Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Biodiversity studies in Phaseolus species by DNA barcoding

Publication: Genome
21 July 2011

Abstract

The potential of DNA barcoding was tested as a system for studying genetic diversity and genetic traceability in bean germplasm. This technique was applied to several pure lines of Phaseolus vulgaris L. belonging to wild, domesticated, and cultivated common beans, along with some accessions of Phaseolus coccineus L., Phaseolus lunatus L., and Vigna unguiculata (L.) Walp. A multilocus approach was exploited using three chloroplast genic regions (rbcL, trnL, and matK), four intergenic spacers (rpoB-trnC, atpBrbcL, trnT-trnL, and psbA-trnH), and nuclear ITS1 and ITS2 rDNA sequences. Our main goals were to identify the markers and SNPs that show the best discriminant power at the variety level in common bean germplasm, to examine two methods (tree based versus character based) for biodiversity analysis and traceability assays, and to evaluate the overall utility of chloroplast DNA barcodes for reconstructing the origins of modern Italian varieties. Our results indicate that the neighbor-joining method is a powerful approach for comparing genetic diversity within plant species, but it is relatively uninformative for the genetic traceability of plant varieties. In contrast, the character-based method was able to identify several distinct haplotypes over all target regions corresponding to Mesoamerican or Andean accessions; Italian accessions originated from both gene pools. On the whole, our findings raise some concerns about the use of DNA barcoding for intraspecific genetic diversity studies in common beans and highlights its limitations for resolving genetic relationships between landraces and varieties.

Résumé

Les auteurs ont exploré le potentiel des codes barres génétiques pour étudier la diversité et la traçabilité génétiques au sein du germoplasme du haricot. Cette technique a été employée sur plusieurs lignées pures sauvages, domestiquées et cultivées du Phaseolus vulgaris, ainsi qu’à quelques accessions du P. coccineus, du P. lunatus et du Vigna unguiculata. Une approche multilocus a été exploitée au moyen de trois régions géniques chloroplastiques (rbcL, trnL et matK), de quatre espaceurs intergéniques (rpoB-trnC, atpB-rbcL, trnT-trnL et psbA-trnH), et les séquences nucléaires ITS1 et ITS2 de l’ADNr. Les buts principaux étaient d’identifier les marqueurs et SNP qui offraient le pouvoir discriminant le plus grand entre les variétés chez le haricot, de comparer deux méthodes (fondée sur les arbres ou les caractères) pour l’analyse de la biodiversité et pour des essais de traçabilité, et d’évaluer l’utilité globale des codes barres d’ADN chloroplastique pour retracer l’origine des variétés italiennes modernes. Les résultats obtenus montrent que la méthode NJ constitue une approche puissante pour comparer la diversité génétique au sein des espèces, mais qu’elle s’avère relativement peu informative pour ce qui est de la traçabilité génétique des cultivars. Au contraire, la méthode basée sur l’examen des caractères a permis d’identifier plusieurs haplotypes distincts pour toutes les régions étudiées au sein des accessions mésoaméricaines ou andéennes, ces deux pools génétiques étant la source des accessions italiennes. Globalement, ces observations soulèvent des interrogations sur l’emploi des codes barres génétiques pour des études de diversité génétique intraspécifique chez le haricot et soulignent les limites de cet outil pour la résolution des relations génétiques entre variétés de pays et cultivars.

Get full access to this article

View all available purchase options and get full access to this article.

