Please note our website will be undergoing maintenance on Tuesday, May 28, 2024. e-Commerce transactions and new registrations will be temporarily unavailable during this time. We apologize for any inconvenience this may cause.

Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Beyond mtDNA: nuclear gene flow suggests taxonomic oversplitting in the little brown bat (Myotis lucifugus)

Publication: Canadian Journal of Zoology
20 June 2008

Abstract

In southern Alberta and north-central Montana, there is substantial mtDNA sequence divergence between two groups of the little brown bat, Myotis lucifugus (LeConte, 1831), previously thought to be subspecies (Myotis lucifugus lucifugus and Myotis lucifugus carissima) but recently hypothesized to be species. We tested this hypothesis using population genetic techniques. Using nuclear microsatellite markers (10 loci), we found a lack of differentiation between these two groups of bats (ascribed based on mitochondrial hypervariable region II sequence), suggesting interbreeding was sympatric. Our findings add to the recent discovery that M. l. lucifugus haplotypes are found throughout the range previously thought to be only M. l. carissima, suggesting widespread sympatry and extensively mixed gene pools, thus refuting the cryptic species hypothesis. Clinal morphology and individual variation demonstrated the impossibility to differentiate groups based on original subspecies definitions. The lack of geographic and morphological boundaries, in addition to the likelihood that the interbreeding observed in this study is occurring across western North America, suggests that no line can be drawn between these two groups. We thus suggest that the carissima subspecies designation be dropped. This study highlights the importance of investigating nuclear gene flow in widely sympatric animals suspected of being cryptic genetic species, and has important implications for applications of the DNA Barcoding Project.

Résumé

Dans le sud de l’Alberta et le centre-nord du Montana, il existe une divergence importante dans les séquences de l’ADNmt entre deux groupes de murins bruns, Myotis lucifugus (LeConte, 1831), qu’on a cru antérieurement représenter des sous-espèces (Myotis lucifugus lucifugus et Myotis lucifugus carissima), mais qu’on pense maintenant former une seule espèce. Nous testons cette hypothèse à l’aide de techniques de génétique des populations. En utilisant des marqueurs microsatellites nucléaires (10 locus), nous ne trouvons aucune différenciation entre les deux groupes (assignés d’après la séquence de la région II hypervariable mitochondriale), ce qui indique qu’il y a des croisements en conditions de sympatrie. Nos résultats s’ajoutent à la découverte récente d’haplotypes de M. l. lucifugus dans toute l’aire de répartition qu’on croyait antérieurement ne contenir que des M. l. carissima; cela laisse croire qu’il y a une importante sympatrie et que les pools géniques sont fortement entremêlés, ce qui permet de rejeter l’hypothèse des espèces cryptiques. Les gradients morphologiques et la variation individuelle ne permettent pas de différencier les deux groupes d’après les définitions originales des sous-espèces. L’absence de frontières géographiques et morphologiques, de même que la probabilité que la reproduction croisée que nous observons s’étende à tout l’ouest de l’Amérique du Nord, font croire qu’il n’est pas possible de tirer une ligne entre les deux groupes. Nous suggérons donc d’abandonner la désignation de la sous-espèce carissima. Notre recherche met en évidence l’importance de l’étude du flux génique nucléaire chez des animaux à large répartition sympatrique que l’on soupçonne être des espèces génétiques cryptiques; elle a aussi des conséquences importantes sur les applications du projet des codes à barres de l’ADN.

Get full access to this article

View all available purchase options and get full access to this article.

