
1Scientific RepoRts | 5:17417 | DOI: 10.1038/srep17417

www.nature.com/scientificreports

Drug target prioritization by 
perturbed gene expression and 
network information
Zerrin Isik1,2, Christoph Baldow3, Carlo Vittorio Cannistraci4 & Michael Schroeder1

Drugs bind to their target proteins, which interact with downstream effectors and ultimately perturb 
the transcriptome of a cancer cell. These perturbations reveal information about their source, i.e., 
drugs’ targets. Here, we investigate whether these perturbations and protein interaction networks 
can uncover drug targets and key pathways. We performed the first systematic analysis of over 500 
drugs from the Connectivity Map. First, we show that the gene expression of drug targets is usually 
not significantly affected by the drug perturbation. Hence, expression changes after drug treatment 
on their own are not sufficient to identify drug targets. However, ranking of candidate drug targets 
by network topological measures prioritizes the targets. We introduce a novel measure, local 
radiality, which combines perturbed genes and functional interaction network information. The new 
measure outperforms other methods in target prioritization and proposes cancer-specific pathways 
from drugs to affected genes for the first time. Local radiality identifies more diverse targets with 
fewer neighbors and possibly less side effects.

In drug discovery, drug target identification is an important problem. Drugs interact with targets and 
off-targets, which trigger downstream signaling cascades causing perturbations in the cell’s transcrip-
tome. The term “target” can refer either to proteins physically binding to the drug or to proteins that 
are only functionally related. Drug-induced perturbations have been uncovered at very large scale in the 
Connectivity Map (CMap) for 1300 compounds on four human cancer cell lines1. The CMap provides the 
opportunity to find similar phenotypes between a given gene profile and drugs. Thus, it facilitates an elu-
cidation of the drugs’ modes of action and generation of new candidates for drug repurposing. A recent 
study used CMap drug profiles and revealed a high conservation of drug-induced transcriptional mod-
ules for multiple cell lines with limited expression of drug targets2. If a drug does not alter the expression 
of its target, but if it does alter the expression of other genes, then what is the relation of the target to 
these genes? A drug modulates the activity of a target protein, which subsequently regulates down-stream 
proteins. Protein-protein interaction (PPI) networks provide such down-stream relationships between 
targets and proteins by using physical contacts, genetic interactions and functional relationships.

In the last decade, drug target prediction and repositioning problems have become more attractive 
with the availability of phenotype and network data. Various network measures (e.g., centrality meas-
ures, random walk, shortest path, nearest neighbor etc.) were integrated with gene expression profiles 
to validate known drug targets or to identify essential proteins. A comprehensive review summarizes 
network related target identification and repositioning methods3. A recent study developed a kernel 
diffusion method that integrates gene expression and network data and identified known drug targets 
with 0.9 AUC4. Another consensus-based approach was evaluated on 30 different diseases and achieved 

1Bioinformatics Group, Biotechnology Center (BIOTEC), Technische Universitat Dresden, Tatzberg 47-49, 01307 
Dresden, Germany. 2Computer Engineering Department, Dokuz Eylul University, Tinaztepe Kampusu, Buca, 35160 
Izmir, Turkey. 3Institute for Medical Informatics and Biometry, Technische Universitat Dresden, Blasewitzer 86, 
01307 Dresden, Germany. 4Biomedical Cybernetics Group, BIOTEC, Technische Universitat Dresden, Tatzberg 47-
49, 01307 Dresden, Germany. Correspondence and requests for materials should be addressed to M.S. (email: 
ms@biotec.tu-dresden.de)

received: 10 April 2015

Accepted: 29 October 2015

Published: 30 November 2015

OPEN

mailto:ms@biotec.tu-dresden.de


www.nature.com/scientificreports/

2Scientific RepoRts | 5:17417 | DOI: 10.1038/srep17417

AUC values over 0.9 AUC for the prediction of known disease targets5. It showed that local and global 
network measures can reveal potential drug targets, and thus an integrated model of measurements could 
achieve a better performance. A network flow approach integrated a PPI network, gene expression data 
and disease genes to identify effective drug targets for prostate cancer6. Another random walk-based 
study predicted drug target interactions by using similarity metrics for drugs and proteins in the con-
struction of a drug-target network7. However the studies do not integrate any drug perturbation data 
into the prediction method.

The topological analysis of biological networks is also performed for a better understanding of com-
plex cellular processes. Network centrality measures were used to identify essential nodes in various 
species’ interactomes3. In this direction, a study proposed a novel centrality measure that incorporates a 
PPI network and gene expression data to identify essential proteins in yeast8. A recent study investigated 
gene expression characteristics on cancer pathways and showed the effects of four network centrality 
measures to identify cancer treatment targets9. They also found different therapeutic targets by changing 
the network topology (pathway or PPI) and introduced tissue-specific data. Another publication showed 
that structurally similar drugs regulate topologically closer genes in PPI networks, i.e., protein products 
of such genes have a lower shortest path distance versus regulated genes of dissimilar drugs10.