References

Álvarez I. and Wendel J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29(3): 417–434.
Angioi S.A., Desiderio F., Rau D., Bitocchi E., Attene G., and Papa R. 2009. Development and use of chloroplast microsatellites in Phaseolus spp., and other legumes. Plant Biol. 11(4): 598–612.
Angioi S.A., Rau D., Attene G., Nanni L., Bellucci E., Logozzo G., et al. 2010. Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor. Appl. Genet. 121(5): 829–843.
Barcaccia G., Lucchin M., and Parrini P. 2003. Characterization of a flint maize (Zea mays var. indurata) Italian landrace. II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genet. Resour. Crop Evol. 50(3): 253–271.
Barrett R.D.H. and Hebert P.D.N. 2005. Identifying spiders through DNA barcodes. Can. J. Zool. 83(3): 481–491.
Brower A.V.Z. 2006. Problems with DNA barcodes for speciesdelimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera:Hesperiidae). Syst. Biodivers. 4(02): 127–132.
Burle M.L., Fonseca J.R., Kami J.A., and Gepts P. 2010. Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor. Appl. Genet. 121(5): 801–813.
CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106(31): 12 794–12 797.
Chacón M.I., Pickersgill B., and Debouck D.G. 2005. Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor. Appl. Genet. 110(3): 432–444.
Cowan R.S., Chase M.W., Kress W.J., and Savolainen V. 2006. 300 000 species to identify: problems, progress and prospects in DNA barcoding of land plants. Taxon, 55(3): 611–616.
Cronn R.C., Small R.L., Haselkorn T., and Wendel J.F. 2002. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am. J. Bot. 89(4): 707–725.
DeSalle R., Egan M.G., and Siddall M. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1462): 1905–1916.
Debouck D.G., Toro O., Paredes O.M., Johnson W.C., and Gepts P. 1993. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ. Bot. 47(4): 408–423.
Delgado-Salinas A., Turley T., Richman A., and Lavin M. 1999. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst. Bot. 24(3): 438–460.
Evanno G., Regnaut S., and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8): 2611–2620.
Falush D., Stephens M., and Pritchard J.K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4): 1567–1587.
Fazekas A.J., Burgess K.S., Kesanakurti P.R., Graham S.W., Newmaster S.G., Husband B.C., et al. 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE, 3(7): e2802.
Gepts P., Beavis W.D., Brummer E.C., Shoemaker R.C., Stalker H.T., Weeden N.F., and Young N.D. 2005. Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol. 137(4): 1228–1235.
Hajibabaei M., Singer G.A.C., and Hickey D.A. 2006. Benchmarking DNA barcodes: an assessment using available primate sequences. Genome, 49(7): 851–854.
Hebert P.D.N., Cywinska A., Ball S.L., and deWaard J.R. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270(1512): 313–321.
Hebert P.D.N., Stoeckle M.Y., Zemlak T.S., and Francis C.M. 2004. Identification of birds through DNA barcodes. PLoS Biol. 2(10): e312.
Hickerson M.J., Meyer C.P., and Moritz C. 2006. DNA barcoding will often fail to discover new animal species over broad parameter space. Syst. Biol. 55(5): 729–739.
Kami J., Velàsquez V.B., Debouck D.G., and Gepts P. 1995. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc. Natl. Acad. Sci. U.S.A. 92(4): 1101–1104.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16(2): 111–120.
Kress W.J. and Erickson D.L. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH- psbA spacer region. PLoS ONE, 2(6): e508.
Kwak M. and Gepts P. 2009. Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor. Appl. Genet. 118(5): 979–992.
Lledó M.D., Crespo M.B., Cameron K.M., Fay M.F., and Chase M.W. 1998. Systematics of Plumbaginaceae based upon cladistic analysis of rbcL sequence data. Syst. Bot. 23(1): 21–29.
Logozzo G., Donnoli R., Macaluso L., Papa R., Knupffer H., and Zeuli P.S. 2007. Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet. Resour. Crop Evol. 54(8): 1763–1779.
Mason-Gamer R.J. and Kellogg E.A. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45(4): 524–545.
Meier R., Shiyang K., Vaidya G., and Ng P.K.L. 2006. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55(5): 715–728.