References

Anthony, E.L.P. 1988. Age determination in bats. In Ecological and behavioral methods for the study of bats. Edited by T.H. Kunz. Smithsonian Institution Press, Washington, D.C. pp. 31–46.
Avise, J.C. 2004. Molecular markers, natural history and evolution. 2nd ed. Sinauer Associates, Inc., Sunderland, Mass.
Avise, J.C., and Ball, R.M., Jr. 1990. Principles of genealogical concordance in species concepts and biological taxonomy. Oxf. Surv. Evol. Biol. 7: 45–67.
Baker, R.J., and Bradley, R.D. 2006a. Speciation in mammals and the genetic species concept. J. Mammal. 87: 643–662.
Baker, R.J., and Bradley, R.D. 2006b. A genetic definition of species: implications to bat biodiversity. Bat. Res. News, 47: 85.
Barbour, R.W., and Davis, W.H. 1970. The status of Myotis occultus. J. Mammal. 51: 150–151.
Barratt, E.M., Deaville, R., Burland, T.M., Bruford, M.W., Jones, G., Racey, P.A., and Wayne, R.K. 1997. DNA answers the call of pipistrelle bat species. Nature (London), 387: 138–139.
Bogdanowicz, W. 1990. Geographic variation and taxonomy of Daubenton’s bat, Myotis daubentoni, in Europe. J. Mammal. 71: 205–218.
Bradley, R.D., and Baker, R.J. 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. J. Mammal. 82: 960–973.
Burnett, C.D. 1983. Geographic and climatic correlates of morphological variation in Eptesicus fuscus. J. Mammal. 64: 437–444.
Castella, V., and Ruedi, M. 2000. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol. Ecol. 9: 1000–1002.
Castella, V., Ruedi, M., and Excoffier, L. 2001. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J. Evol. Biol. 14: 708–720.
Cavalli-Sforza, L.L., and Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19: 233–257.
Chapuis, M.-P., and Estoup, A. 2007. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24: 621–631.
Clare, E.L., Lim, B.K., Engstrom, M.D., Eger, J.L., and Hebert, P.D.N. 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol. Ecol. Notes, 7: 184–190.
Clement, M., Posada, D., and Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1659.
Cronin, M.A. 1993. Mitochondrial DNA in wildlife taxonomy and conservation biology: cautionary notes. Wildl. Soc. Bull. 21: 339–348.
Cronin, M.A. 1997. Systematics, taxonomy, and the Endangered Species Act: the example of the California gnatcatcher. Wildl. Soc. Bull. 25: 661–666.
Cronin, M.A., Amstrup, S.C., Garner, G.W., and Vyse, E.R. 1991. Interspecific and intraspecific mitochondrial DNA variation in North American bears (Ursus). Can. J. Zool. 69: 2985–2992.
Demboski, J.R., and Cook, J.A. 2001. Phylogeography of the dusky shrew, Sorex monitcolus (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. Mol. Ecol. 10: 1227–1240.
Dewey, T.A. 2006. Systematics and phylogeography of North American Myotis (Chiroptera: Vespertilionidae). Ph.D. dissertation, University of Michigan, Ann Arbor.
Dewey, T.A., Zinck, J.M., and Vonhof, M. 2006. Genbank. National Center for Biotechnology Information (NCBI). Accession numbers DQ503484–DQ503570. Available from http://ncbi.nlm.nih.gov. [accessed 2 November 2007].
Edwards, J.G. 1954. A new approach to infraspecific categories. Syst. Zool. 3: 1–20.
Elias, M., Hill, R.I., Willmott, K.R., Dasmahapatra, K.K., Brower, A.V.Z., Mallet, J., and Jiggins, C.D. 2007. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc. R. Soc. Lond. B Biol. Sci. 274: 2881–2889.
Engelke, D.R., Krikos, A., Bruck, M.E., and Ginsburg, D. 1990. Purification of Thermus aquaticus DNA polymerase expressed in Escherischia coli. Anal. Biochem. 191: 396–400.
Environment Canada. 2003. Terrestrial ecozones of Canada [online]. Available from http://ec.gc.ca/soer-ree/English/vignettes/Terrestrial/terr.cfm [accessed 18 January 2007].
Excoffier, L., Smouse, P.E., and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491.
Excoffier, L., Guillaume, L., and Schneider, S. 2006. Arlequin version 3.1: an integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab, Institute of Zoology, University of Berne, Berne, Switzerland.
Falush, D., Stephens, M., and Pritchard, J.K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164: 1567–1587.
Fenton, M.B., and Barclay, R.M.R. 1980. Myotis lucifugus. Mamm. Species, 142: 1–8.
