Skip to main content
Log in

DNA Barcodes Distinguish Withania somnifera and Withania ashwagandha

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

On the basis of morphology, chemical profiling, crossing ability, amplified fragment length polymorphism and comparison of nucleotide sequences of nuclear ribosomal internal transcribed spacer (ITS), the cultivated form of Withania somnifera, a species of therapeutic value, has been circumscribed as a new species, Withania ashwagandha. The present study was undertaken to ascertain whether the two species can be distinguished on the basis of DNA barcoding. Six barcode loci, ITS, ITS2, matK (maturase K), rbcL (ribulose-bisphosphate carboxylase/oxygenase, large subunit), rpoC1 (RNA polymerase-β′ subunit, main catalytic subunit) and trnH-psbA spacer (transfer RNA for histidine-photosystem II protein D1 spacer) from W. somnifera, W. ashwagandha, their hybrid, and ‘ashwagandha’ market samples were amplified, sequenced, and compared. ITS, ITS2 and matK distinguished two species on the basis of phylogenetic tree method. Likewise, BLAST 1 analysis based on ITS, ITS2, matK, and rbcL individually discriminated two species. However, on the basis of Kimura 2 Parameter distances, two species could not be distinguished as the requirement of a distinct barcode gap—the highest intraspecific distance being lower than the lowest interspecific distance—was not met by any of the loci. If compared by character-based method, ITS, ITS2 and matK sequences of the two species had distinct diagnostic nucleotides (pure character attributes) at nine, four and one positions, respectively. Interestingly, all market samples co-segregated and shared character attributes with W. ashwagandha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. The Plant List (2013) Version 1.1. Published on the Internet. http://www.theplantlist.org/. Accessed 27 Apr 2015

  2. Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar R, Khan S, Vishwakarma RA (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36

    Article  CAS  Google Scholar 

  3. Kuttan G (1996) Use of Withania somnifera as an adjuvant during radiation therapy. Indian J Exp Biol 34:854–856

    CAS  Google Scholar 

  4. Ziauddin M, Phnasalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50:69–76

    Article  CAS  Google Scholar 

  5. Andallu B, Radhika B (2000) Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol 38:607–609

    CAS  Google Scholar 

  6. Davis L, Kuttan G (2000) Effect of Withania somnifera on cyclophosphamide-induced urotoxicity. Cancer Lett 148:9–17

    Article  CAS  Google Scholar 

  7. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393

    Article  CAS  Google Scholar 

  8. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur S, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 109:3510–3515

    Article  CAS  Google Scholar 

  9. Mir BA, Khazir J, Hekeem KR, Kumar A, Koul S (2014) Withanolides array of Withania ashwagandha sp. novo populations from India. Ind Crop Prod 59:9–13

    Article  CAS  Google Scholar 

  10. Mir BA, Koul S, Kumar A (2010) Intraspecific variation in the internal transcribed spacer (ITS) regions of rDNA in Withania somnifera (Linn.) Dunal. Indian J Biotechnol 9:325–328

    CAS  Google Scholar 

  11. Kumar A, Mir BA, Sehgal D, Dar TH, Koul S, Kaul MK, Raina SN, Quazi GN (2011) Utility of a multidisciplinary approach for genome diagnostics of cultivated and wild germplasm resources of medicinal Withania somnifera, and the status of new species, W. ashwagandha, in the cultivated taxon. Plant Syst Evol 291:141–151

    Article  Google Scholar 

  12. Kaul KN (1957) The origin, distribution and cultivation of ‘Ashwagandha’ the so called Withania somnifera of Indian literature. In: Proceedings of symposium utilization of Indian medicinal plants. National Botanic Gardens, CSIR, Lucknow, pp 7–8

  13. Sastry MS, Dhalla NS, Malhotra CL (1960) Chemical examination of Withania ashwagandha Kaul. Indian J Pharmacol 22:205–208

    Google Scholar 

  14. Dhalla NS, Gupta KC, Sastry NS, Malhotra CL (1961) Comparative studies on Withania somnifera Dunal and Withania ashwagandha Kaul. Indian J Pharmaco 23:126–127

    Google Scholar 

  15. Negi MS, Singh A, Lakshmikumaran M (2000) Genetic variation and relationship among and within Withania species as revealed by AFLP markers. Genome 43:975–980

    Article  CAS  Google Scholar 

  16. Negi MS, Sabharwal V, Wilson N, Lakshmikumaran MS (2006) Comparative analysis of the efficiency of SAMPL and AFLP in assessing genetic relationships among Withania somnifera genotypes. Curr Sci 91:464–471

