Skip to main content
Log in

DNA barcoding is a new approach in comparative genomics of plants

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

DNA barcoding was proposed as a method for recognition and identification of eukaryotic species through comparison of sequences of a standard short DNA fragment—DNA barcode—from an unknown specimen to a library of reference sequences from known species. This allows identifying an organism at any stage of development from a very small tissue sample, fresh or conserved many years ago. Molecular identification of plant samples can be used in various scientific and applied fields. It would also help to find new species, which is particularly important for cryptogamic plants. An optimal DNA barcode region is a small fragment presented in all species of a major taxonomic group, having invariable nucleotide sequence in all members of the same species, but with sufficient variation to discriminate among the species. This fragment should be flanked by low-variable regions for use of universal primers in PCR for amplification and sequencing. The DNA barcode that is well established in animals is a sequence of a fragment of the mitochondrial cytochrome c oxidase gene CO1. However, searching for DNA barcode in plants proved to be a more challenging task. No DNA region universally suitable for all plants and meeting all of the necessary criteria has been found. Apparently, a multilocus or two-stage approach should be applied for this purpose. Several fragments of the chloroplast genome (trnH-psbA, matK, rpoC, rpoB, rbcL) in combinations of two or three regions were suggested as candidate regions with highest potential, but more representative samples should be examined to choose the best candidate. The possibility is discussed to use as DNA barcode internal transcribed spacers (ITS) of nuclear rRNA genes, which are highly variable, widely employed in molecular phylogenetic studies at the species level, but also have some limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, A.G., Genomics of the Evolutionary Process, Trends Ecol. Evol., 2006, vol. 21, no. 6, pp. 316–321.

    Article  PubMed  Google Scholar 

  2. Paton, A.J., Brummitt, N., Govaerts, R., et al., Towards Target 1 of the Global Strategy for Plant Conservation: A Working List of All Known Plant Species — Progress and Prospects, Taxon, 2008, vol. 57, no. 2, pp. 602–611.

    Google Scholar 

  3. Hebert, P.D.N., Cywinska, A., and Ball, S.L., Biological Identifications through DNA Barcodes, Proc. R. Soc. London, Ser. B, 2003, vol. 270, no. 1512, pp. 313–321.

    Article  CAS  Google Scholar 

  4. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M., Identification of Birds through DNA Barcodes, PLoS Biol., 2004, vol. 2, no. 10, p. e312.

    Article  PubMed  CAS  Google Scholar 

  5. Barrett, R.D.H. and Hebert, P.D.N., Identifying Spiders through DNA Barcodes, Can. J. Zool., 2005, vol. 83, no. 3, pp. 481–491.

    Article  CAS  Google Scholar 

  6. Hajibabaei, M., Janzen, D.H., Burns, J.M., et al., DNA Barcodes Distinguish Species of Tropical Lepidoptera, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 4, pp. 968–971.

    Article  PubMed  Google Scholar 

  7. Shneyer, V.S., DNA Barcoding of Animal and Plant Species — the Method for Their Molecular Identification and Biodiversity Study, Zh. Obshch. Biol., 2009, vol. 70, no. 4, pp. 296–315.

    CAS  Google Scholar 

  8. Harris, D.J., Can You Bank on GenBank?, Trends Ecol. Evol., 2003, vol. 18, no. 7, pp. 317–319.

    Article  Google Scholar 

  9. Vilgalis, R., Taxonomic Misidentification in Public Databases, New Phytol., 2003, no. 160, pp. 1–19.

  10. Bailey, C.D., Koch, M.A., and Mayer, M., Toward a Global Phylogeny of the Brassicaceae, Mol. Biol. Evol., 2006, vol. 23, no. 11, pp. 2142–2160.

    Article  PubMed  CAS  Google Scholar 

  11. Erpenbeck, D., Hooper, J.N.A., and Wörheide, G., CO1 Phylogenies in Diploblasts and the “Barcoding of Life”—Are We Sequencing a Suboptimal Partition?, Mol. Ecol. Notes, 2006, vol. 6, no. 2, pp. 550–553.

    Article  CAS  Google Scholar 

  12. Hellberg, M.E., No Variation and Low Synonymous Substitution Rates in Coral mtDNA Despite High Nuclear Variation, BMC Evol. Biol., 2006, vol. 6, p. 24.