Findley, J.S., and Jones, C. 1967. Taxonomic relationships of bats of the species Myotis fortidens, M. lucifugus, and M. occultus. J. Mammal. 48: 429–444.
Fumagalli, L., Taberlet, P., Favre, L., and Hausser, J. 1996. Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol. Biol. Evol. 13: 31–46.
Gauthier, D.A., Lafon, A., Toombs, T.P., Hoth, J., and Wiken, E. 2003. Grasslands: toward a North American conservation strategy. Canadian Plains Research Center University of Regina and Commission for Environmental Cooperation, Montreal, Que.
GenBank. 2007. National Center for Biotechnology Information (NCBI). Available from http://ncbi.nlm.nih.gov/Genbank/index.html. [accessed 2 November 2007].
Gevers, D., Frederick, M.C., Lawrence, J.G., Spratt, B.G., Coeyne, T., Feil, E.J., Stackebrandt, E., Van de peer, Y., Vandamme, P., Thompson, F.L., and Swings, J. 2005. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3: 733–739.
Goncharov, N.P. 2005. Comparative-genetic analysis — a base for wheat taxonomy revision. Czech. J. Genet. Plant Breed. 41: 52–55.
Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www2.unil.ch/popgen/softwares/fstat.htm [accessed 26 December 2006]. [Updated from Goudet 1995].
Hall, E.R. 1981. The mammals of North America. Vol. 1. John Wiley and Sons, New York.
Hall, E.R., and Kelson, K.R. 1959. The mammals of North America. Vol. 1. Ronald Press Company, New York.
Harris, A.H. 1974. Myotis yumanensis in interior southwestern North America, with comments on Myotis lucifugus. J. Mammal. 55: 589–607.
Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270: 313–322.
Hedrick, P.W. 2005. A standardized genetic differentiation measure. Evolution, 50: 1633–1638.
Hollister, N. 1909. Two new bats from the south western U.S. Proc. Biol. Soc. Wash. 22: 43–44.
Hollister, N. 1911. Two new bats from the south western U.S. Proc. Biol. Soc. Wash. 22: 43–44.
Humphries, M.M., Thomas, D.W., and Speakman, J.R. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature (London), 418: 313–316.
Jacobs, D.S., Eick, G.N., Richardson, E.J., and Taylor, P.J. 2004. Genetic similarity amongst phenotypically diverse little free-tailed bats, Chaerephon pumilus. Acta Chiropt. 6: 13–21.
Jacobs, D.S., Eick, G.N., Schoeman, M.C., and Matthee, C.A. 2006. Cryptic species in an insectivorous bat, Scotophilus dinganii. J. Mammal. 87: 161–170.
Kawai, K., Nikaido, M., Harada, M., Matsumura, S., Lin, L.-K., Wu, Y., Hasegawa, M., and Okada, N. 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Mol. Phylogenet. Evol. 28: 297–307.
Kerth, G., Safi, K., and König, B. 2002. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52: 203–210.
Kruskop, S.V. 2004. Subspecific structure of Myotis daubentonii (Chiroptera, Vespertilionidae) and composition of the “daubentonii” species group. Mammalia, 68: 299–306.
Kunz, T.H., Wrazen, J.A., and Burnett, C.D. 1998. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience, 5: 8–17.
Langella, O. 1999. Populations 1.2.30 manual. Bioinformatics Software Development. Available from http://bioinformatics.org/~tryphon/populations/#ancre_fonctionnalites [accessed 3 October 2007].
Latch, E.K., Dharmarajan, G., Glaubitz, J.C., and Rhodes, O.E., Jr. 2006. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7: 295–302.
Lausen, C.L. 2007. Roosting ecology and landscape genetics of prairie bats. Ph.D. dissertation, Department of Biological Sciences, University of Calgary, Calgary, Alta.
Lippert, H. 2001. Habitat use and roosting ecology of bats in boreal forests of Alberta in response to forest harvest. M.Sc. thesis, Department of Biological Sciences, University of Alberta, Edmonton.
Lowe, A., Harris, S., and Ashton, P. 2004. Ecological genetics: design, analysis and application. Blackwell Publishing, Oxford.
Mayer, F., and von Helversen, O. 2001. Cryptic diversity in European bats. Proc. R. Soc. Lond. B Biol. Sci. 268: 1825–1832.
Miller, G.S., and Allen, G.M. 1928. The American bats of the genera Myotis and Pizonyx. U.S. Nat. Mus. Bull. 144: 1–218.
Neubaum, M.A., Marlis, R.D., Douglas, M.E., and O’Shea, T.J. 2007. Molecular ecology of the big brown bat (Eptesicus fuscus): genetic and natural history variation in a hybrid zone. J. Mammal. 88: 1230–1238.
