Skip to main content
Log in

A phenetic study of the Emilia coccinea complex (Asteraceae, Senecioneae) in Africa

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Emilia coccinea complex is a widespread and morphologically variable species in tropical and subtropical Africa. Jeffrey’s (Kew Bull 52:205–212, 1997) revision of the African Emilia species with large capitula resulted in a complex of eight species with E. coccinea sensu stricto restricted to eastern and southern tropical Africa and characterised by long-appendaged style branches and bright orange flowers. To evaluate the delimitations within this complex, a morphological phenetic study based on 134 herbarium specimens spanning the geographical range of the E. coccinea complex was undertaken using cluster analysis and ordination (principal coordinates analysis and non-metric multidimensional scaling). Five of the eight species (E. emilioides, E. jeffreyana, E. praetermissa, E. subscaposa, and E. vanmeelii) formed distinct phenetic groups, whereas two species (E. caespitosa and E. coccinea) were indistinguishable because of variability in some key characters (viz., cypsela indumentum and shape of cauline leaves) suggesting that they are possibly one heterogeneous species. Emilia lisowskiana is not supported as a distinct species as three E. coccinea specimens group with it in the cluster analysis. Emilia emilioides with mostly long, narrow cauline leaves, narrow capitula, and unappendaged style branches apices is the most distinct taxon in all analyses. Univariate analyses of ten selected characters revealed that the reproductive features are able to distinguish some species, as well as a few vegetative ones. The application of various species concepts to this species complex is discussed. A key to the species in this complex is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Austin MP (1985) Continuum concept, ordination methods and niche theory. Annual Rev Ecol Syst 16:39–61

    Article  Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annual Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Barnaud A, Kalwij JM, Berthouly-Salazar C, McGeoch MA, Jansen van Vuuren B (2013) Are road verges corridors for weed invasion? Insights from the fine-scale spatial genetic structure of Raphanus raphanistrum. Weed Res 53:362–369

    Article  Google Scholar 

  • Beentje HJ, Jeffrey C, Hind DJN (2005) Compositae. Part 3. In: Beentje HJ, Ghazanfar SA (eds) Flora of tropical East Africa. Royal Botanic Gardens, Richmond, pp 547–870

    Google Scholar 

  • Bosch CH (2004) Emilia coccinea and Emilia lisowskiana. In: Grubben GJH, Denton OA (eds) Plant resources of tropical Africa 2. Vegetables. Backhuys Publishers, Leiden, pp 293–294

    Google Scholar 

  • Cain AJ, Harrison GA (1960) Phyletic weighting. Proc Zool Soc Lond 135:1–31

    Article  Google Scholar 

  • Chandler GT, Crisp MD (1998) Morphometric and phylogenetic analysis of the Daviesia uliciolia complex (Fabaceae, Mirbelieae). Pl Syst Evol 209:93–122

    Article  Google Scholar 

  • Cron GV, Balkwill K, Knox EB (2006) A revision of the genus Cineraria (Asteraceae, Senecioneae). Kew Bull 61:449–535

    Google Scholar 

  • Cron GV, Balkwill K, Knox EB (2007) Multivariate analysis of morphological variation in Cineraria deltoidea (Asteraceae, Senecioneae). Bot J Linn Soc 154:497–521

    Article  Google Scholar 

  • Cron GV, Balkwill K, Knox EB (2008) Phylogenetic evidence for the generic circumscription of Cineraria L. (Asteraceae-Senecionaea). Taxon 57:779–798

    Google Scholar 

  • Damm S, Schierwater B, Hadrys H (2010) An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Molec Ecol 19:3881–3893

    Article  Google Scholar 

  • DeSalle R, Egan MG, Sidall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans Ser B 360:1905–1916

    Article  CAS  Google Scholar 

  • Don G (1839) Family compositae. In: Sweet R (ed) Sweet’s Hortus britannicus, 3rd edn. J. Ridgway, London, p 382

    Google Scholar 

  • Dong SK, Cui BS, Yang ZF, Liu SL, Liu J, Ding ZK, Zhu JJ, Yao WK, Wei GL (2008) The role of road disturbance in the dispersal and spread of Ageratina adenophora along the Dian-Myanmar International road. Weed Res 48:282–288

