Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Species-level identification of the blowfly Chrysomya megacephala and other Diptera in China by DNA barcoding

Publication: Genome
14 October 2016

Abstract

The blowfly Chrysomya megacephala, or oriental latrine fly, is the most common human-associated fly of the oriental and Australasian regions. Chrysomya megacephala is of particular interest for its use in forensic entomology and because it is a disease vector. The larvae are economically important as feed for livestock and in traditional Chinese medicine. Identification of adults is straightforward, but larvae and fragments of adults are difficult to identify. We collected C. megacephala, its allies Chrysomya pinguis and Protophormia terraenovae, as well as flies from 11 other species from 52 locations around China, then sequenced 658 base pairs of the COI barcode region from 645 flies of all 14 species, including 208 C. megacephala, as the basis of a COI barcode library for flies in China. While C. megacephala and its closest relative C. pinguis are closely related (mean K2P divergence of 0.022), these species are completely non-overlapping in their barcode divergences, thus demonstrating the utility of the COI barcode region for the identification of C. megacephala. We combined the 208 C. megacephala sequences from China with 98 others from public databases and show that worldwide COI barcode diversity is low, with 70% of all individuals belonging to one of three haplotypes that differ by one or two substitutions from each other, reflecting recent anthropogenic dispersal from its native range in Eurasia.