The availability of gene expression phenotypes and interaction network data raises the following ques-
tion: Can drug targets be identified from network information and expression alterations induced by 
a drug? It is hypothesized that a drug perturbation can be observed from differentially expressed (i.e., 
deregulated) genes that work on specific biological processes that develop the observed phenotypes11. 
Although post-transcriptional regulations on mRNAs might change the amount of the translated pro-
teins, we could not consider this factor in the scope of our study due to the lack of large-scale protein 
data measured upon drug treatment. We hypothesize that deregulated genes are close to drug targets 
in terms of network topology. The proximity of deregulated genes to drug targets might be determined 
by identifying the shortest paths in a functional interaction network, i.e., a deregulated gene could be a 
direct interactor or a close neighbor of the altered target. Other questions follow from this hypothesis. 
Does a global or a local network feature give higher target prediction accuracy? And, does the target 
prediction performance depend on the definition of a target protein? To address these questions, a drug 
target prioritization method was developed by proposing a new network measure, local radiality, which 
integrates both topological data and the perturbed gene information. Radiality is a well-known centrality 
measure describing the level of node reachability of a node via different shortest paths of the network. 
The new measure describes the reachability of a target protein via the shortest paths to deregulated genes. 
Thus, it is a new locally constrained radiality. For simplicity, we will refer to this measure as local radiality 
(LR). After investigation of recent studies3–10 and network centrality metrics3,12, we chose state-of-the-art 
methods4,8 and compiled a set of 13 measures (including LR) to assess their performance in target pre-
diction problem. The goal was to construct a representative set of metrics, i.e., some metrics only use 
gene perturbation data, some benefit from the network topology, and others integrate both types of data 
by applying either shortest path-based or random walk methods.

The novelty of this study is the comprehensive evaluation of various measures that use the drug per-
turbation data and/or functional interaction networks for target prioritization. The LR measure achieved 
the highest prediction rate (22%) for known targets ranked in the 1st percentile of all proteins from a 
functional interaction network. To the best of our knowledge, LR offers the best predictions compared to 
other methods in the field. The innovation of this method is not only the effective prioritizing of known 
targets but also the detection of less obvious or diverse targets in the biological network. Additionally, 
the cancer tissue-specific pathways are highlighted by extracting shortest paths between perturbed genes 
and known targets. These deregulated paths compose drug-target deregulated genes sub-network and 
might better explain an observed phenotype.

Results
Different network centrality measures and known target data are analyzed to observe their potential for 
drug target prioritization. Drug perturbation data is included in the calculation of topological proximity 
by using either deregulated genes or expression values themselves (Fig.  1). A centrality measure com-
putes a closeness score for each protein by employing network topological features and expression values 
of deregulated genes. If a protein is not present in a PPI network, it cannot be predicted as a candidate 
target of a drug. The candidate targets are prioritized based on the closeness scores, i.e., proteins with a 
higher chance of being a target ranks on the top of the sorted list. Correlated with the initial hypothesis 
of proximity, a known drug target is expected to be at the top of the ranked list. To eliminate as many 
false positive target predictions as possible, only the proteins predicted in the 1st percentile of the ranked 
list are suggested as potential drug targets. The proposed method was evaluated on the public CMap 
expression profiles.

Gene expression is not sufficient for target prediction. Gene expression data represents mRNA 
activity of genes under a specific condition (i.e., control vs. drug treatment). In order to understand the 
capability of simple gene expression data in target prediction, the gene expression values (fold change—
FC) of 42,331 known targets for the CMap drugs are analyzed (Fig.  2a). When significant targets are 
filtered (|FC| ≥  1.5, p-value ≤  0.05), 97% of all targets do not show any expression changes due to drug 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:17417 | DOI: 10.1038/srep17417

perturbations. A previous study also indicated the limited regulation of drug targets at the mRNA level2. 
Hence, gene expression data alone can predict only 3% of known targets.

Network data improves the target prediction. Gene expression data can identify very few known 
drug targets. This begs the question: If a drug treatment does not change the expression of a target 
directly, could the target be predicted by the integration of other information? The utilization of PPI 
networks could enrich the gene expression data and therefore enhance target prediction. To illustrate 
the benefit of the network information, the distance of deregulated genes of each drug treatment to a 
potential drug target is calculated by taking the average of shortest path distances between each dereg-
ulated gene and target in the biological network (here, STRING) for CMap drug profiles (Fig. 2b). We 

Figure 1. Overview of the target prioritization method. The perturbation of a drug on a specific tissue is 
measured by microarray experiments. Deregulated genes are obtained by comparison of drug-treated and 
control samples. A network measure computes a proximity score for each protein in the biological network 
based on its expression value, location to the deregulated genes or topological features. The proximity 
scores rank the possible drug targets, i.e., proteins with higher chance of being a target ranks on top of the 
sorted list. The target prioritization is evaluated by checking the rank of known drug targets (obtained from 
STITCH) in the sorted list of all proteins. The proteins listed in the high rank levels might be new potential 
targets.

