Skip to main content
Log in

DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

DNA sequence data enable not only the inference of phylogenetic relationships but also provide an efficient method for species-level identifications under the terms DNA barcoding or DNA taxonomy. In this study, we have sequenced partial sequences of mitochondrial COI and 16S rRNA genes from 63 specimens of 8 species of Pectinidae to assess whether DNA barcodes can efficiently distinguish these species. Sequences from homologous regions of four other species of this family were gathered from GenBank. Comparisons of within and between species levels of sequence divergence showed that genetic variation between species exceeds variation within species. When using neighbour-joining clustering based on COI and 16S genes, all species fell into reciprocally monophyletic clades with high bootstrap values. These evidenced that these scallop species can be efficiently identified by DNA barcoding. Evolutionary relationships of Pectinidae were also examined using the two mitochondrial genes. The results are almost consistent with Waller’s classification, which was proposed on the basis of shell microstructure and the morphological characteristics of juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xu KF, Kanno M, Yu H, Li Q, Kijima A (2010) Complete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop Chlamys farreri (Bivalvia: Pectinidae). Mol Biol Rep. doi:10.1007/s11033-010-9974-8

  2. Brand AR (2006) Scallop ecology: distributions and behaviour. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier BV, The Netherlands, pp 561–744

    Google Scholar 

  3. FAO (2006) Fishstat plus: universal software for fishery statistical. Time series 1950–2004. Version 2.30. FAO Fisheries Department, Fishery Information, Data and Statistics Unit, Rome

    Google Scholar 

  4. Thiele J (1935) Handbuch der systematischen Weichtierkunde, Zweiter Band. Gustav Fischer, Jena, pp 79–154

    Google Scholar 

  5. Korobkov IA (1960) Family Pectinidae Lamarck, 1801. In: Orlov UA (ed) Osnovy Paleontologii, Mollusca-Loricata, Bivalvia and Scaphopoda. Academy Nauk USSR, Moscow, pp 82–85

    Google Scholar 

  6. Hertlein LG (1969) Pectinidae. In: Moore RC (ed) Treatise on invertebrate paleontology. Geological Society of America and University of Kansas, Lawrence, pp N349–N373

    Google Scholar 

  7. Habe T (1977) Systematics of Mollusca in Japan: Bivalvia and Scaphopoda. Hokuryukan, Tokyo

    Google Scholar 

  8. Waller TR (1991) Evolutionary relationship among commercial scallops (Mollusca: Bivalvia: Pectinidae). In: Shumway SE (ed) Scallops: biology, ecology and aquaculture. Elsevier, New York, pp 1–73

    Google Scholar 

  9. Waller TR (1993) The evolution of “Chlamys” (Mollusca: Bivalvia: Pectinidae) in the tropical western Atlantic ans eastern Pacific. Am Malacol Bull 10:195–249

    Google Scholar 

  10. Waller TR (2006) New phylogenies of the Pectinidae (Mollusca: Bivalvia): reconciling morphological and molecular approaches. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier BV, Amsterdam, The Netherlands, pp 1–44

    Chapter  Google Scholar 

  11. Canapa A, Barucca M, Marinelli A, Olmo E (2000) Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia). J Mol Evol 50:93–97

    CAS  PubMed  Google Scholar 

  12. Matsumoto M, Hayami I (2000) Phylogenetic analysis of the family Pectinidae (Bivalvia). J Molluscan Stud 66:477–488

    Article  Google Scholar 

  13. Barucca M, Olmo E, Schiaparelli S, Canapa A (2004) Molecular phylogeny of the family Pectinidae (Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes. Mol Phylogenet Evol 31:89–95

    Article  CAS  PubMed  Google Scholar 

  14. Saavedra C, Peña JB (2006) Phylogenetics of American scallops (Bivalvia: Pectinidae) based on partial 16S and 12S ribosomal RNA gene sequences. Mar Biol 150:111–119