Norberg, U. 1994. Wing design, flight morphology, and habitat use in bats. In Ecological morphology. Edited by P.C. Wainright and S.M. Reilly. Chicago University Press, Chicago. pp. 205–239.
Paetkau, D., Shields, G.F., and Strobeck, C. 1998. Gene flow between insular, coastal, and interior populations of brown bears in Alaska. Mol. Ecol. 7: 1283–1292.
Patriquin, K.J. 2001. Ecology of a bat community in harvested boreal forest in northwestern Alberta. M.Sc. thesis, Department of Biological Sciences, University of Calgary, Calgary, Alta.
Piaggio, J.A., Valdez, E.W., Bogan, M.A., and Spicer, G.S. 2002. Systematics of Myotis occultus (Chiroptera: Vespertilionidae) inferred from sequences of two mitochondrial genes. J. Mammal. 83: 386–395.
Pérez-Lezaun, A., Calafell, F., Mateu, E., Comas, D., Ruiz-Pacheco, R., and Bertranpetit, J. 1997. Microsatellite variation and the differentiation of modern humans. Hum. Genet. 99: 1–7.
Prendini, L. 2005. Comment on “Identifying spiders through DNA barcodes”. Can. J. Zool. 83: 498–504.
Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
Raymond, M., and Rousset, F. 1995. GENEPOP (version 1. 2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.
Reynolds, D.S., and Kunz, T.H. 2000. Changes in body composition during reproduction and postnatal growth in the little brown bat Myotis lucifugus (Chiroptera: Vespertilionidae). Ecoscience, 7: 10–17.
Rubinoff, D., Cameron, S.C., and Will, K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for “Barcoding” identification. J. Hered. 97: 581–594.
Ruedi, M., and Mayer, F. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol. Phylogenet. Evol. 21: 436–448.
Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139: 457–462.
Smith, H.C., and Schowalter, D.B. 1979. A new subspecies of little brown bat for Alberta. Blue Jay, 37: 58–62.
Sokal, R.R., and Rohlf, F.J. 1995. Biometry. 3rd ed. W.H. Freeman and Company, New York.
Stadelmann, B., Lin, L.-K., Kunz, T.H., and Ruedi, M. 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol. Phylogenet. Evol. 43: 32–48.
Swofford, D.L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0 beta [computer program]. Sinauer Associates, Inc., Sunderland, Mass.
Takezaki, N., and Nei, M. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144: 389–399.
Talbot, S.L., and Shields, G.F. 1996. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol. Phylogenet. Evol. 5: 477–494.
Templeton, A.R., Crandall, K.A., and Sing, C.F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132: 619–633.
Thomas, O. 1904. A new bat from the United States representing the European Myotis (Leuconoe) daubentoni. Ann. Mag. Nat. Hist. Ser. 7: 382–384.
Thompson, R.C., and McManus, D.P. 2002. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol. 18: 452–457.
Valdez, E.W., Choate, J.R., Bogan, M.A., and Yates, T.L. 1999. Taxonomic status of Myotis occultus. J. Mammal. 80: 545–552.
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., and Shipley, P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4: 535–538.
van Zyll de Jong, C.G. 1985. Handbook of Canadian mammals 2. Bats. National Museum of Natural Sciences, National Museums of Canada, Ottawa, Ont.
Vonhof, M.J., Davis, C.S., Fenton, M.B., and Strobeck, C. 2002. Characterization of dinucleotide microsatellite loci in big brown bats (Eptesicus fuscus), and their use in other North American vespertilionid bats. Mol. Ecol. Notes, 2: 167–169.
Wilson, D.E., and Ruff, S. 1999. The Smithsonian book of North American mammals. Smithsonian Institution, Washington, D.C., and UBC Press, Vancouver.
Worthington-Wilmer, J., Moritz, C., Hall, L., and Toop, J. 1994. Extreme population structuring in the threatened ghost bat, Macroderma gigas: evidence from mitochondrial DNA. Proc. R. Soc. Lond. B Biol. Sci. 257: 193–198.
Worthington-Wilmer, J., Hall, L., Barratt, E., and Moritz, C. 1999. Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas). Evolution, 53: 1582–1591.
Zinck, J.M., Duffield, D.A., and Ormsbee, P.C. 2004. Primers for identification and polymorphism assessment of vespertilionid bats in the Pacific Northwest. Mol. Ecol. Notes, 4: 239–242.