Figure 2. The distributions of drug targets. (A) Gene expression distribution of the 42331 known drug 
targets in the CMap. The significant targets reside on the right and left side of dashed lines. 97% of drug 
targets do not show significant expression changes due to drug perturbations. (B) The distribution of the 
average shortest path distances of deregulated genes to known (blue distribution) and to random (red 
distribution) targets. Two distributions are statistically different (Mann–Whitney, p-value <  2.2e− 16). 
Deregulated genes are closer to known targets than any other proteins in the network. Thus, this motivates a 
network based target prediction.
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selected 1000 different random targets (out of the biological network) for each known drug target. Then, 
the shortest path distances of deregulated genes to random targets and the known target are calcu-
lated separately. While the average distance of known targets to deregulated genes is 2.9 nodes, it is 
3.6 nodes for randomly selected targets. Two distributions are statistically different (Mann–Whitney, 
p-value <  2.2e− 16). This observation supports the initial hypothesis that deregulated genes are closer to 
known targets compared to most proteins in the network. Based on this observation, we formulated LR 
in the drug target space. This measure uses a set of deregulated genes DG and a biological network G. 
The LR score of node n in the network G is calculated as follows:

( ) =
∑ ( , , )

,
( )

∈LR n
sp n dg G
DG 1

dg DG

Here, the function |sp| calculates the length of a shortest path that connects the deregulated gene dg and 
the node n in G; |DG| indicates the total number of deregulated genes. The LR utilizes both drug per-
turbation data (i.e., deregulated genes) and topological information (i.e., shortest path distance). Thus, 
it implements the hypothesis about the proximity of deregulated genes to corresponding drug targets.

Systematic Evaluation of 13 Measures. We also considered 13 different network measures to 
evaluate LR. Some are purely topological and others consider gene expression as well as various net-
work interactions such as functional and physical interactions. The 13 measures are summarized in 
Supplementary Table 1. Two measures, FC and p-value, only consider gene expression data. We do not 
expect these measures to perform well because drug targets are generally not differentially expressed. 
The majority of measures, 11, use network information (4 in combination with expression, 7 without). 
The performance of these 7 measures will define a baseline showing how a general network without 
application-specific data performs. Of the 11 network-based measures and considering network topology 
entirely, 7 are local and 4 are global. Five network measures are based on the shortest path and 2 on the 
random walk approach.

LR performs best. LR is the only measure combining expression and local network data based on 
shortest paths. We systematically compared all 13 measures (see Supplementary Fig. 2 for all measures). 
The performance of best predictors is shown in Fig.  3. Predictions based only on FC values are also 
included for better comparison. The LR performs best overall under all configurations. The random 
predictor ranges from 0.1 to 1% (see Fig. 3a). The LR predicts up to 22% of targets in its 1st percentile 
of predictions. Fig. 3b shows the performance of selected measures relative to a random predictor (pre-
diction power). The symmetric kernel diffusion ranking is a successful metric developed recently4. Its 
recall value (0.17) is significantly (Wilcoxon signed rank test, p-value <  1.7e− 16, Supplementary Table 
3) lower than LR (0.22). The result is similar for the AUC value; the symmetric kernel diffusion ranking 
has an overall 0.81 AUC, and LR has 0.85 AUC (Supplementary Fig. 3a). The PeC was developed as the 
essential protein discovery measure8, and LR has a significantly (p-value <  5.7e− 24) higher recall value 
versus PeC (0.17). PeC has a lower AUC (0.82) compared to LR (0.85). A recent study applied degree 
and betweenness to identify cancer targets9. In terms of recall values, LR significantly outperforms both 
degree (p-value <  1.2e− 44) and betweenness (p-value <  2.7e− 16). Similarly, LR has a higher AUC value 
compared to degree (0.81 AUC) and betweenness (0.80 AUC). In summary, LR performs significantly 
better (average p-value <  5.3e− 06, Supplementary Table 3) than other predictors in the 1st percentile. The 
overall performance of LR also outperforms others with an AUC value of 0.85 (Supplementary Fig. 3a).

Gene expression vs. network data. In the previous sections, we argued that gene expression is not 
sufficient for target prediction and that network data could improve it. Figure 3a supports this hypothe-
sis: FC achieves only 3% correct prediction versus 22% for LR. Furthermore, all network-based measures 
shown in Fig. 3a all perform much better than FC (Wilcoxon signed rank test, average p-value <  1.3e− 42). 
Thus, we conclude that network data is crucial in target prediction.

Network-based measures are the top predictors. The best predictors—LR, radiality, stress, and 
symmetric kernel diffusion—use the network topology for the calculation of a node score. Radiality indi-
cates the level of reachability of a node via the shortest paths to all other nodes (i.e., the closer to the rest 
of all nodes, the easier it is to reach). Stress calculates the frequency of a node to appear in all possible 
pairwise shortest paths of the network. Although radiality (0.20 recall, 0.83 AUC) and stress (0.19 recall, 
0.81 AUC) only use network topology, they perform quite well versus the FC-dependent measurements. 
Symmetric kernel diffusion is a random walk-based method, which applies gene expression data as initial 
node scores. It achieved 0.17 recall for the 1st percentile and overall 0.81 AUC.