Meyer C.P. and Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 3(12): e422.
Mohler, V., and Schwarz, G. 2008. Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms. In Molecular marker systems in plant breeding and crop improvement. Vol. 55. Edited by H. Lorz and G. Wenzel. Springer, Berlin. pp. 23–38.
Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
Newmaster S.G., Fazekas A.J., and Ragupathy S. 2006. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can. J. Bot. 84(3): 335–341.
Pallottini L., Garcia E., Kami J., Barcaccia G., and Gepts P. 2004. The genetic anatomy of a patented yellow bean. Crop Sci. 44(3): 968–977.
Papa, R., Nanni, L., Sicard, D., Rau, D., and Attene, G. 2006. The evolution of genetic diversity in Phaseolus vulgaris L. In Darwin’s Harvest: new approaches to the origins, evolution and conservation of crops. Edited by T.J. Motley, N. Zerega, and H. Cross. Columbia University Press, New York.
Pritchard J.K., Stephens P., and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945–959.
Rach J., DeSalle R., Sarkar I.N., Schierwater B., and Hadrys H. 2008. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc. Biol. Sci. 275(1632): 237–247.
Rossi M., Bitocchi E., Bellucci E., Nanni L., Rau D., Attene G., and Papa R. 2009. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl. 2(4): 504–522.
Rozas J., Sánchez-DelBarrio J.C., Messeguer X., and Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18): 2496–2497.
Sang T., Crawford D.J., and Stuessy T.F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84(8): 1120–1136.
Shaw J. and Small R.L. 2005. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92(12): 2011–2030.
Sicard D., Nanni L., Porfiri O., Bulfon D., and Papa R. 2005. Genetic diversity of Phaseolus vulgaris L., and P. coccineus L. landraces in central Italy. Plant Breed. 124(5): 464–472.
Taberlet P., Gielly L., Pautou G., and Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17(5): 1105–1109.
Tamura K., Dudley J., Nei M., and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8): 1596–1599.
Tate J.A. and Simpson B.B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploidy species. Syst. Bot. 28(4): 723–737.
Tautz D., Arctander P., Minelli A., Thomas R.H., and Vogler A.P. 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18(2): 70–74.
Tingshuang Y., Miller A.J., and Wen J. 2004. Phylogenetic and biogeographic diversification of Rhus (Anacardiaceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 33(3): 861–879.
Tsai L.-C., Wang J.-C., Hsieh H.-M., Liu K.-L., Linacre A., and Lee J.C. 2008. Bidens identification using the noncoding regions of chloroplast genome and nuclear ribosomal DNA. Forensic Sci. Int. Genet. 2(1): 35–40.
Velzen R., Bakker F.T., and Loon J.J.A. 2007. DNA barcoding reveals hidden species diversity in Cymothoe (Nymphalidae). Proc. Neth. Entomol. Soc. Meet. 18: 95–103.
Vences M., Thomas M., Bonett R.M., and Vieites D.R. 2005. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1462): 1859–1868.
Vollmer S.V. and Palumbi S.R. 2004. Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol. Ecol. 13(9): 2763–2772.
Ward R.D., Zemlak T.S., Innes B.H., Last P.R., and Hebert P.D.N. 2005. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1462): 1847–1857.
White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide to methods and applications. Edited by M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, Inc., New York. pp. 315-322.
Whitlock B.A., Hale A.M., and Groff P.A. 2010. Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PLos ONE, 5(7): e11533.
Wiemers M. and Fiedler K. 2007. Does the DNA barcoding gap exist? — a case study in blue butterflies (Lepidoptera: Lycanidae). Front. Zool. 4: 8.
Will K.W. and Rubinoff D. 2004. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics, 20(1): 47–55.
Will K.W., Mishler B.D., and Wheeler Q.D. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 54(5): 844–851.
Wojciechowski M.F., Lavin M., and Sanderson M.J. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot. 91(11): 1846–1862.
Wong E.H. and Hanner R.H. 2008. DNA barcoding detects market substitution in North American seafood. Food Res. Int. 41(8): 828–837.

