Skip to main content

Advertisement

Log in

Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The use of local provenances in restoration, agriculture and forestry has been identified and widely implemented as a measure for species and community conservation. In practice, provenances are often delineated based on climate, geomorphology and correlated spatial descriptors following the boundaries of larger natural regions. They are thought to comprise genetically homogenous plant material. Here we investigate genetic variation at AFLP loci in 26 natural populations of the regionally common grassland species Geranium pratense, which is often used in seed mixtures. Most studied populations are located in one previously delineated provenance in Germany. We assess within- and among provenance differentiation patterns and aspects of gene flow by investigating the mating system, the genetic structure at regional and local scale, gene dispersal and potential selective mechanisms that may have contributed to differentiation patterns found. Compared to other herbaceous, insect-pollinated grassland species and despite being outcrossed (mean t m = 0.88), G. pratense showed low genetic diversity (mean H E = 0.15), considerable genetic differentiation among populations within provenances (mean pairwise F ST = 0.20) and a pronounced within-population spatial genetic structure (mean Sp = 0.064). A genome scan approach identified three potentially adaptive loci. However, their allelic frequencies were only weakly related to climatic parameters thus providing little evidence for adaptive divergence. Nevertheless, the distribution of genetic diversity and derived gene dispersal estimates indicate limited dispersal ability, suggesting that gene flow at distances larger than 10 km is negligible. Our findings may question the approach of delineating provenances by general criteria, and highlight the importance of species-specific studies on differentiation and adaptation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aegisdottir HH, Kuss P, Stocklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Brennenstuhl G (2007) Bemerkenswerte Arten nach Strassenbaumaßnahmen in Salzwedel. Mitt Florist Kart Sachsen-Anhalt 12:95

    Google Scholar 

  • Bussell JD, Hood P, Alacs EA, Dixon KW, Hobbs RJ, Krauss SL (2006) Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. Austral Ecol 31:164–175

    Article  Google Scholar 

  • Chang SM (2007) Gender-specific inbreeding depression in a gynodioecious plant, Geranium maculatum (Geraniaceae). Am J Bot 94:1193–1204

    Article  PubMed  Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    Google Scholar 

  • Despres L, Loriot S, Gaudeul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 11:2337–2347

    Article  PubMed  CAS  Google Scholar 

  • Dlussky GM, Lavrova NV, Erofeeva EA (2000) Mechanisms of restiction of pollinator range in Chamaenerion angustifolium and two Geranium species (G. palustre and G. pratense). Zh Obshch Biol 61:181–197

    Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Google Scholar 

  • Eckstein RL, O’Neill RA, Danihelka J, Otte A, Kohler W (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379

    Article  PubMed  CAS  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Fiz O, Vargas P, Alarcón M, Aedo C, García JL, Aldasoro JJ (2008) Phylogeny and historical biogeography of Geraniaceae in relation to climate changes and pollination ecology. Syst Bot 33:326–342

    Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics 180:977–993

    Article  PubMed  Google Scholar 

  • Frankham R (1995) Effective population-size adult-population size ratios in wildlife—a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Fryxell PA (1957) Mode of reproduction of higher plants. Bot Rev 23:135–233

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life-history traits on genetic diversity in plant species. Phil Trans R Soc B 351:1291–1298

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol 15:559–571

    Article  PubMed  CAS  Google Scholar 

  • Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588

    Article  PubMed  Google Scholar 

  • Herrera J (1991) Herbivory, seed dispersal, and the distribution of a ruderal plant living in a natural habitat. Oikos 62:209–215

    Article  Google Scholar 

  • Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Mol Ecol 17:5378–5390

    Article  PubMed  CAS  Google Scholar 

  • Holderegger R, Herrmann D, Poncet B, Gugerli F, Thuiller W, Taberlet P, Gielly L, Rioux D, Brodbeck S, Aubert S, Manel S (2008) Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecol Divers 1:273–283

    Article  Google Scholar 

  • Honnay O, Coart E, Butaye J, Adriaens D, Van Glabeke S, Roldan-Ruiz I (2006) Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biol Conserv 127:411–419

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Hundt R (1975) Zur anthropogenen Verbreitung und Vergesellschaftung von Geranium pratense L. Vegetatio 31:23–32

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jump AS, Penuelas J, Rico L, Ramallo E, Estiarte M, Martinez-Izquierdo JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Change Biol 14:637–643

    Article  Google Scholar 

  • Kauter D (2002) »Sauergras« und »Wegbreit«?: Die Entwicklung der Wiesen in Mitteleuropa zwischen 1500 und 1900. Heimbach, Stuttgart

    Google Scholar 

  • Kleinschmit JRG, Kownatzki D, Gegorius HR (2004) Adaptational characteristics of autochthonous populations—consequences for provenance delineation. For Ecol Manag 197:213–224