LR predicts twice as many different targets than other measures. Gene expression independ-
ent measures (i.e., radiality, stress) achieve quite high prediction rates, however they usually predict the 
same targets for the 1st percentile in contrast to gene expression dependent ones (e.g., LR, kernel dif-
fusion). All four measures agree on the 79 targets. In contrast, 136 and 77 target proteins are predicted 
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Figure 3. Results for drug-target prioritization methods. (A) Prediction performance of the selected 
measures for functional targets (FT). The y-axis shows the cumulative percentage of correctly predicted 
targets (i.e., recall) of all drugs in the CMap, the x-axis gives the predicted rank level. The predictions are 
given for the 1st percentile (top 120) of the ranking list. The LR achieved 22% recall value, which is the 
highest prediction rate. (B) The prediction power (expressed in decibel, dB) of each measure compared 
to the random predictor. It shows the magnitude of recall for each predictor normalized with respect to 
the random predictor. (C) The overlap of known targets that are predicted in the 1st percentile. 79 targets 
(common predicted) are predicted by all measures. Radiality and stress usually predict similar targets, 
however LR (136 unique targets) and kernel diffusion (77 unique targets) predict different ones.  
(D) The overlap of the drugs that bind to proteins found by only LR (LR Only) and all measures (Common 
Predicted). There were 331 different drugs that bind to 79 proteins, which are predicted by several measures. 
However, 15 drugs bind to specific proteins that are predicted only by LR. In other words, common targets 
are usually well-studied proteins, while the LR targets are more specific ones and have more potential for 
new drugs.
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with only LR and kernel diffusion, respectively (Fig. 3c). When only LR and kernel diffusion predictions 
are considered both methods predict the same 153 targets in their 1st percentile. On the other hand, the 
proportion of predictions exclusively obtained by LR and kernel diffusion respectively is 153/79 (= 1,9). 
Thus, more than twice the number of known targets are predicted by LR versus kernel diffusion.

LR targets have fewer drugs and fewer interaction partners. The 79 common proteins indicated 
in Fig. 3c are targeted by 311 drugs (see Fig. 3d). On the other hand, 136 proteins predicted only by LR 
have only 15 drugs (Fig. 3d). This suggests that the common targets are well studied, while the LR targets 
are more specific and have more potential for new drug findings9.

Degree and radiality are two key network features that explain the behavior of drug targets in terms 
of network topology (Fig.  4). Common predicted targets (orange circle) have both a high degree and 
high radiality values versus the targets predicted by only LR (green triangle). This observation suggests 
that the commonly predicted targets are well-connected proteins in terms of neighbors and shortest 
paths. Hence, such topological features make them easily predictable. Conversely, LR can predict less 
obvious drug targets by integrating gene expression data and topological information. We speculate that 
such targets might lead to fewer side effects and provide more effective treatment results by having fewer 
neighbors in the network.

Functional targets are more favorable for target prediction. There are several ways to define 
a drug target. Is the drug physically binding to the target or is there a indirect functional relationship? 
Are all known targets of a drug considered or only those of highest confidence? In order to evaluate the 
impact of different drug target definitions on our analysis, we created three drug-target sets:

-Physical targets (PT) are collected from 15 different drugs, proteins, and compound databases (see 
the Drug Targets Section).

-Functional targets (FT, FT1) are obtained from the STITCH Database13.
In Supplementary Table 2, all target sets cover around 500 drugs. However they differ strongly in the 

number of targets. FT1 is a subset of the FT targets, it only considers the most confident target for each 
drug (according to literature based search on PubMed). Hence FT has many more targets (2782) than 
FT1 (195). The physical target (PT) set contains 605 targets.

Figure  5 shows the performance of the 3 best measures on different target sets (see Supplementary 
Fig. 2 for all measures). The performance of these measures is highly dependent on the target set. Half 
of the measures correctly predict 15% to 22% of the FT set (Fig. 5a). In the PT set, the performance of 
the majority of the measures is between 5% and 9%. LR achieved the best prediction with 0.09 recall 
(average p-value <  1.2e− 2, Supplementary Table 5) for the 1st percentile; overall AUC value was 0.76 
(Supplementary Fig. 3c). The PT set represents physical drug target interactions, and their performance is 
much worse than the performance based on the FT set. One reason might be that the STRING network is 
more adequate for the identification of functional targets, which were obtained by text mining methods. 
The highest prediction rate is achieved on the FT1 set—the best ones predict 50% of known targets. LR 

Figure 4. Topological characteristics of frequently predicted target classes: only LR (green triangles), 
common predicted (orange circles). The average degree of the known targets identified exclusively by LR is 
94. For the common predicted targets, it is significantly larger (σ  =  248). Similarly, the average radiality of 
targets identified by LR is relatively small versus the common predicted ones. These facts indicate that LR 
detects the targets, which represent hubs in local network modules rather than in the entire network.
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and radiality achieved 0.497 and 0.493 recall (Supplementary Table 4) and overall AUC values of 0.929 
and 0.924 (Supplementary Fig. 3b), respectively. Such a significant improvement is reasonable because 
text mining methods select well-studied genes with many literature references as targets that generally 
have many connections versus other candidate targets in the STRING network. 82% of all targets in FT1 
have a degree higher than 50 (Supplementary Fig. 4). This proves the high connectivity of the targets, 
which are true-positives in many cases.