    Article  PubMed  CAS  Google Scholar 

  13. Goetze, E., Cryptic Speciation on the High Seas: Global Phylogenetics of the Copepod Family Eucalanidae, Proc. R. Soc. London, Ser. B, 2003, vol. 270, no. 1531, pp. 2321–2331.

    Article  Google Scholar 

  14. Vences, M., Thomas, M., Bonett, R.M., and Vieites, D.R., Deciphering Amphibian Diversity through DNA Barcoding: Chances and Challenges, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1859–1868.

    Article  PubMed  CAS  Google Scholar 

  15. Blaxter, M., Mann, J., Chapman, T., et al., Defining Operational Taxonomic Units Using DNA Barcode Data, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1935–1943.

    Article  PubMed  CAS  Google Scholar 

  16. Rach, J., DeSalle, R., Sarkar, I.N., et al., Character-Based DNA Barcoding Allows Discrimination of Genera, Species and Populations in Odonata, Proc. R. Soc. London, Ser. B, 2008, vol. 275, no. 1632, pp. 237–247.

    Article  CAS  Google Scholar 

  17. Floyd, R., Eyualem, A., Papert, A., and Blaxter, M., Molecular Barcodes for Soil Nematode Identification, Mol. Ecol., 2002, vol. 11, no. 4, pp. 839–850.

    Article  PubMed  CAS  Google Scholar 

  18. Markmann, M. and Tautz, D., Reverse Taxonomy: An Approach Towards Determining the Diversity of Meiobenthic Organisms Based on Ribosomal RNA Signature Sequences, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1917–1924.

    Article  PubMed  CAS  Google Scholar 

  19. Lefébure, T., Douady, C.J., Gouy, M., and Gibert, J., Relationship between Morphological Taxonomy and Molecular Divergence within Crustacea: Proposal of a Molecular Threshold to Help Species Delimitation, Mol. Phylogenet. Evol., 2006, vol. 40, no. 2, pp. 435–447.

    Article  PubMed  CAS  Google Scholar 

  20. Sonnenberg, R., Nolte, A.W., and Tautz, D., An Evaluation of LSU rDNA D1-D2 Sequences for Their Use in Species Identification, Frontiers Zool., 2007, vol. 4, p. 6.

    Article  CAS  Google Scholar 

  21. Vences, M., Thomas, M., van der Meijden, A., et al., Comparative Performance of the 16S rRNA Gene in DNA Barcoding of Amphibians, Frontiers Zool., 2005, vol. 2, p. e5.

    Article  CAS  Google Scholar 

  22. Saunders, G.W., Applying DNA Barcoding to Red Macroalgae: A Preliminary Appraisal Holds Promise for Future Application, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1879–1888.

    Article  PubMed  CAS  Google Scholar 

  23. Robba, L., Russell, S.J., Barker, G.L., and Brodie, J., Assessing the Use of the Mitochondrial cox1 Marker for Use in DNA Barcoding of Red Algae (Rhodophyta), Am. J. Bot., 2006, vol. 93, no. 8, pp. 1101–1108.

    Article  CAS  Google Scholar 

  24. Lane, C.E., Lindstrom, S.C., and Saunders, G.W., A Molecular Assessment of Northeast Pacific Alaria Species (Laminariales, Phaeophyceae) with Reference to the Utility of DNA Barcoding, Mol. Phylogen. Evol., 2007, vol. 44, no. 2, pp. 634–648.

    Article  CAS  Google Scholar 

  25. Evans, K.M., Wortley, A.H., and Mann, D.G., An Assessment of Potential Diatom “Barcode” Genes (cox1, rbcL, 18S and ITS rDNA) and Their Effectiveness in Determining Relationships in Sellaphora (Bacillariophyta), Protist, 2007, vol. 158, no. 3, pp. 349–364.

    Article  PubMed  CAS  Google Scholar 

  26. Wolfe, K.H., Li, W.H., and Sharp, P.M., Rates of Nucleotide Substitution Vary Greatly among Plant Mitochondrial, Chloroplast, and Nuclear DNAs, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 24, pp. 9054–9058.

    Article  PubMed  CAS  Google Scholar 

  27. Drouin, G., Daoud, H., and Xia, J., Relative Rates of Synonymous Substitutions in the Mitochondrial, Chloroplast and Nuclear Genomes of Seed Plants, Mol. Phylogenet. Evol., 2008, vol. 49, no 3, pp.827–831.