Supplementary Material

File (g11-018asuppl.jpg)
File (g11-018bsuppl.jpg)

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 54Number 7July 2011
Pages: 529 - 545
Editor: Paolo Donini

History

Received: 28 December 2010
Accepted: 19 February 2011
Version of record online: 21 July 2011

Permissions

Request permissions for this article.

Key Words

  1. Phaseolus spp.
  2. plastid DNA
  3. internal transcribed spacers
  4. DNA barcoding
  5. varietal groups
  6. single-nucleotide polymorphisms

Mots-clés

  1. Phaseolus spp.
  2. ADN plastidique
  3. espaceurs internes transcrits
  4. codes barres génétiques
  5. groupes variétaux
  6. polymorphisme mononucléotidique

Authors

Affiliations

Silvia Nicolè
Department of Environmental Agronomy and Crop Science, Università degli Studi di Padova, Via dell'Università 16 – Campus of Agripolis, 35020 Legnaro, Padova, Italy.
David L. Erickson
Department of Botany and Laboratory of Analytical Biology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA.
Daria Ambrosi
Department of Environmental Agronomy and Crop Science, Università degli Studi di Padova, Via dell'Università 16 – Campus of Agripolis, 35020 Legnaro, Padova, Italy.
Elisa Bellucci
Department of Environmental Sciences and Crop Production, Università Politecnica delle Marche, Ancona, Via Brecce Bianche, 60131 Ancona, Italy.
Margherita Lucchin
Department of Environmental Agronomy and Crop Science, Università degli Studi di Padova, Via dell'Università 16 – Campus of Agripolis, 35020 Legnaro, Padova, Italy.
Roberto Papa
Department of Environmental Sciences and Crop Production, Università Politecnica delle Marche, Ancona, Via Brecce Bianche, 60131 Ancona, Italy.
Cereal Research Centre, Agricultural Research Council, S.S. 16, Km 675, 71122 Foggia, Italy.
W. John Kress
Department of Botany and Laboratory of Analytical Biology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA.
Gianni Barcaccia
Department of Environmental Agronomy and Crop Science, Università degli Studi di Padova, Via dell'Università 16 – Campus of Agripolis, 35020 Legnaro, Padova, Italy.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Genetic diversity and relationship between Egyptian Vigna (Vigna spp. (L.) Walp.) taxa populations via Phenotypic and Molecular profiling
2. Genetic Diversity of Asian Vigna Species (Subgenus Ceratotropis; Genus Vigna) in India Based on ITS2 Sequences Data
3. Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya
4. Genotyping Analysis by RAD-Seq Reads Is Useful to Assess the Genetic Identity and Relationships of Breeding Lines in Lavender Species Aimed at Managing Plant Variety Protection
5. Identification of Edible Fish Species of Pakistan Through DNA Barcoding
6. Resilience Capacity Assessment of the Traditional Lima Bean (Phaseolus lunatus L.) Landraces Facing Climate Change
7. Effect exposure of non-specialist tissue to ultraviolet treatments on gene expression and growth under cold stress in some breeds of beans
8. Karyological Analysis and DNA Barcoding of Pompia Citron: A First Step toward the Identification of Its Relatives
9. Phylogenetic implications and secondary structure analyses of Vigna mungo (L.) Hepper genotypes based on nrDNA ITS2 sequences
10. Insight into the origin of common bean (Phaseolus vulgaris L.) grown in the state of Jammu and Kashmir of north-western Himalayas
11. Conservation and genetic characterisation of common bean landraces from Cilento region (southern Italy): high differentiation in spite of low genetic diversity
12. How Far Advanced is the DNA-Based Identification of the BELFRIT-List?
13. Differentiation and description of aromatic short grain rice landraces of eastern Indian state of Odisha based on qualitative phenotypic descriptors
14. DNA Barcoding as a Molecular Tool to Track Down Mislabeling and Food Piracy
15.
16. Uncovering the sources of DNA found on the Turin Shroud
17. Biochemical characterization and genetic identity of an oil-rich Acutodesmus obliquus isolate
18. Towards a Universal Approach Based on Omics Technologies for the Quality Control of Food
19. DNA Barcode Authentication of Saw Palmetto Herbal Dietary Supplements
20. The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.)
21. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species
22. DNA barcoding as a new tool for food traceability
23. Sampling Strategy and Potential Utility of Indels for DNA Barcoding of Closely Related Plant Species: A Case Study in Taxus

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media