Skip to main content

Advertisement

Log in

Genetic Diversity and Population Structure Patterns in Chinese Cherry (Prunus pseudocerasus Lindl) Landraces

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Chinese cherry (Prunus pseudocerasus Lindl.) is an ancient fruit crop with highly economic and ornamental values. It originated in China and the cultivation history can be traced back to 3,000 - 4,000 years ago. Over such a long-term domestication process, a large number of genetic variations have been accumulated in different landraces. However, their utilization for cultivar improvement is limited by the scarcity of information involving genetic diversity and population structure. Here, 17 populations comprised of 140 individuals were collected from four geographic areas: Sichuan Basin (SC), Qinglin Mountain (QL), Yungui Plateau (YG) and North of China (NC), and analyzed using a set of 20 microsatellite markers. In total, 126 polymorphic loci were generated, with 6.3 loci per primer. The global expected heterozygosity (He = 0.63) and Shannon information index (I = 1.23) implied a moderately high level of genetic variation. Two major clusters (cluster 1 and cluster 2) were demonstrated based on population structure analysis, which implied the presence of two potential domestication sites of Chinese cherry landraces. Individuals from SC were assigned to cluster 1 and those from QL, YG and NC were grouped into cluster 2. Samples from QL region contained the most plentiful admixture genetic components, implied the possibility of being one transition region of genetic variation. Moreover, botanical characteristics, such as long lifespan, inbreeding preference as well as vegetative propagation, might lead to a relatively low level but significant genetic divergence among populations. Finally, conservation strategies were proposed to protect these valuable natural germplasm based on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aranzana MJ, Abbassi E-K, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Royal Soc London B 263:1619–1626

    Article  Google Scholar 

  • Björn B, Paulo MJ, Kowitwanich K, Sengers M, Visser RG, van Eck HJ, Van Eeuwijk FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet 121:1151–1170

    Article  Google Scholar 

  • Bouhadida M, Moreno MÁ, Gonzalo MJ, Alonso JM, Gogorcena Y (2011) Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genet Genomes 7:257–270

    Article  Google Scholar 

  • Bourguiba H, Krichen L, Audergon JM, Khadari B, Trifi-Farah N (2010) Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep 28:578–587

    Article  Google Scholar 

  • Brookfield J (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Cao D, Zhao G (2007) Studies on genetic variation in cherry germplasm using RAPD analysis. Sci Hortic 111:248–254

    Article  CAS  Google Scholar 

  • Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209

    CAS  Google Scholar 

  • Cao D, Cai Y, Yang J, Zhao G (2007) PCR-RFLP analysis of Prunus pseudocerasus. J Northwest A & F Univ (Nat Sci Ed) 35:173–178

    Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8:975–990

    Article  Google Scholar 

  • Chen J, Wang XR, Tang HR, Chen T, Huang XJ, Liang QB (2013a) Assessment of Genetic Diversity and Populations Genetic Structure in Wild Chinese Cherry from Sichuan Province Using SSR Markers. Acta Horticulturae Sinica 40:333–340

    CAS  Google Scholar 

  • Chen T, Wang XR, Tang HR, Chen Q, Huang XR, Chen J (2013b) Genetic diversity and population structure of Chinese Cherry revealed by chloroplast DNA trnQ-rps16 intergenic spacers variation. Genet Resour Crop Ev 60:1859–1871

    Article  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo M, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Clarke J, Sargent D, Bošković R, Belaj A, Tobutt K (2009) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’× Pn nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genomes 5:41–51

    Article  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jesus ON, Silva S, Amorim EP, Ferreira CF, de Campos JM, Silva GG, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol 13:41

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rogatis A, Ferrazzini D, Ducci F, Guerri S, Carnevale S, Belletti P (2013) Genetic variation in Italian wild cherry (Prunus avium L.) as characterized by nSSR markers. Forestry 86:391–400