    Article  CAS  Google Scholar 

  15. Mahidol C, Na-Nakorn U, Sukmanomon S, Yoosuk W, Taniguchi N, Nguyen TTT (2007) Phylogenetic relationships among the nine scallop species (Bivalvia: Pectinidae) inferred from nucleotide sequences of one mitochondrial and three nuclear gene regions. J Shellfish Res 26:25–32

    Article  Google Scholar 

  16. Puslednik L, Serb JM (2008) Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Mol Phylogenet Evol 48:1178–1188

    Article  CAS  PubMed  Google Scholar 

  17. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M et al (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3:e2490

    Article  Google Scholar 

  18. Frezal L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 8:727–736

    Article  CAS  PubMed  Google Scholar 

  19. Yang R, Wu XB, Yan P, Li XQ (2009) Using DNA barcodes to identify a bird involved in a bird strike at a Chinese airport. Mol Biol Rep. doi:10.1007/s11033-009-9945-0

  20. Hogg ID, Hebert PDN (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can J Zool 82:749–754

    Article  Google Scholar 

  21. Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identification of mayflies (Ephemeroptera) using DNA barcodes. J N Am Benthol Soc 24:508–524

    Google Scholar 

  22. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  PubMed  Google Scholar 

  23. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    Article  CAS  Google Scholar 

  24. Lakra WS, Goswami M, Gopalakrishnan A (2009) Molecular identification and phylogenetic relationships of seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit I mitochondrial genes. Mol Biol Rep 36:831–839

    Article  CAS  PubMed  Google Scholar 

  25. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  26. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding of neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7:184–190

    Article  CAS  Google Scholar 

  27. Robins JH, Hingston M, Matisoo-Smith E, Ross HA (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7:717–729

    Article  CAS  Google Scholar 

  28. Persis M, Reddy ACS, Rao LM, Khedkar GD, Ravinder K, Nasruddin K (2009) COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India. Mol Biol Rep 36:1733–1740

    Article  CAS  PubMed  Google Scholar 

  29. Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5

    Article  PubMed  Google Scholar 

  30. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  31. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  32. Zhang DX, Hewitt GM (1997) Assessment of the universality and utility of a set of conserved mitochondrial primers in insects. Insect Mol Biol 6:143–150

    Article  CAS  PubMed  Google Scholar 

  33. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B 265:2257–2263

    Article  Google Scholar 

  34. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Article  Google Scholar 

  35. Ebach MC, Holdredge C (2005) DNA barcoding is no substitute for taxonomy. Nature 434:697

    Article  CAS  PubMed  Google Scholar 

  36. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B 360:1905–1916

    Article  CAS  Google Scholar 

  37. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    Article  PubMed  Google Scholar 

  38. Langhoff P, Authier A, Buckley TR, Dugdale JS, Rodrigo A, Newcomb RD (2009) DNA barcoding of the endemic New Zealand leaf roller moth genera, Ctenopseustis and Planotortrix. Mol Ecol Resour 9:691–698

    Article  CAS  Google Scholar 

  39. Li Q, Park C, Kijima A (2002) Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shellfish Res 21:811–815

    Google Scholar 

  40. Matsumoto M (2003) Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA COI sequences. Mol Phylogenet Evol 27:429–440

    Article  CAS  PubMed  Google Scholar 

  41. Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, pp 205–247

    Google Scholar 

  42. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  43. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  44. Rozas J, Sanchez DJC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  45. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  47. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  48. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

    Google Scholar 

  49. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  50. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  51. Barrett RDH, Hebert PD (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    Article  CAS  Google Scholar 

  52. Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 4:8

    Article  PubMed  Google Scholar 

  53. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971

    Article  PubMed  Google Scholar 

  54. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728

    Article  PubMed  Google Scholar 

  55. Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN (2009) DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Mol Ecol Resour 9:1302–1310

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank to Dr. Jun Chen from Ocean University of China for providing the samples of Pectinidae. This study was supported by research grants from National High Technology Research and Development Program (2007AA09Z433), Chinese Ministry of Education (707041), and 973 Program (2010CB126406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Li, Q., Kong, L. et al. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Mol Biol Rep 38, 291–299 (2011). https://doi.org/10.1007/s11033-010-0107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0107-1

Keywords

Navigation