    Article  PubMed  CAS  Google Scholar 

  28. Cho, Y., Qiu, Y.-L., Kuhlman, P., and Palmer, J.D., Explosive Invasion of Plant Mitochondria by a Group I Intron, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 24, pp. 14244–14249.

    Article  PubMed  CAS  Google Scholar 

  29. Palmer, J.D. and Herbon, L.A., Plant Mitochondrial DNA Evolves Rapidly in Structure, but Slowly in Sequence, J. Mol. Evol., 1988, vol. 28, nos. 1–2, pp. 87–97.

    Article  PubMed  CAS  Google Scholar 

  30. Cho, Y., Mower, J.P., Qui, Y-L., and Palmer, J.D., Mitochondrial Substitution Rates Are Extraordinarily Elevated and Variable in a Genus of Flowering Plants, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 51, pp. 17741–17746.

    Article  PubMed  CAS  Google Scholar 

  31. Mower, J.P., Touzet, P., Gummow, J.S., et al., Extensive Variation in Synonymous Substitution Rates in Mitochondrial Gene of Seed Plants, BMC Evol. Biol., 2007, vol. 7, p. 135.

    Article  PubMed  CAS  Google Scholar 

  32. Sanjur, O.I., Piperno, D.R., Andres, T.C., and Wessel-Beaver, L., Phylogenetic Relationships among Domesticated and Wild Species of Cucurbita (Cucurbitaceae) Inferred from a Mitochondrial Gene: Implications for Crop Plant Evolution and Areas of Origin, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 1, pp. 535–540.

    Article  PubMed  CAS  Google Scholar 

  33. Bensasson, D., Zhang, D.X., Hartl, D.L., and Hewitt, G.M., Mitochondrial Pseudogenes: Evolution’s Misplaced Witnesses, Trends Ecol. Evol., 2001, vol. 16, no. 6, pp. 314–321.

    Article  PubMed  Google Scholar 

  34. Cho, Y.R. and Palmer, J.D., Multiple Acquisitions via Horizontal Transfer of a Group I Intron in the Mitochondrial cox1 Gene during Evolution of the Araceae Family, Mol. Biol. Evol., 1999, vol. 16, no. 9, pp. 1155–1165.

    PubMed  CAS  Google Scholar 

  35. Bergthorsson, U., Adams, K.L., Thomason, B., and Palmer, J.D., Widespread Horizontal Transfer of Mitochondrial Genes in Flowering Plants, Nature, 2003, vol. 424, no. 6945, pp. 197–201.

    Article  PubMed  CAS  Google Scholar 

  36. Richardson, A.O. and Palmer, J.D., Horizontal Gene Transfer in Plants, J. Exp. Bot., 2007, vol. 58, no. 1, pp. 1–9.

    Article  PubMed  CAS  Google Scholar 

  37. Chase, M.W., Salamin, N., Wilkinson, M., et al., Land Plants and DNA Barcodes: Short-Term and Long-Term Goals, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1889–1895.

    Article  PubMed  CAS  Google Scholar 

  38. Kress, W.J., Wurdack, K.J., Zimmer, E.A., et al., Use of DNA Barcodes to Identify Flowering Plants, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 23, pp. 8369–8374.

    Article  PubMed  CAS  Google Scholar 

  39. Gemeinholzer, B., Oberprieler, C., and Bachmann, K., Using GenBank Data for Plant Identification: Possibilities and Limitations Using the ITS1 of Asteraceae Species Belonging to the Tribes Lactuceae and Anthemideae, Taxon, 2006, vol. 55, no. 1, pp. 173–187.

    Article  Google Scholar 

  40. Newmaster, S.G., Fazekas, A.J., and Ragupathy, S., DNA Barcoding in Land Plants: Evaluation of rbcL in a Multigene Tiered Approach, Can. J. Bot., 2006, vol. 84, no. 3, pp. 335–341.

    Article  CAS  Google Scholar 

  41. Hughes, C.E., Eastwood, R.J., and Bailey, C.D., From Famine to Feast? Selecting Nuclear DNA Sequence Loci for Plant Species-Level Phylogeny Reconstruction, Philos. Trans. R. Soc. London, Ser. B, 2006, vol. 361, no. 1465, pp. 211–225.

    Article  CAS  Google Scholar 

  42. Mayo, S.J., Allkin, R., Baker, W., et al., Alpha E-Taxonomy: Responses from the Systematics Community to the Biodiversity Crisis, Kew Bull., 2008, vol. 63, no. 1, pp. 1–16.