Résumé

La mouche verte et bleue Chrysomya megacephala, mouche orientale des latrines, est la mouche la plus communément associée aux humains dans les régions orientales et l’Australasie. Le C. megacephala présente un intérêt particulier en entomologie médico-légale et aussi parce qu’il constitue un vecteur de maladies. Les larves revêtent une importance économique à titre d’aliment pour le bétail et en matière de médecine traditionnelle chinoise. L’identification des adultes est simple, mais les larves ou fragments d’adultes sont difficiles à identifier. Les auteurs ont recueilli des spécimens du C. megacephala, d’espèces proches C. pinguis et Protophormia terraenovae, ainsi que de 11 autres espèces provenant de 52 sites en Chine. Ils ont ensuite séquencé les 658 paires de bases de la région code à barres du gène COI pour 645 mouches de ces 14 espèces, incluant 208 spécimens du C. megacephala, afin de constituer une librairie de codes à barres COI pour les mouches en Chine. Tandis que le C. megacephala et son proche parent C. pinguis étaient les plus apparentés (divergence K2P moyenne de 0,022), ces espèces ne se chevauchent absolument pas en ce qui a trait aux positions divergentes au sein du code à barres, ce qui démontre l’utilité de la région code à barres du gène COI pour l’identification du C. megacephala. Les auteurs ont combiné 208 séquences de C. megacephala provenant de Chine avec 98 autres provenant de banques de données publiques pour montrer que la diversité du code à barres COI à l’échelle mondiale est faible, 70 % des individus appartenant à l’un de trois haplotypes qui diffèrent les uns des autres par une ou deux substitutions. Cela reflète une dissémination anthropogénique récente à partir de son aire initiale en Eurasie. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Adamowicz S.J. 2015. International Barcode of Life: Evolution of a global research community. Genome, 58(5): 151–162.
Barcaccia G., Lucchin M., and Cassandro M. 2016. DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity, 8(1): 2.
Bunchu N., Sukontason K.L., Olson J.K., Kurahashi H., and Sukontason K. 2007. Behavioral responses of Chrysomya megacephala to natural products. Parasitol. Res. 102(3): 419–429.
Butcher B.A., Smith M.A., Sharkey M.J., and Quicke D.L.J. 2012. A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadinae) based largely on CO1 barcoded specimens, with rapid descriptions of 179 new species. Zootaxa, 3457: 1–232.
Cai J.F., Liu M., Ying B.W., Deng R.L., Dong J.G., Zhang L., et al. 2005. The availability of mitochondrial DNA cytochrome oxidase I gene for the distinction of forensically important flies in China. Acta Entomol. Sin. 48(3): 380–385.
Cawthorn D.M., Steinman H.A., and Witthuhn R.C. 2012. DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African market. Food Res. Int. 46(1): 30–40.
DeSalle R., Egan M.G., and Siddall M.E. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Proc. R. Soc. Ser. B Biol. Sci. 360(1462): 1905–1916.
Ebach M.C. 2011. Taxonomy and the DNA barcoding enterprise. Zootaxa, 2742: 67–68.
Engstrand R.C., Tovar J.C., Cibrián-Jaramillo A., and Kolokotronis S.-O. 2010. Genetic variation in avocado stem weevils Copturus aguacatae (Coleoptera: Curculionidae) in Mexico. Mitochondrial DNA, 21(S1): 38-43.
Fan, Z.D. 1992. Key to Chinese common flies. Science Press, Beijing.
Ferri G., Alu M., Corradini B., and Beduschi G. 2009. Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int. J. Legal Med. 123(5): 395–401.
Folmer O., Black M., Hoeh W., Lutz R., and Vrijenhoek R. 1994. DNA Primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5): 294–299.
Goff, M.L. 2001. A fly for the prosecution: how insect evidence helps solve crimes. Harvard University Press, Massachusetts.
Grant B. 2007. Cataloging life. The Scientist, 21(12): 36. Available from http://www.the-scientist.com/article/display/53881.
Hebert P.D.N., Cywinska A., Ball S.L., and de Waard J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270: 313–321.
Hebert P.D.N., Penton E.H., Burns J.M., Janzen D.H., and Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101(41): 14812–14817.
Hendrich L. and Balke M. 2011. A simultaneous journal/wiki publication and dissemination of a new species description: Neobidessodes darwiniensis sp. n. from northern Australia (Coleoptera, Dytiscidae, Bidessini). ZooKeys, 79: 11–20.
Hernandez-Triana L.M. 2015. DNA barcoding of Neotropical black flies (Diptera:Simuliidae): species identification and discovery of cryptic diversity in Mesoamerica. Zootaxa, 3936(1): 93–114.
Imbiriba A.S., Izutani D.T., Milhoretto I.T., and Luz E. 1977. Introdução da Chrysomya chloropyga (Wiedemann, 1818) na região neotropical (Diptera, Calliphoridae). Archivos de biologia e tecnologia Curitiba, 20: 35–39.
Klausnitzer B. 2010. Entomologie - quo vadis? Nachrichtenblatt der Bayerischen Entomologen, 59: 99–111.
Leigh J.W. and Bryant D. 2015. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6(9): 1110–1116.
Liao J., Yue Q., Qiu D., Wei X., Liu D., and Jia F. 2014. Morphology and DNA barcoding of a newly intercepted fly species exotic in China, Calliphora dubia (Macquart, 1855). Chin. J. Vector Biol. Control, 25(6): 509–513.
Liu D., Nie W., Qiu D., Guo Z., Wei X., Chen J., et al. 2014. DNA barcoding identification of unknown pupa intercepted from entry ship. Journal of Inspection and Quarantine, 24(5): 53–57.
Luo, X.R. 1993. Practical Color Atlas for Chinese traditional medicine. Guangdong Sciences and Technology Press, Guangzhou.
Meiklejohn K.A., Wallman J.F., and Dowton M. 2011. DNA-based identification of forensically important Australian Sacrophagidae (Diptera). Int. J. Legal Med. 125(1): 27–32.