In general, the functional target sets (FT, FT1) outperform the physical targets (PT). The recall and 
AUC in the physical target prediction are low versus the functional ones because the known physical tar-
gets are limited due to experimental difficulties in the identification. However, the prediction of the phys-
ical targets performs better than the random one (Fig. 5b). The PPIs in the STRING network are useful 
in predicting the functional relations between drugs and targets provided by the STITCH database, but 
this is not that much efficient in predicting the physical interactions due to incomplete target knowledge 
of the PT. Note, LR performed equally well for all target definitions that support its prediction capability. 
In conclusion, drug target prediction is strictly dependent on the targets chosen for validation purposes.

A Sub-network of Selected Targets and Deregulated Genes. Although the prediction of a drug 
target is crucial, the generation of the expected phenotype is also important for drug treatment experi-
ments. The pathway databases can help to formalize the expected phenotype, but incomplete databases 
limit the investigation of effects on the pathway level. Specifically, the knowledge about molecular path-
ways might be incomplete and inconsistent between different sources14 because biochemical reactions 
are not fully understood for all genes and diseases. If such information is not covered for a drug target 
and the affected genes in public databases, the PPI networks might provide some hints for possible 
reactions between these genes. Therefore, we used the LR method to obtain more insights into affected 
downstream pathways (see details in the Methods Section). The extraction of shortest paths between 
deregulated genes and known targets exposes the topological mapping of perturbation data in a func-
tional interaction network (Fig.  6). Each selected target-deregulated gene sub-network is clearly sep-
arated from other nodes in this example. Each colored sub-network might be interpreted as affected 
downstream pathways of the given drug. Such deregulated paths explain the observed phenotype after a 
drug treatment. Moreover, the sub-network of selected targets-deregulated genes might point out potential 

Figure 5. Results for different drug target data sets. (A) Comparison of functional (FT, FT1) and physical 
(PT) targets for selected measures. The predictions are given only for the 1st percentile of the ranking list. 
Note that due to very close recall values, three random predictor curves are over plotted. The highest recall 
(50%) was obtained on the FT1 (limited functional targets). Half of the measures correctly predicted 15% 
to 22% of the FT (all functional targets). The recall values are between 5% and 9% for PT (physical targets). 
Although the performance of the measures is highly dependent on the target definition, LR achieved the 
highest recall values for all target definitions. (B) The prediction power (expressed in decibel, dB) of each 
measure compared to the random predictor. It shows the magnitude of recall for each predictor normalized 
with respect to the random predictor.
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new targets for the given drug. Thus, this network-level visualization helps experimentalists design new 
drug experiments.

Downstream Affected Pathways of Targets. The LR shows the proximity of deregulated genes to 
targets. It also identifies the affected pathways. Therefore such paths are extracted by the paths passing 
through the known target(s) and deregulated genes (see details in the Methods Section).

In particular, we investigated Pioglitazone as well as its targets and altered pathways. Pioglitazone was 
approved for the treatment of type 2 diabetes. It regulates the peroxisome proliferator-activated receptor 
gamma (PPARG) as an agonist. Connective tissue growth factor (CTGF) is reported as a functional target 
of Pioglitazone in the STITCH database. CTGF is involved in endothelial cell proliferation, migration, 
and angiogenesis. Several network measures ranked PPARG and CTGF in the 1st percentile of possible 
targets on the prostate cancer (PC3) tissue. Thus, Pioglitazone might be a new repositioning candidate 
for prostate cancer treatment. Although high expression of CTGF was observed in tumor-promoting 
prostate stromal cell lines15, it is significantly down-regulated by the Pioglitazone treatment; thus it can 
no longer trigger the angiogenesis path. The affected pathways due to the Pioglitazone treatment were 
analyzed using the LR measure. There were 70 deregulated genes in this treatment with |FC| ≥  2. The 
shortest paths network (SP-net) is built by compiling the shortest paths passing through PPARG, CTGF 
(targets) and deregulated genes based on the STRING network. The initial SP-net contains 322 genes 
and 1125 edges. Figure  7a shows possible affected paths after application of a filtering procedure (see 
Methods). The most interesting genes are SMAD3, NFKB1, IL8, KLF4, and FABP4. We performed a liter-
ature search to find transcriptome-level responses of these genes. PPARG agonists inhibit CTGF expres-
sion through SMAD3-(4)16. Similarly, PPARG agonists reduce SMAD3 activity and inhibit metastasis 