    Google Scholar 

  43. Mort, M.E., Archibald, J.K., Randle, C.P., et al., Inferring Phylogeny at Low Taxonomic Levels: Utility of Rapidly Evolving cpDNA and Nuclear ITS Loci, Am. J. Bot., 2007, vol. 94, no. 2, pp. 173–183.

    Article  Google Scholar 

  44. Feliner, G.N. and Rosselló, J.A., Better the Devil You Know? Guidelines for Insightful Utilization of nrDNA ITS in Species-Level Evolutionary Studies in Plants, Mol. Phylogenet. Evol., 2007, vol. 44, no. 2, pp. 911–919.

    Article  CAS  Google Scholar 

  45. Baldwin, B.G., Sanderson, M.J., Porter, J.M., et al., The ITS Region of Nuclear Ribosomal DNA—a Valuable Source of Evidence on Angiosperm Phylogeny, Ann. Missouri Bot. Gard., 1995, vol. 82, no. 2, pp. 247–277.

    Article  Google Scholar 

  46. Hajibabaei, M., Singer, G.A., Hebert, P.D.N., and Hickey, D.A., DNA Barcoding: How It Complements Taxonomy, Molecular Phylogenetics and Population Genetics, Trends Genet., 2007, vol. 23, no. 4, pp. 167–172.

    Article  PubMed  CAS  Google Scholar 

  47. Shen, Y., Newbury, H.J., and Ford-Lloyd, B.V., Identification of Taxa in the Genus Beta Using ITS1 Sequence Information, Plant Mol. Biol. Rep., 1998, vol. 16, no. 2, pp. 147–155.

    Article  CAS  Google Scholar 

  48. Buckler, E.S., IV, Ippolito A., Holtsford T.P. The Evolution of Ribosomal DNA: Divergent Paralogues and Phylogenetic Implications, Genetics, 1997, vol. 145, no. 3, pp. 821–835.

    PubMed  CAS  Google Scholar 

  49. Alvarez, I. and Wendel, J.F., Ribosomal ITS Sequences and Plant Phylogenetic Inference, Mol. Phylogenet. Evol., 2003, vol. 29, no. 3, pp. 417–434.

    Article  PubMed  CAS  Google Scholar 

  50. Rapini, A., Chase, M.W., and Konno, T.U.P., Phylogenetics of the New World Asclepiadeae (Apocynaceae), Taxon, 2006, vol. 55, no. 1, pp. 119–124.

    Google Scholar 

  51. Hodges, S.A. and Arnold, M.L., Columbines: A Geographically Widespread Species Flock, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 11, pp. 5129–5132.

    Article  PubMed  CAS  Google Scholar 

  52. Sang, T., Crawford, D.J., and Stuessy, T.F., Documentation of Reticulate Evolution in Peonies (Paeonia) Using Sequences of Internal Transcribed Spacer of Nuclear Ribosomal DNA: Implications for Biogeography and Concerted Evolution, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 15, pp. 6813–6817.

    Article  PubMed  CAS  Google Scholar 

  53. Jacobson, A. and Hedren, M., Phylogenetic Relationships in Alisma (Alismataceae) Based on RAPDs, and Sequence Data from ITS and trnL, Plant Syst. Evol., 2007, vol. 265, no. 1, pp. 27–44.

    Article  Google Scholar 

  54. Gurushidze, M., Mashayekhi, S., Blattner, F.R., et al., Phylogenetic Relationships of Wild and Cultivated Species of Allium Section Cepa Inferred by Nuclear rDNA ITS Sequence Analysis, Plant Syst. Evol., 2007, vol. 269. nos. 32-4, pp. 259–269.

    Article  CAS  Google Scholar 

  55. Doyle, J.J., Doyle, J.L., and Harbison, C., Chloroplast Expressed Glutamine Synthetase in Glycine and Related Leguminosae: Phylogeny, Gene Duplication and Ancient Polyploidy, Syst. Bot., 2003, vol. 28, no. 3, pp. 567–577.

    Google Scholar 

  56. Sang, T., Utility of Low-Copy Nuclear Gene Sequences in Plant Phylogenetics, Crit. Rev. Biochem. Mol., 2002, vol. 37, no. 3, pp. 121–147.

    Article  CAS  Google Scholar 

  57. Sang, T., Crawford, D.J., and Stuessy, T.F., Chloroplast DNA Phylogeny, Reticulate Evolution, and Biogeography of Paeonia (Paeoniaceae), Am. J. Bot., 1997, vol. 84, no. 9, pp. 1120–1136.