Meyer C.P. and Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 3(12): e422.
Neigel J., Domingo A., and Stake J. 2007. DNA barcoding as a tool for coral reef conservation. Coral Reefs, 26(3): 487–499.
Nelson L.A., Wallman J.F., and Dowton M. 2007. Using COI barcodes to identify forensically and medically important blowflies. Med. Vet. Entomol. 21: 44–52.
Nelson L.A., Lambkin C.L., Batterham P., Wallman J.F., Dowton M., Whiting M.F., et al. 2012. Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene, 511(2): 131–142.
Ramaraj, P., Chitra, S., Veeramani, V., Ganesh, A., and Janarthanan, S. 2014. Redescription and DNA barcoding of Synanthropic derived form of Chrysomya megacephala (Diptera: Calliphoridae) from decaying fish in Tamil Nadu, South India. International Conference on Entomology.
Ratnasingham S. and Hebert P.D.N. 2007. The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes, 7(3): 355–364.
Raupach M.J., Hendrich L., Küchler S., Deister F., Morinière J., and Gossner M.M. 2014. Building-up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany reveals taxonomic uncertainties and surprises. PLoS ONE, 9(9): e106940.
Renaud A.K., Savage J., and Adamowicz S.J. 2012. DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits. BMC Ecol. 12: 24.
Riedel A., Sagata K., Surbakti S., Tänzler R., and Balke M. 2013. One hundred and one new species of Trigonopterus weevils from New Guinea. Zookeys, 280: 1–150.
Rivera J. and Currie D. 2009. Identification of Nearctic black flies using DNA barcodes (Diptera: Simuliidae). Mol. Ecol. Resour. 9(s1): 224–236.
Salem A.M., Adham F.K., and Picard C.J. 2015. Survey of the genetic diversity of forensically important Chrysomya (Diptera:Calliphoridae) from Egypt. J. Med. Entomol. 52(3): 320–328.
Schuehli G.S.E., de Carvalho C.J.B., and Wiegmann B.M. 2007. Molecular phylogenetics of the Muscidae (Diptera: Calyptratae): new ideas in a congruence context. Invertebr. Syst. 21: 263–278.
Shi Y.W., Liu X.S., Wang H.Y., and Zhang Y.J. 2008. Study of living habits of Chrysomya megacephala and its forensic application. Acta Scientiarum Naturalium University Sunyatsen, S1(47): 70–76.
Sing K.W., Sofian-Azirun M., and Tayyab S. 2012. Protein analysis of Chrysomya megacephala maggot meal. Anim. Nutr. Feed Technol. 12(1): 35–46.
Stoev P., Akkari N., Zapparoli M., Porco D., Enghoff H., Edgecombe G.D., et al. 2010. The centipede genus Eupolybothrus Verhoef, 1907 (Chilopoda: Lithobiomorpha: Lithobiidae) in North Africa, a cybertaxonomic revision, with a key to all species in the genus and the first use of DNA barcoding for the group. ZooKeys, 50: 29–77.
Sukontason K.L., Bunchoo M., Khantawa B., Piangjai S., Rongsriyam Y., and Sukontason K. 2007. Comparation between Musca domestica and Chrysomya megacephala as carriers of bacteria in northern Thailand. Southeast Asian J. Trop. Med. Public Health, 38: 38–44.
Taha N., Abdel-Meguid A., and El-ebiarie A. 2010. Application of active excretory/secretory products from third larval instar of Chrysomya megacephala (Diptera: Calliphoridae) on an artificial wound. J. Am. Sci. 6(7): 313–317.
Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30(12): 2725–2729.
Wall, R., and Shearer, D. 1997. Veterinary entomology: arthropod ectoparasites of veterinary importance. Springer, London.
Wall R., Howard J.J., and Bindu J. 2001. The seasonal abundance of blowflies infesting drying fish in south-west India. J. Appl. Ecol. 38(2): 339–348.
Ward R.D., Holmes B.H., White W.T., and Last P.R. 2008. DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Mar. Freshw. Res. 59(1): 57–71.
Wei X., Qiu D., Yue Q., and Guo Z. 2014. DNA Barcoding Identification of China non-recorded mosquito species intercepted at the port. Journal of Inspection and Quarantine, 24(6): 46–49, 67.
Wells J.D. 1991. Chrysomya megacephala (Diptera: Calliphoridae) has reached the continental United States: review of its biology, pest status, and spread around the world. J. Med. Entomol. 28(3): 471–473.
Wesener T. 2012. Nearctomeris, a new genus of pill millipedes from North America, with a comparison of genetic distances of American pill millipede genera (Glomerida, Glomeridae). Zootaxa, 3258: 58–68.
Wesener T., Raupach M.J., and Decker P. 2011. Mountain refugia play a role in soil arthropod speciation on Madagascar: a case study of the endemic Giant fire millipede genus Aphisto goniulus. Public Library of Science ONE, 6(12): e28035.
Will K.W., Mishler B.D., and Wheeler Q.D. 2005. The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 54(5): 844–851.
Williams K.A. and Villet M.H. 2006. A new and earlier record of Chrysomya megacephala in South Africa, with notes on another exotic species, Calliphora vicina (Diptera: Calliphoridae). Afr. Invertebr. 47: 347–350.
Wong H.K. and Hanner R.H. 2008. DNA barcoding detects market substitution in North American seafood. Food Res. Int. 41: 828–837.
Wu S.Y. and Hu M. 2012. Advances in research on Chrysomya megacephala (Fabricuis) in China. Chin. J. Vector Biol. Control, 4: 370–373.
Xue, W.Q., and Zhao, J.M. 1996. Flies of China. Liaoning Sciences and Technology Press, Liaoning.
Yang S.T. and Shiao S.F. 2014. Temperature adaptation in Chrysomya megacephala and Chrysomya pinguis, two blow fly species of forensic significance. Entomol. Exp. Appl. 152(2): 100–107.
Yue Q., Qiu D., Hu J., and Liu G. 2013. DNA Barcoding — a novel tool for fast and accurate identification of medical vectors. Journal of Inspection and Quarantine, 23(5): 60–63, 49.
Yue Q., Wu K., Qiu D., Hu J., Liu D., Wei X., et al. 2014. A formal re-description of the cockroach Hebardina concinna anchored on DNA barcodes confirms wing polymorphism and identifies morphological characters for field identification. PLoS ONE, 9: e106789.

