
N.
Lara
,
T.
Gomez
,
C.
Iglesias
,
S.
Lorenzen
,
R. C.
Mancini
, and
E.
Stambulchik
, “
Ion dynamics effect on stark broadened line shapes: A cross-comparison of various models
,”
Atoms
2
(
3
),
299
318
(
2014
).
41.
L.
Godbert-Mouret
,
T.
Meftah
,
A.
Calisti
,
R.
Stamm
,
B.
Talin
,
M.
Gigosos
,
V.
Cardenoso
,
S.
Alexiou
,
R. W.
Lee
, and
L.
Klein
, “
Accuracy of stark broadening calculations for ionic emitters
,”
Phys. Rev. Lett.
81
(
25
),
5568
(
1998
).
42.
H. M.
Johns
,
D. P.
Kilcrease
,
J.
Colgan
,
E. J.
Judge
,
I. J. E.
Barefield
,
R. C.
Wiens
, and
S. M.
Clegg
, “
Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling
,”
J. Phys. B
48
,
224009
(
2015
).
43.
P. W.
Anderson
, “
Pressure broadening in the microwave and infra-red regions
,”
Phys. Rev.
76
,
647
(
1949
).
44.
D. A.
Voslamber
, “
Non-Markovian impact theory comprehending partially overlapping lines
,”
J. Quant. Spectrosc. Radiat. Transfer
10
,
939
943
(
1970
).
45.
J. D.
Jackson
, “
Special theory of relativity
,” in
Classical Electrodynamics
, 3rd ed. (
John Wiley
,
New York
,
1962
), Chap. XI, pp.
360
364
.
46.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison Wesley
,
2000
), Chap III.
You do not currently have access to this content.