    Article  CAS  Google Scholar 

  58. Small, R.L., Cronn, R., and Wendel, J.F., Use of Nuclear Genes for Phylogeny Reconstruction in Plants, Austral. Syst. Bot., 2004, vol. 17, no. 2, pp. 145–170.

    Article  CAS  Google Scholar 

  59. Hughes, C.E., Eastwood, R.J., and Bailey, C.D., From Famine to Feast? Selecting Nuclear DNAsequence Loci for Plant Species-Level Phylogeny Reconstruction, Philos. Trans. R. Soc. London, Ser. B, 2006, vol. 361, no. 1465, pp. 211–225.

    Article  CAS  Google Scholar 

  60. Cronn, R.C., Small, R.L., Haselkorn, T., and Wendel, J.F., Rapid Diversification of the Cotton Genus (Gossypium: Malvaceae) Revealed by Analysis of Sixteen Nuclear and Chloroplast Genes, Am. J. Bot., 2002, vol. 89, no. 4, pp. 707–725.

    Article  CAS  Google Scholar 

  61. Syring, J., Willyard, A., Cronn, R., and Liston, A., Evolutionary Relationships among Pinus (Pinaceae) Subsections Inferred from Multiple Low-Copy Nuclear Loci, Am. J. Bot., 2005, vol. 92, no. 12, pp. 2086–2100.

    Article  Google Scholar 

  62. Whittall, J.B., Medina-Marino, A., Zimmer, E.A., and Hodges, S.A., Generating Single-Copy Nuclear Gene Data for a Recent Adaptive Radiation, Mol. Phylogenet. Evol., 2006, vol. 39, no. 1, pp. 124–134.

    Article  PubMed  CAS  Google Scholar 

  63. Senchina, D.S., Alvarez, I., and Cronn, R.C., Rate Variation among Nuclear Genes and the Age of Polyploidy in Gossypium, Mol. Biol. Evol., 2003, vol. 20, no. 4, pp. 633–643.

    Article  PubMed  CAS  Google Scholar 

  64. Li, M., Wunder, J., Bissoli, G., et al., Development of COS Genes as Universally Amplifiable Markers for Phylogenetic Reconstructions of Closely Related Plant Species, Cladistics, 2008, vol. 24, no. 5, pp. 727–745.

    Article  Google Scholar 

  65. Chase, M.W., Cowan, R.S., Hollingsworth, P.M., et al., A Proposal for a Standardised Protocol to Barcode All Land Plants, Taxon, 2007, vol. 56, no. 2, pp. 295–299.

    Google Scholar 

  66. Shaw, J., Lickey, E.B., Beck, J.T., et al., The Tortoise and the Hare II: Relative Utility of 21 Noncoding Chloroplast DNA Sequences for Phylogenetic Analysis, Am. J. Bot., 2005, vol. 92, no. 1, pp. 142–166.

    Article  CAS  Google Scholar 

  67. Presting, G.G., Identification of Conserved Regions in the Plastid Genome: Implications for DNA Barcoding and Biological Function, Can. J. Bot., 2006, vol. 84, no. 9, pp. 1434–1443.

    Article  CAS  Google Scholar 

  68. Savolainen, V., Cowan, R.S., Vogler, A.P., et al., Towards Writing the Encyclopaedia of Life: An Introduction to DNA Barcoding, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1805–1811.

    Article  PubMed  CAS  Google Scholar 

  69. Rubinoff, D., Cameron, S., and Will, K., Are Plant DNA Barcodes a Search for the Holy Grail?, Trends Ecol. Evol., 2006, vol. 21, no. 1, pp. 1–2.

    Article  PubMed  Google Scholar 

  70. Downie, S.R., Llanas, E., and Katz-Downie, D.S., Multiple Independent Losses of the rpoC1 Intron in Angiosperm Chloroplast DNAs, Syst. Bot., 1996, vol. 21, no. 2, pp. 135–151.

    Article  Google Scholar 

  71. Shaw, J., Lickey, E.B., Schilling, E.E., and Small, R.L., Comparison of Whole Chloroplast Genome Sequences to Choose Noncoding Regions for Phylogenetic Studies in Angiosperms: The Tortoise and the Hare III, Am. J. Bot., 2007, vol. 94, no. 3, pp. 275–288.