    Article  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana M, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Liu X (2008) Crops and their wild relatives in China (Vol. fruit crops). China Agricultural Press, Beijing, pp 37–48

    Google Scholar 

  • Donoso J, Aros D, Meneses C, Narváez C, Infante R (2008) Genetic relationships in apricot (Prunus armeniaca L.) using SSR markers and their implications for breeding. J Food Agric Environ 6(4):378–382

    CAS  Google Scholar 

  • Ercisli S, Agar G, Yildirim N, Duralija B, Vokurka A, Karlidag H (2011) Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers. Genet Mol Res 10:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resources 10:564–567

    Article  Google Scholar 

  • Frankel OH, Brown A, Burdon J (1995) The conservation of cultivated plants. In: The conservation of plant biodiversity, 1st edn. Cambridge University Press, UK

    Google Scholar 

  • Ganopoulos IV, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris AS (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181:237–251

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F- statistics. J Hered 86:485–486

    Google Scholar 

  • Huang XJ, Chen T, Liang QB, Chen J, Wang XR, Tang HR (2011) Preliminary evaluation on the economic characters of 14 cherry germplasms. South China Fruits 40:15–18

    Google Scholar 

  • Huang XJ, Wang XR, Chen T, Chen J, Tang HR (2013) Research progress of genetic diversity in Cerasus pseudocerasus and their wild relative populations, and utilize progress of cultivation resources. J Fruit Sci 3:470–479

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resources 9:1322–1332

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jolivet C, Höltken AM, Liesebach H, Steiner W, Degen B (2011) Spatial genetic structure in wild cherry (Prunus avium L.): I. variation among natural populations of different density. Tree Genet Genomes 7:271–283

    Article  Google Scholar 

  • Krutovsky KV, Clair JBS, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658

    Article  Google Scholar 

  • López-Gartner G, Cortina H, McCouch SR, Moncada MDP (2009) Analysis of genetic structure in a sample of coffee (Coffea arabica L.) using fluorescent SSR markers. Tree Genet Genomes 5:435–446

    Article  Google Scholar 

  • Lacis G, Rashal I, Ruisa S, Trajkovski V, Iezzoni AF (2009) Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci Hortic 121:451–457

    Article  CAS  Google Scholar 

  • Li MM, Cai YL, Qian ZQ, Zhao GF (2009) Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation. Genet Resour Crop Ev 56:455–464

    Article  CAS  Google Scholar 

  • Li M, Zhao Z, Miao X, Zhou J (2013) Genetic Diversity and Population Structure of Siberian apricot (Prunus sibirica L.) in China. Int J Mol Sci 15:377–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Liu M (1993) The seed relics identification of HouMa Shaanxi Copper Casting sites. Cultural Relic Press Beijing, China, pp 134–136

    Google Scholar 

  • Liu K, Muse S (2004) PowerMarker: New genetic data analysis software. Version 2(7):2004

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Mariette S (2014) Insights into the Evolutionary History of Sweet Cherry (Prunus avium L.). In: Plant and Animal Genome XXII Conference. Plant and Animal Genome

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77

    Article  PubMed  PubMed Central  Google Scholar 

  • McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414

    Article  PubMed  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes M, Arús P (2004) Simple sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evo 19:153–170

    Article  CAS  Google Scholar 

  • Nikiforova SV, Cavalieri D, Velasco R, Goremykin V (2013) Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol Biol Evol 30:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Pritchard JK, Donnelly P (2001) Case–control studies of association in structured or admixed populations. Theor Popul Biol 60:227–237

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Jiang H, Yan Z, Chen Y, Zhou X, Huang L, Lei Y, Huang J, Yan L, Qi Y (2014) Genetic Diversity and Population Structure of the Major Peanut (Arachis hypogaea L.) Cultivars Grown in China by SSR Markers. PLoS One 9:e88091