Figure 6. A sub-network of selected targets and deregulated genes. Four drugs (methylprednisolone, 
nimesulide, prednicarbate, and simvastatin) and their differentially expressed genes are shown in different 
colors in the STRING network. A rectangle node shape represents a target protein, and circles indicate 
interconnecting genes. Differentially expressed genes (including possible targets) are colored in the color of 
the appropriate drug. Therefore, each colored sub-network might represent affected downstream pathways of 
the given drug. Thus, the view of target-affected genes community helps experimentalists design new drug 
experiments.
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of lung cancer cells in mice17. Due to the down-regulation of CTGF through SMAD3 inhibition, these 
observations could be accurate for Pioglitazone treatment on PC3 tissue. Activation of PPARG represses 
the transcriptional activity of NFKB that reduces IL8 production and proliferation of PC3 cells18. A 
similar mode of action might work in the Pioglitazone treatment because of the down-regulation of IL8. 
Epidermis-associated FABP is strongly down-regulated in prostate cancer cells19,20. Correlated with such 
an observation, PPARG activation leads to a significant up-regulation of FABP4 in the Pioglitazone treat-
ment. KLF4 regulates cell proliferation, apoptosis, and inflammation. KLF4 works as a tumor suppres-
sor21 and PPARG binds to the promoter region of KLF4 in prostate cancer22. The up-regulation of KLF4 
in the Pioglitazone treatment also supports previous findings that it might reduce tumor proliferation. 
All of these observations, which are obtained by the affected pathway analysis and validated by pathway 
databases (e.g., KEGG, Reactome, and WikiPathways), uncovered the hypothetical pathway in Fig.  7b. 
In summary, previous studies highlighting the relationship between PPARG and CTGF, IL8, and KLF4 
were also confirmed by the affected pathway analysis, which helps in the discovery of a pathway-level 
phenotype for drug treatment.

Conclusion
This study integrates gene expression profiles and protein-protein interactions to prioritize possible drug 
targets. One of the essential factors in the prediction quality is the network measure, which is used 
for protein scoring. The novel measure, LR, achieves the highest target prediction rate versus previous 
studies—it can predict 22% of the known targets in the 1st percentile. Additionally, it is more promising 
for predicting diverse drug targets. The STRING network, which integrates various PPI networks and 
predicted interactions, accomplishes the best performance together with the STITCH target set. This 
might be because of the construction schema because some interactions in both databases are obtained 
by literature mining and prediction methods. Hence, well-studied targets have a tendency to be highly 
connected within the biological network. The selection of high-degree nodes as drug targets might have 
a toxic effect on patients9. Toxicity might also appear by regulating highly central genes in the network10. 
On the other hand, only about 20% of the estimated human interactome is currently known23, thus, such 
a sparse network might also limit the prediction capability of the method. Therefore, the performance 
depends markedly on the selected network measure as well as the definition of a target protein. In con-
clusion, the integration of gene expression data into biological networks improves the prioritization of 
known drug targets. The shortest path-based approach, LR, uncovers affected pathways due to a drug 
perturbation. Thus such affected pathways explain the observed phenotype. Moreover, a sub-network of 
selected targets and deregulated genes highlight potential new targets for the given drug. Furthermore, 
the predicted targets in the top-ranked positions might be used as an input for docking algorithms that 
can compute the likelihood of a physical interaction with the given compound and candidate targets. Due 
to the high time consumption of docking algorithms, the proposed approach would dramatically reduce 
the amount of candidate proteins for further validation in binding assays.

Use of more comprehensive molecular interaction data, the integration of pathway information and 
tissue-specificity into a global interactome are possible future directions to build dynamic networks. 

Figure 7. Downstream affected pathways for the Pioglitazone treatment. (A) The shortest paths network. 
The colored nodes represent deregulated genes and bold circled nodes have specific Gene Ontology 
annotations (e.g., angiogenesis, apoptosis). (B) The core pathway affected by the activation of PPARG. The 
color indicates the gene expression value of the node. An edge represents an activation or inhibition between 
two genes.
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We plan to update the human interaction network via online services such as PSICQUIC24. The path-
way information provides the biological signal flow between proteins and the corresponding processes. 
Directionality can be obtained from pathway databases (e.g., KEGG, Reactome) or be inferred by search-
ing for the shortest paths between specific receptors and down-stream affected genes25. Edge weights in 
a network might be defined by integrating gene expression correlations6,26. Considering edge directions 
and weights in such networks could improve the prediction capability of network measures. The global 
human interactome covers all possible interactions that may occur in different cell compartments, tissues, 
or experimental conditions. One approach for customizing the global interactome as a tissue-specific 
network might be the generation of interactions by considering co-expressed interaction partners in a 
specific tissue or condition9,27–29. Such a tissue–specific and weighted network could improve the identi-
fication of targets and downstream pathways.

Methods
Microarray Data Processing. Connectivity Map (CMap) was downloaded, and then raw microar-
ray data of the control and the drug treatment samples were analyzed with the affy R-package (version 
2.15.3). The CMap (version 2) contains 6100 microarray experiments showing treatment responses of 
1309 drugs on cell lines MCF7, PC3, HL60, and SKMEL51. The CMap is a well-established, comprehen-
sive and widely used repository. Hence, it was chosen as an extensive drug perturbation data. The raw 
data were analyzed by the RMA method30, as provided in the affy R-package. The differential expression 
of a gene is represented by the fold change (FC), i.e., ratio of drug-treated versus control samples. Genes 
and nodes in networks are represented by Entrez gene identifiers, and thus probes with unknown Entrez 
identifiers were discarded. If a gene is represented by multiple probe sets, the probe set with the highest 
mean expression was selected as the representative. If the absolute FC value of a gene is higher than 1.5 
(p-value ≤  0.05), it is considered as a deregulated gene in the CMap data set.