    Article  Google Scholar 

  • Krauss SL, Koch JM (2004) Rapid genetic delineation of provenance for plant community restoration. J Appl Ecol 41:1162–1173

    Article  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE. doi:10.1371/journal.pone.0004010

  • Leimu R, Fischer M (2010) Between-population outbreeding affects plant defence. PLoS ONE. doi:10.1371/journal.pone.0012614

  • Llaurens V, Castric V, Austerlitz F, Vekemans X (2008) High paternal diversity in the self-incompatible herb Arabidopsis halleri despite clonal reproduction and spatially restricted pollen dispersal. Mol Ecol 17:1577–1588

    Article  PubMed  CAS  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Michalski SG, Durka W (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phyt 183:470–479

    Google Scholar 

  • Michalski S, Durka W, Jentsch A, Kreyling J, Pompe S, Schweiger O, Willner E, Beierkuhnlein C (2010) Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius). Theor Appl Genet 120:1151–1162

    Article  PubMed  Google Scholar 

  • Miller SA, Bartow A, Gisler M, Ward K, Young AS, Kaye TN (2011) Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restor Ecol 19:268–276

    Article  Google Scholar 

  • Mortlock BW (2000) Local seed for revegetation. Ecol Manag Restor 1:93–101

    Article  Google Scholar 

  • Musche M, Settele J, Durka W (2008) Genetic population structure and reproductive fitness in the plant Sanguisorba officinalis in populations supporting colonies of an endangered Maculinea butterfly. Int J Plant Sci 169:253–262

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Odat N, Jetschke G, Hellwig FH (2004) Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities. Mol Ecol 13:1251–1257

    Article  PubMed  CAS  Google Scholar 

  • Pannell JR, Dorken ME (2006) Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landscape Ecol 21:837–848

    Article  Google Scholar 

  • Pérez-Figueroa A, Garcia-Pereira MJ, Saura M, Rolan-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276

    Article  PubMed  Google Scholar 

  • Peters MD, Xiang QY, Thomas DT, Stucky J, Whiteman NK (2009) Genetic analyses of the federally endangered Echinacea laevigata using amplified fragment length polymorphisms (AFLP)-inferences in population genetic structure and mating system. Conserv Genet 10:1–14

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland

    Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Rogers DL, Montalvo AM (2004) Genetically appropriate choices for plant materials to maintain biologcial diversity. University of California. Report to the USDA Forest Service, Rocky Mountain Region, Lakewood, CO. http://www.fs.fed.us/r2/publications/botany/plantgenetics.pdf. Accessed 26 Feb 2011

  • Rong J, Janson S, Umehara M, Ono M, Vrieling K (2010) Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations. Ann Bot 106:285–296

    Article  PubMed  CAS  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    Article  PubMed  CAS  Google Scholar 

  • Shaw DV, Kahler AL, Allard RW (1981) A multilocus estimator of mating system parameters in plant populations. Proc Natl Acad Sci USA 78:1298–1302

    Article  PubMed  CAS  Google Scholar 

  • Shi M–M, Michalski SG, Chen X-Y, Durka W (2011) Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forests, Castanopsis eyrei. PLoS ONE 6:e21302

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, van der Schoot J, Geerts R, Antonisse-de Jong AG, Korevaar H, van der Werf A, Vosman B (2000) Genetic diversity and the reintroduction of meadow species. Plant Biol 2:447–454

    Article  Google Scholar 

  • R Develoment Core Team (2010) R: a language and environment for statistical computing. In: http://www.R-project.org. R Foundation for Statistical Computing, Vienna, Austria

  • Van Rossum F, Triest L (2007) Fine-scale spatial genetic structure of the distylous Primula veris in fragmented habitats. Plant Biol 9:374–382

    Article  PubMed  Google Scholar 

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the autor, Laboratoir de Génétique et Ecologie, Végétale. Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  PubMed  CAS  Google Scholar 

  • Vitou J, Skuhrava M, Skuhravy V, Scott JK, Sheppard AW (2008) The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur J Entomol 105:113–119

    Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., apidae), in an agricultural landscape. J Appl Entomol 124:299–306

    Article  Google Scholar 

  • Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera : Apidae). Apidologie 39:419–427

    Article  Google Scholar 

  • Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227:1–13

    Article  Google Scholar 

  • Yukawa J (2000) Synchronization of gallers with host plant phenology. Popul Ecol 42:105–113

    Article  Google Scholar 

  • Zhao R, Xia H, Lu BR (2009) Fine-scale genetic structure enhances biparental inbreeding by promoting mating events between more related individuals in wild soybean (Glycine soja, Fabaceae) populations. Am J Bot 96:1138–1147

    Article  PubMed  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan G. Michalski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalski, S.G., Durka, W. Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense . Conserv Genet 13, 581–592 (2012). https://doi.org/10.1007/s10592-011-0309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0309-7

Keywords

Navigation