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10:162–167

    Article  CAS  PubMed  Google Scholar 

  • Song C, Wen X, Yang E (2011) Cherry germplasm from Guizhou Province analyzed by ISSR Markers. Acta Horticulturae Sinica 38:1531–1538

    CAS  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager L, Beck L, King GJ, Ryder C, Rajapakse S, Baird W, Ballard R, Abbott A (2000) Characterization of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Stanys V, Baniulis D, Morkunaite-Haimi S, Siksnianiene J, Frercks B, Gelvonauskiene D, Stepulaitiene I, Staniene G, Siksnianas T (2012) Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Sci Hortic 142:136–142

    Article  Google Scholar 

  • Struss D, Ahmad R, Southwick SM, Boritzki M (2003) Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J Am Soc Hortic Sci 128:904–909

    CAS  Google Scholar 

  • Tapia ME (2000) Mountain agrobiodiversity in Peru: seed fairs, seed banks, and mountain-to-mountain exchange. Mt Res Dev 20:220–225

    Article  Google Scholar 

  • Tiago A, Ana L, Ricardo JL, Albano BP, Gordon L (2008) LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323

    Article  Google Scholar 

  • Turkoglu Z, Bilgener S, Ercisli S, Yildirim N (2013) Simple sequence repeat (SSR) analysis for assessment of genetic variability in wild cherry germplasm. J Appl Bot Food Qual 85:229

    Google Scholar 

  • Van Leeuwen J, Lleras Pérez E, Clement C (2005) Field genebanks may impede instead of promote crop development: lessons of failed genebanks of “promising” Brazilian palms. Agrociencia 9:61–66

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Zonneveld M et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. Plos One 7:e29845

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan S, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431

    Article  CAS  Google Scholar 

  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X (2014) High-Level Genetic Diversity and Complex Population Structure of Siberian Apricot (Prunus sibirica L.) in China as Revealed by Nuclear SSR Markers. PLoS One 9:e87381

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White G, Boshier D, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol Ecol 8:1899–1909

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Xia YS et al (2014) Analysis of Genetic Diversity and Population Structure Using SSR Markers in Tobacco. Advanced Materials Research 850:1243–1246

    Google Scholar 

  • Yü DJ (1979) Taxonomy of fruit trees in China. Agricultural Press, Beijing

    Google Scholar 

  • Yü T, Lu L, Ku T, Li C, Chen S (1986) Rosaceae (3), Amygdaloideae. Flora Reipublicae Popularis Sinicae, vol. 38. Science Press, Beijing

    Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi Y, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach (Prunus persica (L.) Batsch) derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301

    Article  CAS  Google Scholar 

  • Yeh F, Yang R, Boyle T (1997) POPGENE: a microsoft windows-based freeware for population genetic analysis: version 1.32, 32 bit. University of Alberta, Edmonton

    Google Scholar 

  • Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6:e27565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao DW, Yang JB, Yang SX, Kato K, Luo JP (2014) Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biol 14:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou HF, Xie ZW, Ge S (2003) Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China. Theor Appl Genet 107:332–339

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187:319–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (31272134) and the Key Cultivation Special Project Foundation of Education Department of Sichuan Province (2011A005) for the grant. We also thank the members of our scientific research team (Jiao Chen, Hong-wei Zhang and Zhi-lin Huang et al.) for their great help in the sample collection.

Compliance with Ethical Standards

This study was conducted in accordance with all current legislation in People's Republic of China. No specific permits were required for the described field studies and sampling locations, all accessions were sampled by researchers with introduction letters from Sichuan Agricultural University. Sampling locations and accessions are not privately owned or protected in any way. The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-rong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Huang, Xj., Zhang, J. et al. Genetic Diversity and Population Structure Patterns in Chinese Cherry (Prunus pseudocerasus Lindl) Landraces. Plant Mol Biol Rep 34, 440–453 (2016). https://doi.org/10.1007/s11105-015-0934-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0934-2

Keywords

Navigation