<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 10 February 2012

Biobanked Amphibian Samples Confirmed To Species Level Using 16S rRNA DNA Barcodes

Publication: Biopreservation and Biobanking
Volume 10, Issue Number 1

Abstract

The DNA barcoding technique is often used as a tool for validating species identity in biobanks. In the case of amphibians, the mitochondrial DNA (mtDNA) 16S ribosomal RNA (rRNA) gene is reported to fulfill the requirements of a universal DNA barcoding marker. The 16S primers are designed to specifically bind to the 16S rRNA gene, which is a very well-conserved mtDNA gene sequence in amphibians. DNA was extracted from thirteen known but different species of amphibians within the Zoological Society of London/Amphibian Ark's cryobank. After this, the DNA was amplified and analyzed by1 the traditional DNA barcoding procedure that involves conventional polymerase chain reaction (PCR) and DNA sequencing and2 a novel procedure, involving real-time PCR and melting temperatures. Both procedures used the same 16S primers. Successful DNA amplification and validation to the species or genus level was achieved in 10 out the 13 cases using the traditional approach. Nevertheless, after real-time PCR and melting temperature analysis, some variability was found between Common Frog samples but more concerning, the same melting temperature was recorded in unrelated species (Common Toad, Common Frog and Amazon Milk Frog), despite their 16S sequences exhibiting a high degree of variability. We conclude that traditional DNA barcoding using 16S rRNA sequences is suitable for validating the specific identity of amphibian samples within biobanks and that modification of the current 16S real-time PCR and melting temperature analysis is required before it can be employed as a cheaper and faster alternative.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Dasmahapatra KKMallet J. Taxonomy: DNA barcodes: recent successes and future prospectsHeredity200697254-255. 1. Dasmahapatra KK, Mallet J. Taxonomy: DNA barcodes: recent successes and future prospects. Heredity 2006;97:254–255.
2.
DeSalle R. Species discovery versus species identification in DNA barcoding efforts: response to RubinoffConserv Biol2006201545-1547. 2. DeSalle R. Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 2006;20:1545–1547.
3.
Waugh J. DNA barcoding in animal species: progress, potential and pitfallsBioessays200729188-197. 3. Waugh J. DNA barcoding in animal species: progress, potential and pitfalls. Bioessays 2007;29:188–197.
4.
Hebert PDStoeckle MYZemlak TSFrancis CM. Identification of birds through DNA barcodesPLoS Biol20042e312. 4. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol 2004;2:e312.
5.
Ward RDZemlak TSInnes BHLast PRHebert PD. DNA barcoding Australia's fish speciesPhilos Trans R Soc Lond B Biol Sci20053601847-1857. 5. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 2005;360:1847–1857.
6.
Hajibabaei MJanzen DHBurns JMHallwachs WHebert PDN. A minimalist barcode can identify a specimen whose DNA is degradedMol Ecol Notes20066959-964. 6. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 2006;6:959–964.
7.
Hajibabaei MSinger GAHebert PDHickey DA. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population geneticsTrends Genet200723167-172. 7. Hajibabaei M, Singer GA, Hebert PD, Hickey DA. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 2007;23:167–172.
8.
Hickerson MJMeyer CPMoritz C. DNA barcoding will often fail to discover new animal species over broad parameter spaceSyst Biol200655729-739. 8. Hickerson MJ, Meyer CP, Moritz C. DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 2006;55:729–739.
9.
Frezal LLeblois R. Four years of DNA barcoding: current advances and prospectsInfect Genet Evol20088727-736. 9. Frezal L, Leblois R. Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 2008;8:727–736.
10.
Hebert PDCywinska ABall SLdeWaard JR. Biological identifications through DNA barcodesProc Biol Sci2003a270313-321. 10. Hebert PD, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci 2003a;270:313–321.
11.
Ratnasingham SHebert PD. Bold: the barcode of life data system (www.barcodinglife.org)Mol Ecol Notes20077355-364. 11. Ratnasingham S, Hebert PD. Bold: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 2007;7:355–364.
12.
Hebert PDRatnasingham SdeWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related speciesProc Biol Sci2003b270Suppl 1S96-S99. 12. Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003b;270 Suppl 1:S96–S99.