    Article  Google Scholar 

  • Duminil J, Di Michele M (2009) Plant species delimitation: a comparison of morphological and molecular markers. Pl Biosystems 143:528–542

    Article  Google Scholar 

  • Duncan T, Baum BR (1981) Numerical phenetics: its uses in botanical systematics. Annual Rev Ecol Syst 12:387–404

    Article  Google Scholar 

  • Dunn G, Everitt BS (1982) An introduction to mathematical taxonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Edeoga HO, Okwu DE, Mbaebi BO (2005) Phytochemical constituents of some Nigerian medicinal plants. African J Biotech 4:685–688

    Article  CAS  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • ESRI (2014) ArcGIS desktop: release 10.2.2. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fosberg FR (1972) Emilia (Compositae) in Ceylon. Ceylon J Sci 10:1–9

    Google Scholar 

  • Ghiselin MT (1966) On psychologism in the logic of taxonomic controversies. Syst Zool 15:207–215

    Article  Google Scholar 

  • Ghiselin MT (1974) A radical solution to the species problem. Syst Biol 23:536–544

    Article  Google Scholar 

  • Gower JC (1966) Technique for the calculation of canonical variates. Biometrika 53:588–590

    Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871

    Article  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Illinois

    Google Scholar 

  • Holmgren PK, Holmgren NH, Barnett LC (1990) Index Herbariorum, 8th edn. Part 1: the herbaria of the World, New York. Regnum Veg 120:1–693. Available at: http://sciweb.nybg.org/science2/IndexHerbariorum.asp. Accessed 5 Aug 2014

  • Howell DC (1999) Fundamental statistics for the behavioral sciences. Duxbury Press, New York

    Google Scholar 

  • Inc StatSoft (2013) STATISTICA for Windows. StatSoft Inc, Tulsa

    Google Scholar 

  • Jeffrey C (1986) The Senecioneae in East Tropical Africa: notes on Compositae: IV. Kew Bull 41:873–943

    Article  Google Scholar 

  • Jeffrey C (1997) What is Emilia coccinea (Sims) G. Don (Compositae)? A revision of the large-headed Emilia species of Africa. Kew Bull 52:205–212

    Article  Google Scholar 

  • Jensen RJ (2009) Phenetics: revolution, reform or natural consequence? Taxon 58:50–60

    Google Scholar 

  • Johnson LAS (1970) Rainbow’s end: the quest for an optimal taxonomy. Syst Zool 19:203–239

    Article  CAS  PubMed  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

  • Krzywinski M, Altman N (2014) Points of significance: visualizing samples with box plots. Nat Methods 11:119–120

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Legendre L (2003) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lisowski S (1990) Le genre Emilia (Asteraceae, Senecioneae) en Afrique Centrale (Congo, Zaire, Rwanda, Burundi). Polish Bot Stud 1:67–116

    Google Scholar 

  • Lisowski S (1991) Emilia (Cass.) Cass. In: Les Asteraceae dans la flore d’Afrique Centrale. Vol. 2. Fragm Florist Geobot Ann 36:357–409

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2015) Cluster: cluster analysis basics and extensions. R package version 2.0.3

  • Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of diversity. Chapman and Hall, London, pp 381–423

    Google Scholar 

  • Moss WW (1972) Some levels of phenetics. Syst Zool 21:236–239

    Article  CAS  Google Scholar 

  • Moss WW, Hendrickson JA (1973) Numerical taxonomy. Annual Rev Entomol 18:227–258

    Article  Google Scholar 

  • Nelson GL (1994) Subtribal classification of the Astereae (Asteraceae). Phytologia 76:193–274

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Package ‘vegan’: Community ecology package. R package version 2.3.1

  • Olorode O, Olorunfemi AE (1973) The hybrid origin of Emilia praetermissa (Senecioneae: compositae). Ann Bot (Oxford) 37:185–191

    Google Scholar 

  • Pelser PB, Kennedy AH, Tepe EJ, Shidler JB, Nordenstam B, Kadereit JW, Watson LE (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Amer J Bot 97:856–873

    Article  CAS  Google Scholar 

  • Philips RB (1984) Considerations in formalizing a classification. In: Duncan T, Stuessy TF (eds) Cladistics: perspectives on the reconstruction of evolutionary history. Columbia University Press, New York, pp 257–272