    Article  CAS  Google Scholar 

  72. Lee, H.L., Yi, D.K., Kim, J.S., and Kim, K.J., Development of Plant DNA Barcoding Markers from the Variable Noncoding Regions of Chloroplast Genome, in Second International Barcode of Life Conference, Taipei, 2007.

  73. Newmaster, S.G., Fazekas, A.J., Steeves, R.A.D., and Janovec, J., Testing Candidate Plant Barcode Regions in the Myristicaceae, Mol. Ecol. Notes, 2008, vol. 8, no. 3, pp. 480–490.

    CAS  Google Scholar 

  74. Kress, W.J. and Erickson, D.L., A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcLGene Complements the Non-Coding trnH-psbA Spacer Region, PLoS Biol., 2007, vol. 6, p. e508.

    Google Scholar 

  75. Lahaye, R., van der Bank, M., Bogarin, D., et al., DNA Barcoding the Floras of Biodiversity Hotspots, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 8, pp. 2923–2928.

    Article  PubMed  Google Scholar 

  76. Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., et al., Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well, PloS ONE, 2008, vol. 3, no. 7, p. e2802.

    Article  PubMed  CAS  Google Scholar 

  77. Hilu, K.W., Borsch, T., Muller, K., et al., Angiosperm Phylogeny Based on MatK Sequence Information, Am. J. Bot., 2003, vol. 90, no. 12, pp. 1758–1776.

    Article  CAS  Google Scholar 

  78. Wilson, C.A., Phylogeny of Iris Based on Chloroplast matK Gene and trnK Intron Sequence Data, Mol. Phylogenet. Evol., 2004, vol. 33, no. 2, pp. 402–412.

    Article  PubMed  CAS  Google Scholar 

  79. Sass, C., Little, D.P., Stevenson, D.W., and Specht, C.D., DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads, PLoS ONE, 2007, no. 11, p. e1154.

  80. Cowan, R.S., Chase, M.W., Kress, W.J., and Savolainen, V., 300000 Species to Identify: Problems, Progress, and Prospects in DNA Barcoding of Land Plants, Taxon, 2006, vol. 55, no. 3, pp. 611–616.

    Article  Google Scholar 

  81. Kim, S.C., Crawford, D.J., Jansen, R.K., and Santos-Guerra, A., The Use of a Non-Coding Region of Chloroplast DNA in Phylogenetic Studies of the Subtribe Sonchinae (Asteraceae: Lactuceae), Plant Syst. Evol., 1999, vol. 215, no. 1, pp. 85–99.

    Article  Google Scholar 

  82. Petersen, A., John, H., Koch, E., and Peterson, J., A Molecular Phylogeny of the Genus Gagea (Liliaceae) in Germany Inferred from Non-Coding Chloroplast and Nuclear DNA Sequences, Plant. Syst. Evol., 2004, vol. 245, nos. 3–4, pp. 145–162.

    Article  CAS  Google Scholar 

  83. Bruneau, A., Starr, J.R., and Joly, S., Phylogenetic Relationships in the Genus Rosa: New Evidence from Chloroplast DNA Sequences and an Appraisal of Current Knowledge, Syst. Bot., 2007, vol. 32, no. 2, pp. 366–378.

    Article  Google Scholar 

  84. Logacheva, M.D., Valiejo-Roman, C.M., and Pimenov, M.G., ITS Phylogeny of West Asian Heracleum Species and Related Taxa of Umbelliferae-Tordylieae W.D.J. Koch, with Notes on Evolution of Their psbA-trnH Sequences, Plant Syst. Evol., 2008, vol. 270, nos. 32-4, pp. 139–157.

    Article  CAS  Google Scholar 

  85. Štorchová, H. and Olson, M.S., The Architecture of the Chloroplast psbA-trnH Non-Coding Region in Angiosperms, Plant Syst. Evol., 2007, vol. 268, pp. 235–256.

    Article  CAS  Google Scholar 

  86. Kress, W.J. and Erickson, D.L., DNA Barcodes: Genes, Genomics, and Bioinformatics, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 8, pp. 2761–2762.

    Article  PubMed  Google Scholar 

  87. Timme, R.E., Kuehl, J.V., Boore, J.L., and Jansen, R.K., A Comparative Analysis of the Lactuca and Helianthus (Asteraceae) Plastid Genomes: Identification of Divergent Regions and Categorization of Shared Repeats, Am. J. Bot., 2007, vol. 94, no. 3, pp. 302–312.