13.
Miller SE. DNA barcoding and the renaissance of taxonomyProc Natl Acad Sci U S A20071044775-4776. 13. Miller SE. DNA barcoding and the renaissance of taxonomy. Proc Natl Acad Sci U S A 2007;104:4775–4776.
14.
Schindel DEMiller SE. DNA barcoding a useful tool for taxonomistsNature200543517. 14. Schindel DE, Miller SE. DNA barcoding a useful tool for taxonomists. Nature 2005;435:17.
15.
Hebert PDGregory TR. The promise of DNA barcoding for taxonomySyst Biol200554852-859. 15. Hebert PD, Gregory TR. The promise of DNA barcoding for taxonomy. Syst Biol 2005;54:852–859.
16.
Feng YLi QKong LZheng X. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genesMol Biol Rep201138291-299. 16. Feng Y, Li Q, Kong L, Zheng X. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Mol Biol Rep 2011;38:291–299.
17.
Hebert PDPenton EHBurns JMJanzen DHHallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgeratorProc Natl Acad Sci U S A200410114812-14817. 17. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 2004;101:14812–14817.
18.
DeSalle REgan MGSiddall M. The unholy trinity: taxonomy, species delimitation and DNA barcodingPhilos Trans R Soc Lond B Biol Sci20053601905-1916. 18. DeSalle R, Egan MG, Siddall M. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B Biol Sci 2005;360:1905–1916.
19.
Matz MVNielsen R. A likelihood ratio test for species membership based on DNA sequence dataPhilis Trans R Soc Lond B20053601969-1974. 19. Matz MV, Nielsen R. A likelihood ratio test for species membership based on DNA sequence data. Philis Trans R Soc Lond B 2005;360:1969–1974.
20.
Thomas MRaharivololoniaina LGlaw FVences MVieites DR. Montane tadpoles in Madagascar: molecular identification and description of the larval stages of Mantidactylus elegans, Mantidactylus madecassus, and Boophis laurenti from the Andringitra MassifCopeia20051174-183. 20. Thomas M, Raharivololoniaina L, Glaw F, Vences M, Vieites DR. Montane tadpoles in Madagascar: molecular identification and description of the larval stages of Mantidactylus elegans, Mantidactylus madecassus, and Boophis laurenti from the Andringitra Massif. Copeia 2005;1:174–183.
21.
Greenstone MHRowley DLHeimbach U et al. Barcoding generalist predators by polymerase chain reaction: carabids and spidersMol Ecol2005143247-3266. 21. Greenstone MH, Rowley DL, Heimbach U et al. Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 2005;14:3247–3266.
22.
Raharivololoniainaa LGrosjean SRaminosoaa NRGlawe FVences M. Molecular identification, description, and phylogenetic implications of the tadpoles of 11 species of Malagasy treefrogs, genus BoophisJ Nat Hist2006401449-1480. 22. Raharivololoniainaa L, Grosjean S, Raminosoaa NR, Glawe F, Vences M. Molecular identification, description, and phylogenetic implications of the tadpoles of 11 species of Malagasy treefrogs, genus Boophis. J Nat Hist 2006;40:1449–1480.
23.
Smith MAWoodley NEJanzen DHHallwachs WHebert PD. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae)Proc Natl Acad Sci U S A20061033657-3662. 23. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PD. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci U S A 2006;103:3657–3662.
24.
Smith MAWood DMJanzen DHHallwachs WHebert PD. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalistsProc Natl Acad Sci U S A20071044967-4972. 24. Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PD. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc Natl Acad Sci U S A 2007;104:4967–4972.
25.
Vences MThomas Mvan der Meijden AChiari YVieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibiansFront Zool200525. 25. Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2005;2:5.
26.
Luo AZhang AHo SYXu WZhang YShi W et al. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammalsBMC Genomics20111284. 26. Luo A, Zhang A, Ho SY, Xu W, Zhang Y, Shi W, et al. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics 2011;12:84.
27.
Chu KHXu MLi CP. Rapid DNA barcoding analysis of large datasets using the composition vector methodBMC Bioinform200910Suppl 14S8. 27. Chu KH, Xu M, Li CP. Rapid DNA barcoding analysis of large datasets using the composition vector method. BMC Bioinform 2009;10 Suppl 14:S8.
28.
Smith MAFisher BLHebert PD. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of MadagascarPhilos Trans R Soc Lond B Biol Sci20053601825-1834. 28. Smith MA, Fisher BL, Hebert PD. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc Lond B Biol Sci 2005;360:1825–1834.
29.