    Google Scholar 

  • Pimentel RA (1981) A comparative study of data and ordination techniques based on a hybrid swarm of Sand Verbenas (Abronia Juss.). Syst Zool 30:250–267

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Riva A, Pozner R, Freire SE (2009) Micromorphological characters supporting the removal of Senecio series Otopteri from Senecio (Asteraceae, Senecioneae). Darwiniana 47:327–334

    Google Scholar 

  • Roberts DW (2015) Package ‘labdsv’: Ordination and multivariate analysis for ecology. R package version 1.7.0

  • Rohlf FJ (1972) An empirical comparison of three ordination techniques in numerical taxonomy. Syst Zool 21:271–280

    Article  Google Scholar 

  • Sims J (1803) Cacalia coccinea. Scarlet-flowered Cacalia. Curtis’s Botanical Magazine 16. T. Curtis, London

    Google Scholar 

  • Sneath PHA (1976) Phenetic taxonomy at the species level and above. Taxon 25:437–450

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods. Iowa State University Press, Iowa

    Google Scholar 

  • Sokal RR (1986) Phenetic taxonomy: theory and methods. Annual Rev Ecol Syst 17:423–442

    Article  Google Scholar 

  • Sokal RR, Crovello T (1970) The biological species concept: a critical evaluation. Amer Naturalist 104:127–153

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1962) The comparison of dendograms by objective methods. Taxon 11:33–40

    Article  Google Scholar 

  • Spellerberg IF (1998) Ecological effects of roads and traffic: a literature review. Global Ecol Biogeogr 7:317–333

    Article  Google Scholar 

  • Streit M, Gehlenborg (2014) Points of view: bar charts and box plots. Nat Methods 11:117

    Article  CAS  PubMed  Google Scholar 

  • Stuessy TF (1990) Plant taxonomy: the systematic evaluation of comparative data. Columbia University Press, New York

    Google Scholar 

  • Tadesse M, Beentje H (2004) A synopsis and new species of Emilia (Compositae-Senecioneae) in Northeast Tropical Africa. Kew Bull 59:469–482

    Article  Google Scholar 

  • The Plant List (2013) Version 1.1. http://www.theplantlist.org/. Accessed 30 July 2014

  • Thorpe RS (1983) A review of the numerical methods for recognising and analysing racial differentiation. In: Felsenstein J (ed) Numerical taxonomy. Springer, Berlin, pp 404–423

    Chapter  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Wetter MA (1983) Micromorphological characters and generic limitation of some New World Senecioneae (Asteraceae). Brittonia 35:1–22

    Article  Google Scholar 

  • Wiley EO (1981) Phylogenetics: the theory and practice of phylogenetics systematics. Wiley, New York

    Google Scholar 

  • Yu J, Kuroda C, Gong X (2014) Natural hybridization and introgression between Ligularia cymbulifera and L. tongolensis (Asteraceae, Senecioneae) in four different locations. PLOS One 9:e115167. doi:10.1371/journal.pone.0115167

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are Grateful to curators of the following herbaria: BR, EA, LISC, MA, MAL, MO, PRE, SRGH, and UZL for specimen loans, Dr. Renee Reddy for sourcing the herbarium material, Dr. Danica Marlin for assistance with univariate statistical analysis, Wesley Hattingh for help with analysis in R, Dr. Kelsey Glennon for assistance with producing the distribution map in ArcGIS and Donald McCallum for his support with microscopy work and most graphics. The permission granted to the authors by the Editor of the Polish Botanical Studies to use a modified version of the illustration of the style branch apices (Fig. 3 in this manuscript) is also acknowledged. The authors also appreciate the constructive comments and suggestions from two anonymous reviewers, which improved this manuscript. This project was funded by the National Research Foundation (NRF) of South Africa through a Grant (90928) to GVC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruvimbo J. Mapaya.

Additional information

Handling editor: Christoph Oberprieler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Supplementary data detailing the 134 specimens of Emilia coccinea complex used in this phenetic study. Identification code, collector and collection number, herbarium, locality information, altitude, and month of flowering are noted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mapaya, R.J., Cron, G.V. A phenetic study of the Emilia coccinea complex (Asteraceae, Senecioneae) in Africa. Plant Syst Evol 302, 703–720 (2016). https://doi.org/10.1007/s00606-016-1294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1294-6

Keywords

Navigation