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 86Number 7July 2008
Pages: 700 - 713

History

Received: 10 June 2007
Accepted: 26 March 2008
Version of record online: 20 June 2008

Permissions

Request permissions for this article.

Authors

Affiliations

Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
Present address: Box 920, Kalso, BC V0G 1M0, Canada.
I. Delisle
Campus Saint-Jean, University of Alberta, Edmonton, AB T6C 4G9, Canada.
R. M.R. Barclay
Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
C. Strobeck
Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

Notes

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. COULD WHITE-NOSE SYNDROME MANIFEST DIFFERENTLY IN MYOTIS LUCIFUGUS IN WESTERN VERSUS EASTERN REGIONS OF NORTH AMERICA? A REVIEW OF FACTORS
2. Environmental drivers of body size in North American bats
3. ANALYSIS OF MITOCHONDRIAL DNA SEQUENCE DATA DEMONSTRATES THAT MONOPHYLY OF MYOTIS OCCULTUS IS COMPLICATED BY GREATER SAMPLING OF MYOTIS LUCIFUGUS
4. What is winter? Modeling spatial variation in bat host traits and hibernation and their implications for overwintering energetics
5. Concordant patterns of genetic, acoustic, and morphological divergence in the West African Old World leaf‐nosed bats of the Hipposideros caffer complex
6. Population genetics reveal Myotis keenii (Keen’s myotis) and Myotis evotis (long-eared myotis) to be a single species
7. WHITE‐NOSE SYNDROME AND BATS
8. A Taxonomic Revision of the Kerivoula hardwickii Complex (Chiroptera: Vespertilionidae) with the Description of a New Species
9. Local coexistence and genetic isolation of three pollinator species on the same fig tree species
10. The Roles of Taxonomy and Systematics in Bat Conservation
11. Range-Wide Genetic Analysis of Little Brown Bat (Myotis lucifugus) Populations: Estimating the Risk of Spread of White-Nose Syndrome
12. Effect of oceanic straits on gene flow in the recently endangered little brown bat (Myotis lucifugus) in maritime Canada: implications for the spread of white-nose syndrome
13. Genetic connectivity among swarming sites in the wide ranging and recently declining little brown bat ( M yotis lucifugus )
14. Population genetic structure and natal philopatry in the widespread North American bat Myotis lucifugus
15. Post‐Pleistocene range expansion of the recently imperiled eastern little brown bat ( Myotis lucifugus lucifugus ) from a single southern refugium
16. Morphologically Uniform Bats Hipposideros aff. Ruber (Hipposideridae) Exhibit High Mitochondrial Genetic Diversity in Southeastern Senegal
17. A tale of two genomes: contrasting patterns of phylogeographic structure in a widely distributed bat
18. Variation of mitochondrial DNA in the Hipposideros caffer complex (Chiroptera: Hipposideridae) and its taxonomic implications

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media