Hajibabaei MJanzen DHBurns JMHallwachs WHebert PD. DNA barcodes distinguish species of tropical LepidopteraProc Natl Acad Sci U S A2006103968-971. 29. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 2006;103:968–971.
30.
Aliabadian MKaboli MNijman VVences M. Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric speciesPLoS One20094e4119. 30. Aliabadian M, Kaboli M, Nijman V, Vences M. Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS One 2009;4:e4119.
31.
Hanken J. Why are there so many new amphibian species when amphibians are declining?Trends Ecol Evol1999147-8. 31. Hanken J. Why are there so many new amphibian species when amphibians are declining? Trends Ecol Evol 1999;14:7–8.
32.
Green DM. The ecology of extinction: population fluctuation and decline in amphibiansBiol Conserv2003111331-343. 32. Green DM. The ecology of extinction: population fluctuation and decline in amphibians. Biol Conserv 2003;111:331–343.
33.
Stuart SNChanson JSCox NAYoung BERodrigues ASFischman DL et al. Status and trends of amphibian declines and extinctions worldwideScience20043061783-1786. 33. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, et al. Status and trends of amphibian declines and extinctions worldwide. Science 2004;306:1783–1786.
34.
Ziegler TVences M. The tadpole of Rhacophorus verrucosus Boulenger, 1893 from Vietnam (Amphibia: Anura: Rhacophoridae)Faunistische Abhandlungen Staatliches Museum für Naturkunde Dresden200222319-327. 34. Ziegler T, Vences M. The tadpole of Rhacophorus verrucosus Boulenger, 1893 from Vietnam (Amphibia: Anura: Rhacophoridae). Faunistische Abhandlungen Staatliches Museum für Naturkunde Dresden 2002;22:319–327.
35.
Hendrix RGrosjean SQuyet LKVences MThanh VNZiegler T. Molecular identification and description of the tadpole of the annam flying frog, rhacophorus annamensis smith, 1924 (Anura: Rhacophoridae)Salamandra20074311-19. 35. Hendrix R, Grosjean S, Quyet LK, Vences M, Thanh VN, Ziegler T. Molecular identification and description of the tadpole of the annam flying frog, rhacophorus annamensis smith, 1924 (Anura: Rhacophoridae). Salamandra 2007;43:11–19.
36.
Mallet JWillmot K. Taxonomy: renaissance or tower of Babel?Trends Ecol Evol20031857-59. 36. Mallet J, Willmot K. Taxonomy: renaissance or tower of Babel? Trends Ecol Evol 2003;18:57–59.
37.
James CHMoritz C. Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species from eastern AustraliaMol Ecol20009349-358. 37. James CH, Moritz C. Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species from eastern Australia. Mol Ecol 2000;9:349–358.
38.
Rissler LJTaylor DR. The phylogenetics of Desmognathine salamander populations across the southern AppalachiansMol Phylogenet Evol200327197-211. 38. Rissler LJ, Taylor DR. The phylogenetics of Desmognathine salamander populations across the southern Appalachians. Mol Phylogenet Evol 2003;27:197–211.
39.
Goldberg CSSullivan BKMalone JHSchwalbe CR. Divergence among barking frogs (Eleutherodactylus augusti) in the south western United StatesHerpetologica200460312-320. 39. Goldberg CS, Sullivan BK, Malone JH, Schwalbe CR. Divergence among barking frogs (Eleutherodactylus augusti) in the south western United States. Herpetologica 2004;60:312–320.
40.
Vences MThomas MBonett RMVieites DR. Deciphering amphibian diversity through DNA barcoding: chances and challengesPhilos Trans R Soc Lond B Biol Sci20053601859-1868. 40. Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc Lond B Biol Sci 2005;360:1859–1868.
41.
Smith MAPoyarkov NA Jr.Hebert PD. DNA Barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challengeMol Ecol Resour20088235-246. 41. Smith MA, Poyarkov NA, Jr., Hebert PD. DNA Barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour 2008;8:235–246.
42.
Gerard KRoby CChevalier NThomassin BChenuil AFeral JP. Assessment of three mitochondrial loci variability for the crown-of-thorns starfish: a first insight into Acanthaster phylogeographyC R Biol2008331137-143. 42. Gerard K, Roby C, Chevalier N, Thomassin B, Chenuil A, Feral JP. Assessment of three mitochondrial loci variability for the crown-of-thorns starfish: a first insight into Acanthaster phylogeography. C R Biol 2008;331:137–143.
43.
Fouquet AGilles AVences MMarty CBlanc MGemmell NJ. Underestimation of species richness in neotropical frogs revealed by mtDNA analysesPLoS One20072e1109. 43. Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ. Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS One 2007;2:e1109.
44.