Interaction Network. Human protein interactions were obtained from the STRING database (ver-
sion 9.0) and filtered based on the confidence score, which was computed during the integration of 
various data sources in STRING31. In order to limit the false–positive interactions – which are probably 
originated from prediction methods – interactions having a confidence score of 800 or above were kept. 
The resulting STRING network contains 11787 nodes (proteins) and 170273 edges (interactions) and 
represents 11% of all interactions in the original STRING network. The edges are used unweighted and 
undirected.

Drug Targets. The known human targets of the drugs in the CMap database were extracted in several 
steps. First, each drug was mapped to its corresponding PubChem identifier based on a drug name com-
parison. Known human targets of these drugs were extracted from the STITCH database (version 3.1)13. 
In the STITCH database, drug-target interaction data are collected from different data sources, which 
provide information about metabolic pathways, crystal structures, binding experiments and drug target 
relationships. Afterwards, for every drug-target interaction, the likelihood of all different sources of this 
interaction was combined to achieve an overall confidence score. Drug-target interactions were extracted 
with PubChem identifiers from STITCH. Finally, human targets with a confidence score of 800 or above 
were selected as drug targets. This target set is called FT. After the mapping and filtering steps, 551 drugs 
with known targets were left in the CMap data set. Due to the high number of targets for some drugs, 
the most likely target of each drug was chosen with a text mining approach. The likelihood of being the 
best drug target is calculated based on the pairwise occurrence frequency of a target and a tissue name 
in PubMed abstracts (i.e., the more frequent, the more probable target it is). The most confident target 
shows a literature-based correlation with a specific tissue. Thus, the method selects tissue-specific targets. 
This target set, FT1, assigns only one target to each drug. PT (physical targets) is an in-house database 
aggregating more than 15 different drug, protein, and compound databases32. The PT set includes phys-
ical interactions from Protein Data Bank33, Therapeutic Targets Database34, and BindingDB Database35. 
The coverage of PT is much lower than of FT because of its focus on physical binding only. FT1 is 
the smallest target set in terms of unique targets and drug-target interactions (Supplementary Table 2).  
Although PT contains only known physical binding partners of queried drugs, it was successfully 
applied in previous drug repositioning studies32,36. The biological network (STRING) contains at least 
90% of known targets that are provided by any target data set. The known target overlap between three 
drug-target data sets shows that 87 targets are indicated by all of the data sets (Supplementary Fig. 1). 
PT covers only 155 unique physical drug targets; 2224 targets are only provided by FT, and it has the 
highest coverage in terms of known targets.

Network Measures. Several network measures were implemented, and the LR measure was devel-
oped for comparison purposes (Supplementary Table 1). Expression-specific measures integrate gene 
expression into their calculation. The shortest path-based measures integrate the shortest path distances 
into their formula. Kernel and correlation diffusion rankings are representatives for random walk-based 
algorithms, which use the entire gene expression data. If a measure is local, it only considers a node 
and its close neighborhood to determine the score. A global measure potentially uses the entire net-
work topology to calculate the node score. The random target predictor ranks the proteins by using 100 
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random protein selections out of all nodes in the network. Hence, it provides a baseline for other meas-
ures. The PeC, kernel and correlation diffusion ranking measures were selected from previous studies 
for comparison purposes4,8. All measures are implemented in the R-Bioconductor environment (version 
2.15.3).

The LR measure helps to prove the initial hypothesis that deregulated genes might be close to drug 
targets in terms of the network topology. It uses a network G and a set of deregulated genes DG as 
input. A score of a node n in the network G is calculated as defined in the Equation 1. If the network 
is unweighted, |sp| shows the minimum number of nodes to connect dg and n. LR utilizes both drug 
perturbation data (i.e., deregulated genes) and topological information (i.e., shortest path distance).

The following measures are well-known network centrality measures and only consider network 
topology. Stress calculates the frequency of a node in any shortest path of the network.

∑ ∑= ( , ), ( )≠ ≠ ∈ ( , )Stress ca n sp 2s n t sp sps s t

where sps(s, t) shows the set of all shortest paths from s to t; and ca(n,sp) is defined as follows:

=





∈
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Radiality shows the level of reachability of a node via different shortest paths of the network (i.e., the 
closer to the rest of nodes, the easier it is to reach).

=
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where diameter(G) indicates the length of longest path in G.
The formulation of the rest of measures is given in the Supplementary. The code of all measures and 

data sources (pre-processed CMap data, PPI network, drug-target data sets) are available under the 
http://projects.biotec.tu-dresden.de/DrugTargetPrioritization/ web page.