    Article  CAS  Google Scholar 

  88. Hebert, P.D.N. and Gregory, T.R., The Promise of DNA Barcoding for Taxonomy, Syst. Biol., 2005, vol. 54, no. 5, pp. 852–859.

    Article  PubMed  Google Scholar 

  89. Nielsen, R. and Matz, M., Statistical Approaches for DNA Barcoding, Syst. Biol., 2006, vol. 55, no. 1, pp. 162–169.

    Article  PubMed  Google Scholar 

  90. Little, D.P. and Stevenson, D.W., A Comparison of Algorithms for the Identification of Specimens Using DNA Barcodes: Examples from Gymnosperms, Cladistics, 2007, vol. 23, no. 1, pp. 1–21.

    Article  Google Scholar 

  91. DeSalle, R., Egan, M.G., and Siddall, M., The Unholy Trinity: Taxonomy, Species Delimitation and DNA Barcoding, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1905–1916.

    Article  PubMed  CAS  Google Scholar 

  92. Munch, K., Boomsma, W., Willerslev, E., and Nielsen, R., Fast Phylogenetic DNA Barcoding, Philos. Trans. R. Soc. London, Ser. B, 2008, vol. 363, no. 1506, pp. 3997–4002.

    Article  PubMed  CAS  Google Scholar 

  93. Taberlet, P., Coissac, E., Pompanon, F., et al., Power and Limitations of the Chloroplast trnL (UAA) Intron for Plant DNA Barcoding, Nucleic Acids Res., 2007, vol. 35, no. 3, p. e14.

    Article  PubMed  CAS  Google Scholar 

  94. Lipscomb, D., Platnick, N., and Wheeler, Q., The Intellectual Content of Taxonomy: A Comment on DNA Taxonomy, Trends Ecol. Evol., 2003, vol. 18, no. 2, pp. 65–66.

    Article  Google Scholar 

  95. Ebach, M.C. and Holdrege, C., DNA Barcoding Is no Substitute for Taxonomy, Nature, 2005, vol. 434, no. 734, p. 697.

    Article  PubMed  CAS  Google Scholar 

  96. Mayr, E., Principles of Systematic Zoology, New York: McGraw-Hill. 1969.

    Google Scholar 

  97. Moritz, C. and Cicero, C., DNA Barcoding: Promise and Pitfalls, PLoS Biol., 2004, vol. 2, no. 10, pp. 1529–1531.

    Article  CAS  Google Scholar 

  98. Meyer, C.P. and Paulay, G., DNA Barcoding: Error Rates Based on Comprehensive Sampling, PloS Biol., 2005, vol. 3, no. 12, pp. 2229–2238.

    Article  CAS  Google Scholar 

  99. Ekrem, T., Willassen, E., and Stur, E., A Comprehensive DNA Library Is Essential for Identification with DNA Barcodes, Mol. Phylogenet. Evol., 2007, vol. 43, no. 2, pp. 530–542.

    Article  PubMed  CAS  Google Scholar 

  100. Smith, M.A., Fisher, B.L., and Hebert, P.D.N., DNA Barcoding for Effective Biodiversity Assessment of a Hyperdiverse Arthropod Group: The Ants of Madagascar, Philos. Trans. R. Soc. London, Ser. B, 2005, vol. 360, no. 1462, pp. 1825–1834.

    Article  PubMed  CAS  Google Scholar 

  101. Pons, J., Barraclough, T.G., Gomez-Zurita, J., et al., Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects, Syst. Biol., 2006, vol. 55, no. 4, pp. 595–609.

    Article  PubMed  Google Scholar 

  102. Monro, A.K., The Revision of Species-Rich Genera: A Phylogenetic Framework for the Strategic Revision of Pilea (Urticaceae) Based on cpDNA, nrDNA, and Morphology, Am. J. Bot., 2006, vol. 93, no. 3, pp. 426–441.

    Article  CAS  Google Scholar 

  103. Weese, T.L. and Bohs, L., A Three-Gene Phylogeny of the Genus Solanum (Solanaceae), Syst. Bot., 2007, vol. 32, no. 2, pp. 445–463.

    Article  Google Scholar 

  104. Bradford, J.C. and Barnes, R.W., Phylogenetics and Classification of Cunoniaceae (Oxalidales) Using Chloroplast DNA Sequences and Morphology, Syst. Bot., 2001, vol. 26, no. 2, pp. 354–385.