    CAS  Google Scholar 

  17. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321

    Article  CAS  Google Scholar 

  18. Kress WJ, Wurdack KJ, Zimmer EA, Weight LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    Article  CAS  Google Scholar 

  19. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (http://barcodinglife.org). Mol Ecol Notes 7:355–364

    Article  CAS  Google Scholar 

  20. Parveen I, Singh HK, Raghuvanshi S, Pradhan UC, Babbar SB (2012) DNA barcoding of endangered Indian Paphiopedilum species. Mol Ecol Resour 12:82–90

    Article  CAS  Google Scholar 

  21. Singh HK, Parveen I, Raghuvanshi S, Babbar SB (2012) The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC Res Notes 5:42

    Article  CAS  Google Scholar 

  22. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797

    Article  Google Scholar 

  23. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    Article  Google Scholar 

  24. China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108:19641–19646

    Article  Google Scholar 

  25. Hollingsworth PM (2011) Refining the DNA barcodes for land plants. Proc Natl Acad Sci USA 108:19451–19452

    Article  CAS  Google Scholar 

  26. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508

    Article  Google Scholar 

  27. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bullet 19:11–15

    Google Scholar 

  28. Hu YJ, Saedler H (2007) Evolution of the inflated calyx syndrome in solanaceae. Mol Biol Evol 24:2443–2453

    Article  CAS  Google Scholar 

  29. Fay MF, Swensen SM, Chase MW (1997) Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bullet 52:111–120

    Article  Google Scholar 

  30. Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Missouri Bot Gard 79:249–265

    Article  Google Scholar 

  31. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  32. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737

    Google Scholar 

  33. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136

    Article  CAS  Google Scholar 

  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  36. Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc Lond B Biol Sci 275:237–247

    Article  CAS  Google Scholar 

  37. Bergmann T, Hadrys H, Breves G, Schierwater B (2009) Character-based DNA barcoding: a superior tool for species classification. Berliner und Münchener Tierarztliche Wochenschrift 122:446–450

    CAS  Google Scholar 

  38. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B 360:1905–1916

    Article  CAS  Google Scholar 

  39. Atal CK, Schwarting AE (1962) Intraspecific variability in Withania somnifera. I. A preliminary survey. Llyodia 25:78–87

    Google Scholar 

  40. Velzenvan R, Weitschek E, Felici G, Bakker FT (2012) DNA barcoding of recently diverged species: relative performance of matching methods. PLoS ONE 7:e30490

    Article  Google Scholar 

  41. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:2229–2238

    CAS  Google Scholar 

  42. Lahaye R, Van Der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928

    Article  CAS  Google Scholar 

  43. Dexter KG, Pennington TD, Cunningham CW (2010) Using DNA to assess errors in tropical tree identifications: how often are ecologists wrong and when does it matter? Ecol Monogr 80:267–286

    Article  Google Scholar 

  44. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  CAS  Google Scholar 

  45. Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455

    Article  CAS  Google Scholar 

  46. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6:e19254

    Article  CAS  Google Scholar 

  47. Federici S, Galimberti A, Bartolucci F, Bruni I, De Mattia F, Cortis P, Labra M (2013) DNA barcoding to analyse taxonomically complex groups in plants: the case of Thymus (Lamiaceae). Bot J Linn Soc 171:687–699

    Article  Google Scholar 

  48. Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764

    Article  CAS  Google Scholar 

  49. Dempewolf H, Hodgins KA, Rummell SE, Ellstrand NC, Rieseberg LH (2012) Reproductive isolation during domestication. Plant Cell 24:2710–2717

    Article  CAS  Google Scholar 

  50. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sushma Koul formerly from the Biodiversity and Applied Botany Division, Institute of Integrative Medicine, Jammu for providing the plant material. They gratefully acknowledge the financial support provided by the Indian Council of Medical Research, New Delhi to S.B.B. in form of a research project. S.M. too thankfully acknowledges the receipt of Junior and Senior Research fellowships from this project. The present work was also partially supported by a Research and Development grant provided to S.B.B. by the University of Delhi. The language editing of the manuscript by Dr. Anupam Raina, a professional copy editor, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi B. Babbar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Significance statement

Withania somnifera, ‘Ashwagandha’, is an important medicinal plant. Because of its high demand, it has been domesticated and is cultivated. There have many suggestions that its cultivated form has diverged enough from the parent species to be treated as a new species, W. ashwagandha. The present work, based on DNA barcoding, confirms its species-level status and provides an effective identification tool for checking substitutions in its market samples.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13001 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S., Mir, B.A., Singh, H.K. et al. DNA Barcodes Distinguish Withania somnifera and Withania ashwagandha . Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 1413–1424 (2018). https://doi.org/10.1007/s40011-017-0879-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0879-3

Keywords

Navigation