Wilson ACMaxson LRSarich VM. Two types of molecular evolution. Evidence from studies of interspecific hybridizationProc Natl Acad Sci U S A1974712843-2847. 44. Wilson AC, Maxson LR, Sarich VM. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc Natl Acad Sci U S A 1974;71:2843–2847.
45.
Song JYMatsui MChung KHOh HSZhao W. Distinct specific status of the Korean brown frog, Rana amurensis coreana (Amphibia: Ranidae)Zoolog Sci200623219-224. 45. Song JY, Matsui M, Chung KH, Oh HS, Zhao W. Distinct specific status of the Korean brown frog, Rana amurensis coreana (Amphibia: Ranidae). Zoolog Sci 2006;23:219–224.
46.
Rawson DMMcGregor Reid GLloyd RE. Conservation rationale, research applications and techniques in the cryopreservation of lower vertebrate biodiversity from marine and freshwater environmentsInt Zoo Yearbook201145108-123. 46. Rawson DM, McGregor Reid G, Lloyd RE. Conservation rationale, research applications and techniques in the cryopreservation of lower vertebrate biodiversity from marine and freshwater environments. Int Zoo Yearbook 2011;45:108–123.
47.
Altschul SFGish WMiller WMyers EWLipman DJ. Basic local alignment search toolJ Mol Biol1990215403-410. 47. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410.
48.
Saitou NNei M. The neighbour-joining method: a new method for reconstructing phylogenetic treesMol Biol Evol19874406-425. 48. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425.
49.
Mader ELukas BNovak J. A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM)BMC Genet2008969. 49. Mader E, Lukas B, Novak J. A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 2008;9:69.
50.
Gundry CNVandersteen JGReed GHPryor RJChen JWittwer CT. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotesClin Chem200349396-406. 50. Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 2003;49:396–406.
51.
Wittwer CTReed GHGundry CNVandersteen JGPryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreenClin Chem2003496 Pt 1853-860. 51. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003;49(6 Pt 1):853–860.
52.
Larkin MABlackshields GBrown NPChenna RMcGettigan PAMcWilliam HValentin FWallace IMWilm ALopez RThompson JDGibson TJHiggins DG. ClustalW and ClustalX version 2Bioinformatics2007232947-2948. 52. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and Higgins DG. ClustalW and ClustalX version 2. Bioinformatics 2007;23:2947–2948.
53.
Goujon MMcWilliam HLi WValentin FSquizzato SPaern JLopez R. A new bioinformatics analysis tools framework at EMBL-EBINucleic Acids Res201038SupplW695-W699. 53. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010;38 Suppl:W695–W699.
54.
Yoo HSEah JYKim JSKim YJMin MSPaek WKLee HKim CB. DNA barcoding Korean birdsMol Cells200622323-327. 54. Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, Kim CB. DNA barcoding Korean birds. Mol Cells 2006;22:323–327.
55.
Funk DJOmland KE. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNAAnnu Rev Ecol Evol Systematics200334397-423. 55. Funk DJ, Omland KE. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Systematics 2003;34:397–423.
56.
Xia YGu HPeng RChen QZheng YMurphy RZeng X. COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae)Mol Ecol Resour2011[Epub ahead of print]. 56. Xia Y, Gu H, Peng R, Chen Q, Zheng Y, Murphy R, Zeng X. COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). Mol Ecol Resour 2011; [Epub ahead of print]; DOI: 10.1111/j.1755-0998.2011.03055.x.
57.
Pyron RAWiens JJ. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caeciliansMol Phylogenet Evol201161543-583. 57. Pyron RA, Wiens JJ. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 2011;61:543–583.

Information & Authors

Information

Published In

cover image Biopreservation and Biobanking
Biopreservation and Biobanking
Volume 10Issue Number 1February 2012
Pages: 22 - 28
PubMed: 24849750

History

Published online: 10 February 2012
Published in print: February 2012
Published ahead of print: 27 January 2012
Accepted: 26 October 2011
Received: 1 August 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Maria Jose Maya-Soriano
Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona, Spain.
William V. Holt
Institute of Zoology, Department of Reproductive Biology, Regent's Park, London, United Kingdom.
Rhiannon E. Lloyd
Institute of Zoology, Department of Reproductive Biology, Regent's Park, London, United Kingdom.

Notes

Address correspondence to:Maria Jose Maya-Soriano, DVMDepartment of Animal Health and AnatomyFaculty of VeterinaryUniversitat Autònoma de BarcelonaEdifici V, Campus UAB08193 Barcelona,Spain
E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top