    Google Scholar 

  105. Pimenov, M.G., Klyuikov, E.V., and Degtyareva, G.V., Ferula xylorhachis (Umbelliferae)—New Species of the Central Asian Flora, Bot. Zh., 2008, vol. 93, no. 10, pp. 1607–1613.

    Google Scholar 

  106. Zomlefer, W.B., Whitten, W.M., Williams, N.H., and Judd, W.S., Infrageneric Phylogeny of Schoenocaulon (Liliales: Melanthiaceae) with Clarification of Cryptic Species Based on ITS Sequence Data and Geographical Distribution, Am. J. Bot., 2006, vol. 93, no. 8, pp. 1178–1192.

    Article  CAS  Google Scholar 

  107. Savolainen, V., Cuénoud, P., Spichiger, R., et al., The Use of Herbarium Specimens in DNA Phylogenetics: Evaluation and Improvement, Plant Syst. Evol., 1995, vol. 197, nos. 1–4, pp. 87–98.

    Article  CAS  Google Scholar 

  108. Ames, M. and Spooner, D.M., DNA from Herbarium Specimens Settles a Controversy about Origins of the European Potato, Am. J. Bot., 2008, vol. 95, no. 2, pp. 252–257.

    Article  CAS  Google Scholar 

  109. Hebert, P.D.N., Penton, E.H., Burns, J.M., et al., Ten Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes fulgerator, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 41, pp. 14812–14817.

    Article  PubMed  CAS  Google Scholar 

  110. King, R.A., Tibble, A.L., and Symondson, W.O.C., Opening a Can of Worms: Unprecedented Sympatric Cryptic Diversity within British Lumbricid Earthworms, Mol. Ecol., 2008, vol. 17, no. 21, pp. 4684–4698.

    Article  PubMed  Google Scholar 

  111. Ward, R.D., Costa, F.O., Holmes, B.H., and Steinke, D., DNA Barcoding of Shared Fish Species from the North Atlantic and Australasia: Minimal Divergence for Most Taxa, but Zeus faber and Lepidopus caudatus Each Probably Constitute Two Species, Aquatic Biol., 2008, vol. 3, pp. 71–78.

    Article  Google Scholar 

  112. Bickford, D., Lohman, D.J., Sodhi, N.S., et al., Cryptic Species as a Window on Diversity and Conservation, Trends Ecol. Evol., 2007, vol. 22, no. 3, pp. 148–155.

    Article  PubMed  Google Scholar 

  113. Yatabe, Y. and Murakami, N., Recognition of Cryptic Species in the Asplenium nidus Complex Using Molecular Data—a Progress Report, Telopea, 2003, vol. 10, no. 1, pp. 487–496.

    Google Scholar 

  114. Feldberg, K., Groth, H., Wilson, R., et al., Cryptic Speciation in Herbertus (Herbertaceae, Jungermanniopsida): Range and Morphology of Herbertus sendtneri Inferred from nrITS Sequences, Plant Syst. Evol., 2004, vol. 249, pp. 247–261.

    Article  Google Scholar 

  115. Hedenäs, L. and Eldenäs, P., Cryptic Speciation, Habitat Differentiation, and Geography in Hamatocaulis vernicosus (Calliergonaceae, Bryophyta), Plant Syst. Evol., 2007, vol. 268, nos. 1–2, pp. 131–145.

    Article  Google Scholar 

  116. Gurushidze, M., Fritsch R.M., Blattner, F.R., Phylogenetic Analysis of Allium Subg. Melanocrommyum Infers Cryptic Species and Demands a New Sectional Classification, Mol. Phylogenet. Evol., 2008, vol. 49, no. 3, pp. 997–1007.

    Article  PubMed  CAS  Google Scholar 

  117. Erickson, D.L., Spouge, J., and Resch, A., DNA Barcoding in Land Plants: Developing Standards to Quantify and Maximize Success, Taxon, 2008, vol. 57, no. 4, pp. 1304–1316.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Shneyer.

Additional information

Original Russian Text © V. S. Shneyer, 2009, published in Genetika, 2009, Vol. 45, No. 11, pp. 1436–1448.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shneyer, V.S. DNA barcoding is a new approach in comparative genomics of plants. Russ J Genet 45, 1267–1278 (2009). https://doi.org/10.1134/S1022795409110027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409110027

Keywords

Navigation