Target Prioritization. Gene expression and network topological data are integrated to predict all 
possible drug targets. Drug perturbation data (i.e., control vs. treatment) is incorporated into calculation 
of the topological proximity by using either gene expression values or deregulated genes. The possible 
targets of a given drug are predicted by a sorted list according to the closeness scores. Target prediction 
aims to eliminate as many false positive target predictions as possible. Hence, the proteins predicted in 
the 1st percentile of the rank list are the most probable drug targets. If a known drug target is ranked 
in the 1st percentile of all possible targets, this prediction is accepted as a true positive one. The overall 
performance is provided by the accumulative percentage of correctly predicted targets of all drugs in the 
given percentile37.
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Here, Pr is the percentage of correctly predicted targets up to a rank level r, TPr
t is the number of true 

positive targets (which are predicted above the rank level r) of a drug t, Dt is the total number of known 
targets of the drug t, and n is the total number of drugs in the CMap. The Pr value corresponds to the 
true positive rate or recall value. Note, that each target has multiple rank values that are derived from 
different cell lines or tissues. To unify them into one rank value, the best rank value is chosen out of all 
predicted ranks. The percentage of correctly predicted targets is shown by a curve in which each point 
represents a Pr value for a specific rank level r. Thus, the x-axis represents the number of considered 
targets as positive predictions. That is, as more move to the right, target prediction becomes less precise. 
The y-axis shows the cumulative amount of correctly predicted targets (i.e., recall). To illustrate the 
deviation of each network measure with respect to the random prediction, we used prediction power 
transformation as described in the original study38.
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where Pr
measure and Pr

random are the recall of any network measure and random predictor, respectively.
We applied two groups of Wilcoxon signed rank testing to show that one measure predicts known 

targets better than the other. In this test, the recall curve of a measure is compared to another one. The 
distribution of the correctly predicted targets is assumed to be the same for all measures.

ROC Analysis. Receiver Operator Characteristic (ROC) and AUC (Area Under the Curve) calcu-
lations compare performance of LR with previous studies39. Therefore we applied the same scheme as 

http://projects.biotec.tu-dresden.de/DrugTargetPrioritization/webpage
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Laenen et al. to define TP (true positive), FN (false negative), FP (false positive), and TN (true negative) 
predictions4. We calculated true positive rate (TPR) and false positive rate (FPR) by applying all possible 
rank cutoffs (i.e., 1 to 11787) for the prioritization list. For each cutoff, we divide predictions into true 
and negative sets. Based on these sets, we defined TPs as all correctly-predicted known targets above or 
equal to the rank cutoff. FPs are all proteins ranked above, which are not in the known target set. FNs 
are known drug targets that are ranked below the cutoff. All remaining proteins are defined as TNs. Note, 
that definitions of TN and FP predictions should be taken with caution because these proteins might 
be known targets of new drugs in near future and thus incomplete target knowledge might lead a bias 
about definitions of the current scheme. The TPR and FPR of different rank cutoffs are used to plot the 
ROC curve, and finally an AUC value is calculated. The AUC value shows the probability that a ran-
domly selected known target (positive one) is ranked higher than a randomly selected protein (negative 
one). Therefore an AUC value of 1 means that all known drug targets are ranked in the 1st position of 
prioritization list, whereas a method with an AUC value of 0.5 ranks the target proteins not better than 
random chance.

Construction of Sub-network of Selected Targets and Deregulated Genes. The sub-network 
of drug targets and deregulated genes show that the individual modules are composed of drug targets 
and deregulated genes. The aim is to extract the paths that pass through a target as well as the affected 
deregulated genes in the STRING network. Topological mapping of perturbation data in the biological 
network reveals the shortest paths between deregulated genes and known targets. To choose four drug 
examples given in the “A Sub-network of Selected Targets and Deregulated Genes” section, we applied 
the following selection scheme: The shortest paths network (SP-net) is extracted for each drug target and 
its deregulated genes. The SP-nett is composed of all possible shortest paths that connect all deregulated 
genes and target t. LR(t) is the local radiality of a target t with the deregulated genes dg. It is calculated 
for each SP-net. If LR(t) < 3, and the distance of SP-nett to other SP-nets is larger than 3, then SP-nett 
is selected as an example for target-deregulated genes sub-network. Each selected SP-nett is uploaded to 
the Cytoscape tool to visualize the sub-network40.

Extraction of Downstream Affected Pathways of Targets. The aim is to extract the paths that 
pass through a target and the corresponding deregulated genes in the STRING network. If the length 
of a shortest path that connects a deregulated gene g and a target t is 3, then all possible shortest paths 
with a length of 3 are counted for gene g. The SP-net of each target protein is constructed by using the 
same procedure as before. To focus on more specific paths, the SP-net is filtered based on two criteria: 
reaching the target within a fixed length of paths and selecting nodes with specific Gene Ontology (GO) 
annotations (e.g., angiogenesis, apoptosis). The fixed length is generally assigned to 2 because this SP-net 
covers direct interactors of deregulated genes and their neighbors. This provides a better consideration of 
the global topology. The rest of the analysis was performed on a limited size of SP-net with Cytoscape.
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