Supplementary Material

Supplementary data (gen-2015-0174suppl.zip)

Information & Authors

Information

Published In

cover image Genome
Genome
Volume 60Number 2February 2017
Pages: 158 - 168
Editor: Sarah Adamowicz

History

Received: 26 November 2015
Accepted: 26 July 2016
Accepted manuscript online: 14 October 2016
Version of record online: 14 October 2016

Permissions

Request permissions for this article.

Key Words

  1. haplotype network
  2. blowfly
  3. invasive species
  4. Diptera
  5. pest

Mots-clés

  1. réseau d’haplotypes
  2. mouche verte et bleue
  3. espèce envahissante
  4. Diptera
  5. insecte nuisible

Authors

Affiliations

Deyi Qiu
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.
Charles E. Cook
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
Qiaoyun Yue [email protected]
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.
Jia Hu
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.
Xiaoya Wei
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.
Jian Chen
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.
Dexing Liu
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.
Keliang Wu
Zhongshan Entry-Exit Inspection and Quarantine Bureau Technology Center, 2, Zhongshan 6 Road, Zhongshan 528403, Guangdong, China.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Molecular Taxonomy and Forensic Entomology: Where We Stand Today
2. Chrysomya pinguis (Walker) (Diptera: Calliphoridae), blow fly of forensic importance: A review of bionomics and forensic entomology appraisal
3. Mainstreaming Traditional Practices for Wound Management
4. Combining a COI Mini-Barcode with Next-Generation Sequencing for Animal Origin Ingredients Identification in Processed Meat Product
5.
6. Assessing Species Identification of the Genus Chrysomya (Diptera: Calliphoridae) by DNA Barcoding
7. Temperature-dependent development of the blow fly Chrysomya pinguis and its significance in estimating postmortem interval
8. DNA Barcoding for the Identification and Authentication of Animal Species in Traditional Medicine

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Genome

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media